
1

Metrics in SoC Verification
Not just for coverage anymore

Andreas Meyer and Harry Foster

Design and Verification Technology Division

Mentor Graphics Corporation

andy_meyer@mentor.com, harry_foster@mentor.com

Abstract—Process metrics provide a clear, quantitative and

objective measure to assess process performance and progress

towards a specific process goal. SoC functional verification

involves integrating multiple IP blocks. So understanding how to

define, measure, correlate, and analyze appropriate IP and

system-level metrics is fundamental to improving performance

and achieving quality goals. Yet, many of today’s SoC project

members’ understanding of metrics is often limited to simple

coverage measurements. In this paper, we take a broader view of

metrics—beyond traditional coverage measurements—and

identify a range of metrics across multiple aspects of today’s SoC

functional verification process. We then discuss other important

considerations when integrating metrics into a project flow, such

as metric categorization, run-time control, data management,

and reporting and analysis.

Keywords-functional verification; coverage; metrics; SoC; IP

1. INTRODUCTION

Metrics provide a way to build measurements into a design
or verification process and environment in such a way that
specific issues of interest can be monitored, and then corrective
action can be taken when problems are identified.

With any complex design, no single measurement will give
an accurate portrayal of a project’s state. Each measurement
can only give one view and most have significant limitations,
which is why a wide range of metrics are often used to build a
reasonably accurate picture of a project. With many different
types of metrics, good planning, and solid analysis, it is
possible to build a view of the project that is not distorted by
the drawbacks of any one measurement. Yet because metrics
can be expensive to implement and maintain, planning is also
critical to gaining a meaningful view of the system in a cost-
effective manner.

1.1 Paper scope

The focus of this paper is the philosophy that underpins
creation of a metrics-driven SoC Verification process. We do
not discuss the actual implementation of the metrics process
since the implementation details would be project specific.
Furthermore, we do not discuss the actual tools used to
implement a metrics process. We believe that it is first
necessary to understand what is required of a metrics-driven
SoC verification process before delving into the details of how
to implement the solution.

1.2 Prior work

Applying metrics to quantitatively improve a process is a

fundamental component within the Capability Maturity Model

(CMM), a framework for assessing and improving software

processes originally developed by Carnegie Mellon University

and the Software Engineering Institute. [1] For hardware

verification, coverage is one metric that has been used for

years. The book Functional Verification Coverage

Measurement and Analysis [2] provides an excellent overview

and taxonomy of various coverage measurements. In addition,

the book Metric Driven Design Verification [3] provides an

introduction to metrics-driven processes in hardware design

and verification. What differentiates this paper from prior

work is that we focus the metrics-driven discussion on issues,

challenges, and concerns specifically related to SoC design

and verification.

1.3 Paper organization

This paper is organized as follows—In Section 2, we
describe the forces driving change in today’s SoC verification
flow. In Section 3, we discuss what can be measured in an
SoC verification flow and how these measurements can be
used. Section 4, the bulk of the paper, describes important
considerations when architecting a metrics-driven process.
Although this paper does not focus on the implementation
details, in Section 5 we do discuss important considerations
during process implementation. Finally, Section 6 provides
some concluding thoughts on what to expect after adopting
and implementing a metrics-driven process.

2. WHAT ARE THE DRIVING FORCES FOR CHANGE?

In this section, we begin by examining the issues that are

motivating change and the need for metrics-driven processes.

We then discuss what is not working in today’s IP-based SoC

design flows.

2.1 How is IP-based design changing?

The increasing number and complexity of IP blocks being
integrated into a single chip is driving the need for process
metrics. In the past, when IP blocks operated independently of
each other, SoC verification consisted mostly of checking the
interconnects of each IP block and the registers across the SoC,
as illustrated in Figure 1.

2

Figure 1. Yesterday’s concern—basic IP interconnects

This level of verification doesn’t require an understanding
of IP blocks’ internals. Metrics could provide some utilization
information (e.g, Answering questions such as: What is the
utilization on a particular bus? Are we getting access to
memory fast enough?) which are important for performance
analysis but not likely to be critical in terms of identifying
errors that result from interacting IP blocks.

