Metric Driven Mixed-Signal Verification Methodology and Practices
for Complex Mixed-signal ASSPs

Frank Yang, Andy Sha, Morton Zhao

Analog Devices
Beijing, China
Frank.Yang@analog.com
Andy.Sha@analog.com
Morton.Zhao@analog.com

Abstract - Most ASSPs today are mixed-signal systems and
this higher level of integration means the verification of these
ASSPs is becoming more and more complex. For the ‘digital
only> SOCs there already exists advanced verification
methodologies widely used throughout the industry i.e. VMM,
UVM, metric driven verification (MDV). The push in verification
is now to extend these advanced verification methodologies to be
used in analog/mixed-signal ASSP verification as well.

A recent ASSP in ADI is an example of this trend. The ASSP
was a true mixed signal development, incorporating a Cortex-M3
MCU with analog peripherals including, ADC, VDAC, IDAC
and PLL etc. This paper will discuss how we implemented MDV
for the mixed-signal ASSP, how we defined verification metrics
for analog/mixed-signal blocks and how we built up the mixed-
signal constrained random verification environment. Defining
verification metrics for analog/mixed-signal blocks is a key
common problem for mixed-signal MDV and a lot of the
discussions will focus on this topic.

Keywords—Mix-signal Functional Design Verification, Metric
Driven Verification (MDV), Assertion Based Verification, Mix-
signal ASSP

l. INTRODUCTION

A. Metric Driven Verification Flow

Spec VRD
\;ne Yesw No n \

Analyze/
Measure

Execute

Fig. 1. Metric Driven Verification Flow

Yanping Sha
Cadence design Systems
Beijing, China
shayp@cadence.com

Plan: Use Cadence Eplanner to build metric-based executable
verification plan according to specification and verification
requirement document (VRD).

Construct: Use UVM to build platform and implement
verification metrics i.e. assertion and functional coverage.
Execute: Create test cases and run regressions.
Analyze/Measure: Analyze failures and measure metrics.
Sign-off: Verification sign-off based on verification metrics
data mapped to vPlan

B. Verification Planning

Metric-driven verification is based on a verification plan.
The plan lists the features that need to be verified, what to
check for and how to measure coverage [1]. Sources of
information for the verification plan are the design
specification and verification requirement documents (VRD).
The VRD is used to capture the verification requirements of
design, application and test engineers. This document will
focus on the concerns which design, application and test
engineers really want to ensure are covered in the verification
process. For example, very detailed design features which are
not listed in the design specification. We used Eplanner as the
verification plan tool. An example is shown in Fig. 2.

D save 'k Reload referenced 10 Sync imported € Undo
L Plan | specs | implementation | console
N%BEE%20@

= 1 LD0_REF BGyplan
v @LU

Attributes | fich text edtor

Eait all fekds (Cirl+0) | Field profite: defaul: |

Mapping element
Mame

Hamespace

tion Coverage
n function check
afunction check
[

Full path LDO1PEMetrcs{Chacker_ Assertionsfdo_tr
im_sssertion

Status. Mapped
item_details

L0 trmming function check

do1pé_vadj<3:0> varingfram 0 to 15 changes
age from 174V to 136V with

13 £242:1642 3 1651 4; 1680 5:
171 0 7: 1740 8: 1,762 8; 1783 10:
1806 11: 1,628 12: 1852 13:1 876 14: 1.800 15:
1925

cHK

(HDL typelth:trim_basepaint_step_assert
trim

Search | Clear] hames only advanced> | | Items_pattern

Fiter |[Clear|) Names only|Advanced>| | Match kind
Selection <] | check must trace
LDO_REF_BG.vplanjLDO 1P8/Metrics/Checker_
Assertions/ido_tri tion

Items filter

Effective actual mstances: (nonel L

Fig. 2