Today, as IP blocks interact directly with each other, it is
critical to verify functionality between IPs at the SoC
integration level. Even with IP blocks that operate
independently, shared resources mean that the behaviors of one
block can affect other blocks. As part of the integration effort,
bus utilization, fairness and memory sharing may need to be
examined to determine whether the SoC functions as specified.

What is emerging are more complex IPs where state may be
shared across multiple IP blocks, which means that
functionality can only be fully tested at integration. Figure 2
gives an example of this emerging challenge, depicting
multiple complex IP blocks containing a coherent cache and a
memory subsystem.

Figure 2. Tomorrow’s concern—shared state

The integration of complex IP brings a new set of
challenges to the SoC verification team. Each IP block is
generally developed by its own team focusing on that specific
block. When the blocks are integrated, the SoC verification
team must debug and analyze the system, often without the
knowledge of the IP internals. Each IP is a black-box to this
team, which will not have the time or background to
understand the inner workings of multiple complex IPs.

This requirement – productively verifying complex
interactions of a full system without understanding the
component parts – is driving change in how metrics are used.
Without metrics, determining what happened in a simulation
has become very difficult for SoC designs. Specifically, in
large environments, what is not measured is not known.

2.2 What is not working?

Coverage measurements are probably the best-known
metric for measuring whether a specific feature or function has
been exercised by a verification test. While this is a useful
thing to know, in today’s environments it is a limited bit of
information. Moving beyond traditional coverage, we often
need additional insight into what is being verified. Examples
include:

 What abstraction level was the IP (i.e., feature)
instantiated at when it was covered?

 What was the integration level of the environment
when closing various coverage items, (e.g., block- or
system-level)?

 What stimulus was used to reach a covered item?

The increasing number and types of IP blocks being
integrated into a single environment has brought new
challenges in understanding what SoC functionality has been
verified. A few examples related to IP simulated activity
include:

 Were the complex programming requirements for a
particular IP block verified?

 Were the various IP block power management features
properly verified?

 Were the complex system interactions between
multiple IP blocks verified?

As IP blocks become more diverse with firmware, multiple
abstraction levels, and configuration options, additional metrics
beyond coverage are required, metrics the help answer
questions such as:

 Which IP blocks (and versions) were included in the
build process?

 What firmware version was used during simulation?

Finally, moving beyond traditional coverage metrics bring
up new issues in storage and ability to query of information.
We explore this topic further in Section 5.

3. WHAT CAN METRICS TELL US?

We are interested in a broad set of metrics that cover the
entire verification flow, giving insight into the build, simulation
and regression processes—as well as various aspects of the
overall project. Yet we are also interested in metrics that are
actionable lest the process of measuring and storing metrics
data waste project resources.

In Table 1, we provide a typical set of processes and
focused areas associated with a general SoC verification flow,
along with a list of process attributes that we might choose to
track using metrics. In general, a single metric associated with
any particular attribute in the table is of little use. Only when
multiple metrics are correlated during analysis does real value
emerge.

3

For example, tracking coverage trends over time might be
interesting, though simple coverage metrics generally do not
provide the insight necessary for understanding what has been
verified in complex SoC designs. More complex questions
associated with the SoC verification process must be answered.
Continuing with our example, we might be in a situation where
we built a new revision of the system, and we would not only
like to know what coverage was hit, but also to examine this in
the context of specific applied stimulus—say, for a particular
level of abstraction of the design and for a particular revision of
the firmware. Within this context, and by correlating multiple
metrics, we have a clearer view of the circumstances that
allowed us to hit specific coverage and the outstanding problem
areas.

We now expand our discussion on what metrics can tell us
by providing examples for various common processes within
today’s SoC verification flow.

3.1 Metrics as part of the build process

The build process instantiates multiple IP and testbench
blocks to form a system to be verified. At this point, when
appropriate metrics are defined and implemented, information
on the actual build process can be obtained. Such information
is most likely to be useful in large SoC environments with
significant code churn. For example, we might be interested in
knowing exactly which IP blocks were used during the build
process, where each IP block originated, which version number
was associated with each IP block and what level of abstraction
was used for the build. An important point: metrics need not
count multiple events to be useful. In our example, metrics for
the non-event-based build can be used to qualify queries
around specific code. For instance, we could determine the
coverage metrics associated with a specific IP version.
Correlating event-based with non-event-based metrics may be
useful in checking completeness of overall verification.

Other relevant information may include configuration or
randomization that was done during the build. Gathering these
sorts of metrics on these aspects of the build process should be

sufficient to understand what occurred or was accomplished in
the build process so that errors or progress information taken
from a regression can be correlated to specific components
used within simulation.

3.2 Metrics as part of the simulation process

The majority of our process measurements are likely to
occur during testing within each simulation or emulation run.
There are a number of basic areas where reports can be useful
to determine what happened during simulation, which pieces of
the simulation environment were used, and how the pieces
played together.

The follow are various aspects of the simulation process
where measurements can be useful.

Stimulus Sources: Larger systems are likely to use a number
of stimulus sources within a single simulation, which is likely
to include at least one test and also include other sources, such
as noise generators, software running on an embedded
processor or connections to external processes. Metrics can
measure which sources were used and provide information
about the type and frequency of traffic generated by each
source. This information can be helpful to understand how the
system has been tested and to measure the productivity of
various stimulus methods.

Checking Methods: As with stimulus sources, most projects
are likely to use many different checking methods. Metrics can
be used to ensure that the desired checkers are in place and
receiving traffic to check. Beyond that, metrics can identify the
numbers and types of checks that were performed, which can
give an indication of how the system is being tested and how
well it is performing. Measuring that the desired checkers are
in place, as well as the number and types of checks used, can
provide an indication of stimulus coverage and system metrics,
such as traffic density, bus utilization, or system-specific
operations. Checking metrics, when correlated with other
metrics, may help provide a deeper understanding of the
environment’s effectiveness and productivity.

TABLE I. VARIOUS VERIFICATION PROCESS METRICS

Process and
Focused Areas

Process and Focused Area Attributes and the Information Associated Metrics Can Provide

Design
Abstraction level Simulated performance

List of instantiated blocks
(and versions)

Stimulus Source of stimulus
Type of stimulus (CR, firmware,

graph, legacy, etc.)

Checking Source of checkers Results of checkers Checker abstraction levels

IP Interface activity Key internal states

Coverage Categories of coverage
RTL/stimulus/checker reference

model
Abstraction level of coverage

Build Source and rev of files Initial configuration used

Run Simulator/Emulator
Host machine info (memory, disk

image distance, etc.)
Simulation performance Revision of tools

Debugging Area of failure
Commonality of cases where

many tests report same failure

Regress Which simulations Errors found
Errors re-found (i.e., wasted

simulation)
Improvements in coverage results

Bug Status Open bugs
Bug discovery info: stimulus,
abstraction level, checker…

Metrics used to isolate bug
Bug closure information (sim time,

engineer time, number of runs)

4

Coverage Metrics: These metrics are most commonly
associated with simulation. Code coverage methods require no
additional coding of metrics since this information is extracted
by the simulator and is useful for identifying code that has
never been exercised. Functional coverage metrics need to be
architected, planned, written and maintained, but they can also
provide domain-specific information on the reach of the
stimulus within the simulation as shown in Figure 3. Both
metrics are useful for identifying holes in the input stimulus for
activating lines of code, structures or behaviors within a design.
Yet, by themselves these metrics cannot answer the question:
“Did a specific test both activate and then propagate an event
of interest to a specific checker?”

Figure 3. Domain-specific metrics

Domain-Specific Performance: In some systems,
understanding the performance characteristics of the system
under test is a critical part of functional verification; metrics
can provide some data to estimate the system performance. By
attaching to existing bus monitors or checkers and using
transaction tracking, it may be possible to extract throughput,
utilization and latency information from an existing verification
infrastructure. For example, the metrics captured in Figure 3
could be used to measure domain-specific performance where
discrete pieces of information are often sufficient to calculate
system-performance.

Simulation Performance: Simulation can be time-intensive in
large verification environments. Accordingly, simulation
performance is important to ensure that regressions are run
with sufficient regularity and to keep bug turnaround times as
short as possible. Determining how to improve simulation
performance can be exceedingly complex, and while metrics
are not likely to help with that, they can be used to track
performance and provide an early detection mechanism if
design or testbench code has been introduced into the
simulation process that negatively impacts performance. By
correlating performance with code revisions, it may be possible
to link performance degradations (or improvements) to the
introduction of specific blocks of code.

Simulation Configuration: Each simulation may have run-
specific configurations that can affect other aspects of the
verification process. Probably the most obvious configuration
is the random seed that was generated for each run. That seed
or other parameters may be used to select tests or change the

configuration of the simulation. Reporting each configuration
option as a part of metrics allows configuration changes to be
correlated with other metrics such as coverage, simulation
performance and bug statistics.

3.3 Metrics as part of the regression process

Most simulations are run during the regression process.
While the stimulus and coverage metrics should be reported
from within each simulation, the regression process is also
responsible for a number of decisions. Metrics can help ensure
that regressions are efficient and productive. There are usually
two types of metrics tracked in the regression process:
information on the regression run and information on the
simulation farm.

Regression run information may include test names,
frequency of tests, random seeds, configuration choices and so
on. This information, in addition to coverage, bug status and
other simulation metrics, can provide insight into the
effectiveness of tests and where additional tests are needed.
One well-known example of this is test ranking. By looking at
the tests that provide the most coverage or are most effective at
uncovering bugs, test run order or test frequency can be
adjusted to increase verification productivity.

3.4 Metrics as part of the overall project

There are a number of areas within a project where metrics
can provide insight into various aspects of a project, even
though they are not actually within a simulation. One obvious
measurement is in bug reporting. Understanding bug status can
provide insight into the simulation, testing, coverage and
overall progress. Ideally, when a bug is detected, knowing
which simulation reported the bug provides information about
the stimulus, checking, versions and abstraction level used to
find the bug. Knowing more details about the bug (e.g., which
block, type of bug and so on) can provide information about
test effectiveness and even coverage. Knowing when the bug
was closed can provide information about the project progress
and insight into when a particular test does not need to be run
in regressions.

Other metrics outside of simulations can be useful when
measuring project-wide progress. For example, how often code
is checked into the revision control system is related to stability
and maturity of the design and testbench. Team status metrics
are also useful, particularly when multiple geographic locations
are involved. Determining which metrics are useful is likely to
depend on many aspects of the project, the expected lifespan of
IP that is being developed and corporate culture.

4. WHAT IS NEEDED TO ADDRESS THE PROBLEM?

This section discusses four important aspects of a
successful metrics-driven process: understanding the landscape,
categorization, run-time control and reporting.

4.1 Understanding the landscape

Successful adoption of a metrics-driven process requires
first recognizing the potential breadth of metrics and the
imperative to organize the execution, classification and
reporting of metrics during the project planning phase.

5

4.1.1 Breadth of metrics

The higher the number of metrics, the more important it is
to run and report these metrics in a structured fashion. The
sheer volume of metrics can easily overwhelm both the
simulator and the user. Managing this issue means architecting
the metrics-driven process for easy control of the execution,
classification and reporting of metrics—thus permitting the
user to focus the measurement on relevant areas of concern
while minimizing noise produced by non-relevant metrics.

Metrics must be designed into the process in a way that can
be managed and understood without detailed knowledge of
each design block. That requires architecting a metrics solution
that leverages the concepts of modularity and APIs, which
allow the metrics to be controlled.

Designing the metrics solution in from the bottom up means
that metrics are written by the engineers that understand the
block for use with block-level verification. With well-defined
APIs, that block-level metrics solution can then be integrated
into a higher-level subsystem and system verification
environment.

4.1.2 Organizing metrics

One method of managing the breadth and volume of
metrics is to initially organize them into high-level areas of
focus and then provide controls enabling measurement of
relevant areas of interest. Three ways in which metrics can be
organized are test-specific, user-specific, and project-specific
organization of metrics.

Test-Specific Organization of Metrics: The relevance of a
given metric changes along with the execution of various
simulations, each of which generally focuses on a specific
design area. Some simulations, for example, may run stimulus
focused on specific system components, while others may
spread activity across a broad set of components. When
specific components are targeted, then the associated metrics
(which are likely IP-specific, stimulus, checking and
simulation) are usually relevant. When simulation activity is
spread across an entire SoC, low-level metrics within specific
components are likely to be less relevant, while higher-level
metrics (perhaps measuring bus and API activity) may be more
relevant. The key point is that these factors should be
considered as you architect your metrics-driven process.

Figure 4 illustrates a conceptual checklist matrix that can be
used to measure completeness of a specific test. The matrix
provides the user with a method of answering the questions:
Did a specific simulation run at the appropriate levels of
abstraction? Were multiple tests run concurrently with a
specific irritator? Obviously, the conditions measured within an
actual checklist matrix would be design-specific, yet perhaps
this simple example hints at the power of graphical analysis of
metrics.

Figure 4. Checklist matrix for test-specific analysis

User-Specific Organization of Metrics: A user may want to
change the relevance of metrics at different points within a
project. This decision will depend on the issues that the user
wants to focus on. For example, enabling metrics in specific
areas can augment information provided by traditional checkers
and monitors. In addition, the user will want to enable metrics
that focus on understanding how the environment was
constructed and initialized and how it is running.

Project-Specific Organization of Metrics: A number of
metrics may be used at the project level to measure
productivity and progress. These metrics may include
simulation time, build information, farm execution and broad
measurements of the environment (e.g., system under test
stimulus, checkers and abstraction). Such measurements are
generally relevant for all simulations and are likely to be
enabled on all runs as a way of capturing and monitoring the
overall project.

 One example of a project-specific metric might be tracking
how long a regression simulation takes per various IP blocks.
For example, Figure 5 shows the regression run for the
Coherent Cache IP block previously illustrated in Figure 2.
Notice the sudden spike in regression time on week 17. This
might be caused by design or coding issues associated with a
recent modification to this particular IP block. You can see
here that metrics in this case allow us to respond to issues
before they get out of hand.

6

Figure 5. Simulation regression time for a particular IP block

4.1.3 Categorization of metrics

The organization of metrics discussed in the previous
section proposed a more general, high-level approach to
viewing and managing metrics. An orthogonal way to view
metrics is to create a more focused approach by grouping
measurements through categorization. For example, in system
simulation, an integrated IP block may be measuring some
aspect of low-level functional coverage, which is only expected
to be covered in an IP-level simulation. Categorization can be
used to identify which metrics are likely to be of interest in
which cases and to disable metrics that are not of interest for a
specific class of simulations.

The following are a few examples areas where
categorization can be used to improve the performance of a
metrics-driven process.

Allow specific concerns to be addressed: Complex system
verification environments often lead to use of various classes of
simulations. One example is the choice of abstraction level.
Higher-abstraction-level simulations are generally used to
allow for faster simulations with less accuracy. This approach
can be useful for testing some higher-level concepts or
performing long simulation runs involving firmware. However,
the reduction in accuracy may require disabling a whole group
of metrics. Once again, categorization can be used to specify a
group of metrics that should be disabled during simulation.

Improve regression efficiency: If most regression runs pass
with only occasional failures, then it may be useful to have the
regression environment run with most or all metrics disabled
first, and then decide whether to rerun for failing regressions. If
failure types are classified, then the regression environment
may be able to look up the desired metrics categories for the
particular failure type and rerun the test automatically. This
approach may provide a reasonable tradeoff between regression
efficiency and the engineering need to debug the failure.

Allow a team to package information with an IP through
categorization: When an IP is packaged and delivered for
system integration, the developers have IP-specific knowledge
that they may want to package up for use at the system level.

Metrics categorization can help with this goal by allowing the
IP designers to correlate metrics to system-level requirements.

For example, the IP designers might add a category of
functional coverage to the packaged IP that they consider
important at the system level. This category is likely a subset of
the full functional coverage metrics. Similarly, IP-specific
performance metrics are not likely to be of general use at the
system level, and these metrics could be disabled through
appropriate categorization. Furthermore, a category of metrics
might be used to control how multiple IP blocks behave at
various integration or abstraction levels.

Category definitions are likely to depend on the
requirements of the specific project and company.
Standardizing the category definitions and implementation
across projects improves the ability to use the categories as IPs
migrate from project to project. Some general categories make
sense for a wide variety of projects, though it’s also useful to
define project- or IP-specific categories.

4.2 Runtime control

For a simulation run, the goals of each particular simulation
are generally understood. For example, some simulation runs
focus on specific areas of a design, while regressions may be
used to explore the random stimulus space and check for
correct behavior. Because metrics can require considerable
simulation resources, it may be desirable to only have those
resources enabled that help reach the goal of the simulation.
When a simulation is focused on one area of the environment,
it is reasonable to have all metrics from that area enabled and
very few metrics from other areas. For regressions, coverage
metrics may be the most important with, perhaps, some metrics
for performance included as well.

For performance reasons and to reduce the likelihood of
introducing a change in the simulation behavior as a result of
changing a monitor, it is important to provide the user with a
run-time mechanism to turn on metrics without having to
recompile the design. Run-time mechanisms can be used to
enable and disable categories of metrics at the start at specified
time of the simulation. This can improve an environment’s
performance and random stability. If care is not taken, just
enabling a monitor can affect a design’s random stability.
OVM and UVM are structured to minimize the likelihood of an
instantiation change resulting in a randomization difference.

4.3 Reporting

In this section, we discuss various aspects of a metrics-
driven process related to reporting, ranging from the use of
metrics for trend analysis and queries to the collection and
storage of metrics data.

4.3.1 Using metrics

Among the most common ways to use metrics are: trends
over time and correlations across different metrics. Which
metrics are used and how they are reported are likely to be
project-specific. Metrics can be plotted over time to show
trends, or they can be calculated as a single query to answer a
specific question. In general, trend analysis is the most
common use of metrics.

7

4.3.1.1 Trends

Plotting metrics over time is one way to determine
progress and direction within a project. This approach can be
particularly useful to check progress against a schedule or to
determine the effectiveness of specific verification methods.
The simplest reports might show a single measurement over
time, for example, bug-open and bug-closure rates plotted over
time or the percentage of tests written over time.

A slightly more complex report might include the
correlation of multiple metrics plotted over time. Again, the
idea is to choose a group of metrics that, when analyzed
together, provide a useful view into the project. Code and
functional coverage reports fit into this category. Coverage is
generally measured as the ratio of covered to uncovered lines
of code (or functional coverage points, in the case of functional
coverage). By plotting that ratio over time, a trend can be seen,
and hopefully, that trend shows that code coverage is
increasing as time goes by.

4.3.1.2 Queries

Metrics can be used for other reasons. For example, a
manager might query the database of metrics to determine
performance of either the simulator or the DUT. Alternatively,
a manager might query the database of metrics to determine the
effectiveness of specific verification components.

The following are a few examples of queries that one might
encounter on a typical SoC verification project.

Query Test-specific example: In the case of test-specific
queries, a verification engineer might be interested in knowing
if a group of tests designed to cause specific interactions
between blocks within the DUT actually worked. To check this
condition, the engineer could have created a monitor that
provides feedback into the stimulus source. However, this
approach might require additional verification infrastructure.
Alternatively, general coverage results are not likely to be
effective in determining this condition since they tend to be
accumulated over multiple tests. A metrics query may be the
simplest way to determine if the test achieved its goal,
particularly if multiple data points are needed. As an example,
a query can be used to determine if a specific test, when run at
a specific integration level in which several specific blocks
were instantiated, caused a specific cover point to be hit. This
type of unique and specific query may well be used as a part of
determining the completion status of a regression, but it is
unlikely to be of interest as a general trend discussed in the
previous section.

Query simulation performance example: Although
simulation efficiency can be measured in many different ways,
the most straightforward is as cycles per second (provided the
bus frequencies within the DUT are constant). Studying cycles
per second can help detect the introduction of inefficient code
when you log the frequencies across IP blocks as they migrate
from standalone environments into subsystem integrations.
Making simulation performance a criteria for revision control
system check-ins can reduce system simulation time.

In larger systems, a more interesting performance
measurement may be productivity per simulation cycle, which

can be captured through the number of tests, checks and cover
points achieved per cycle. One could also track the number of
RTL bugs caught per cycle, per category of stimulus, or per
regression. These types of reports can provide insight into the
effectiveness of the verification environment, and they might
also be worth plotting over time to view trends.

Query architectural performance example: Tests can help
confirm that specific DUT operations perform as expected and
look at the performance of a group of operations. However, by
definition, any test can only measure DUT performance within
the confines of that test.

Metrics help make broad and specific performance
measurements. Such measurements may be fairly
straightforward, including bus utilization, cache hit ratios,
processor operations per second or data transfer ratios. More
complex calculations such as snoop filter effectiveness or
quality of service measurements can also be of interest.

By tracking performance measurements and correlating
them with stimulus sources or integration levels, patterns may
emerge and show where improvements are needed. The main
requirement is that there are reasonably consistent
measurements across a range of environments. Where
performance is a critical concern, plotting metrics over time
can also help provide insight into the project completion
criteria.

All of these query examples are based on the concept that
metrics allow for capture and analysis of data across integration
levels, abstraction levels, IP blocks and time. Because the
metrics are stored outside of the simulation, new queries can
use all the historic data to provide insight and trend
information.

4.3.2 Collection and storage

Storing metrics in an addressable manner (for example,
database keys representing their organization and
categorization) facilitates data accessibility, permitting the data
to be accessed in queries. Generally, there are two types of
queries that need to be run: predefined and custom-designed.
Predefined queries are used frequently. They are often accessed
through a webpage by a wide group of people to understand the
current and progressing state of the project. On the other hand,
custom-designed queries look at a certain aspects of the project.
This type of query is likely to be narrow in scope and used by a
small group of engineers to understand a specific issue.

When architecting and implementing a metrics-driven
process, it is important to recognize that the storage system
must be able to easily accommodate both types of queries,
while simultaneously accepting new metrics that are gathered
from each simulation run. With a large simulation farm and
continuous regressions, the collection and storage of metrics is
a significant task all on its own. A single engineer can use the
stored metrics to understand a single run, but storing the
metrics in a project or environment-wide way allows for
additional analysis.

5. WHAT IS NEEDED TO ADOPT METRICS?

Though we will not discuss the actual implementation
details, there are important aspects of an implementation that

8

should be considered when architecting a solution. Like many
aspects of functional verification, a methodology is required for
implementing a metrics-driven process. Since that
methodology is likely to be carried forward for several project
generations, it is imperative to create a flexible methodology
that is likely to benefit future projects.

In the following sections we discuss, from a high level,
various aspects and considerations for an implementation.

5.1 Making the metrics solution part of the architecture

As with any other part of the verification environment,
effective implementation of metrics must be architected to fit
into the project and environment. Several things must be
considered before implementing metrics, including the types of
metrics, and what they are likely to involve:

Project-independent metrics

 These can involve rules for implementation, which
include the language used and mechanisms to control
when they are active.

 These can involve rules for reporting, which include
how metrics provide results and how reports are
correlated to specifics of a particular simulation and
environment.

 These can involve storage query, and reporting
mechanisms.

Environment-specific metrics

 These can involve simulator performance, including
runtime and environment information for a simulation.

 These can involve regression, including farm and
queue information.

Project-specific metrics

 This area is architecture-specific, and it generally starts
by understanding the key busses and processes in the
system and how to measure their correctness, accuracy
and performance.

 Bus-specific metrics are likely to include functional
coverage (which operation combinations and mixes of
operations have occurred) and performance (utilization,
bandwidth, queuing, backpressure, latency and so
forth).

5.2 Making the metrics’ solution useful

Ensuring that any specific measurement will provide value
is an important part of a metrics-driven process architecture.
Metrics are expensive, in large part due to their associated
maintenance and simulation costs. To prevent waste, the
architectural phase can be used to define what measurements
are needed and what each measurement will be used for.
Clarity of purpose allows designers to understand where
metrics are and are not needed.

One way to provide clarity and make metrics useful is to
categorize metrics by purpose. That is, for any particular IP,
some metrics are likely to be used internally to help the IP

designers understand the operation of the block. Other metrics
may be defined for external use to measure the operation of the
IP when integrated in a system environment. A clear definition
of purpose allows for effective categorization of metrics.

5.3 Ensuring the metrics solution is consistent

When multiple IPs are integrated into a larger system,
metrics provide one view into the environment. Consistency in
a metrics solution is important for both visibility and
efficiency. Consistent categorization makes it easier to control
reporting based on simulation goals. Providing similar levels
and quantities of reports increases the likelihood that the
reports can be meaningfully analyzed. If some blocks are
dramatically over or under reporting, it may skew analysis or
result in reports that are ignored.

Implementing metrics requires significant expertise in both
coding and project management. A metrics solution
implementation, while not difficult, can be time consuming in
terms of development and execution. Providing a useful set of
metrics that are consistent in reporting and implementation
across a range of designs requires significant planning and
discipline.

A consistent development style that is efficient to
implement and simulate is critical. Consistency in enabling,
disabling, and categorizing individual metrics provides a means
to control metrics in the simulation. Consistent reporting eases
the task of extracting information from various parts of the
environment into a single coherent picture.

5.4 Making the metrics solution work with legacy IP

Legacy IP provides a number of challenges to verification
methodology; however, from the viewpoint of metrics, legacy
and third-party IP is generally not as much an issue. These IPs
are often free of any metrics, which means that from an
analysis viewpoint, they are simply black-boxes that don’t
interfere with trend analysis on the rest of the system.

Often, legacy IP is not well understood because the
developers are not available to provide support. Despite this
impediment, there may still be value in adding some metrics to
support the environment. For example, metrics may be added
to the borders of the legacy IP block to ensure correct
integration and sufficient exercise of the IP. Whether or not
these types of metrics are needed should be determined during
the architecture phase of the project.

5.5 Planning the metrics solution

Metrics, as with any verification effort, are expensive.
Planning where metrics are required and the types of
measurements needed allows developers to determine where to
add metrics, how they should be categorized, what reporting is
needed, and the types of analysis that may be done. Metrics
development, even with careful planning, is time-consuming.
Furthermore, maintaining metrics as the DUT and testbench
environment evolve requires expertise and diligence.

Despite the expense in developing and maintaining the
measurement of metrics, they can provide an important view
that allows for measurement and improvement of the overall
environment.

9

Figure 6. A project metrics-driven verification dashboard example

6. WHAT TO EXPECT AFTER ADOPTING METRICS

Metrics give a new ability to see and measure day-to-day
design activity. More useful, however, are the measurements
over time revealing trends and progress, as conceptually
illustrated in Figure 6. The time horizon can be anywhere from
days (to see the immediate progress of the design, verification
environment and project) to weeks (where the project can be
tracked against the schedule) to months (where teams,
methodology, and tool productivity and effectiveness can be
tracked, measured, and improved).

Only by knowing the current state of verification is it
possible to determine what to improve or whether a change has
caused the desired improvement. Gut feelings, impressions,
and intuition can be effective in small projects where a few

people have a good understanding of the entire project;
however, in larger SoC projects that involve multiple complex
IPs, no one person has a view that encompasses the entire
project. As a result, the intuition of one or even several people
may not accurately portray the state of the project. Metrics can
be used to provide a quantitative measure of the state of a
project and permit comparisons, analysis and corrections to be
made.

Metrics can also be used to catch inefficiencies when they
are first introduced into a system. Without these metrics, it may
be weeks before a small change in an IP block causes a
significant slow-down in the system environment. By then, it
could be difficult to determine what change caused the
deterioration.

By providing a quantitative assessment of IP quality and
efficiency, metrics can track productivity by component or
system and at a point in time or as a trend. This view into the
system is the basis for productivity improvements and for on-
the-fly detection and correction of issues with the design or
verification environment.

REFERENCES

[1] Carnegie Mellon University and Software Engineering Institute,

The Capability Maturity Model: Guidelines for Improving the

Software Process, Addison-Wesley, 1995.

[2] Piziali, A., Functional verification Coverage Measurement and

Analysis, Kluwer Academic Publishers, 2004.

[3] Carter, H., Hemmady, S., Metric Driven Design Verification: An

Engineer's and Executive's Guide to First Pass Success,

Springer, 2007.

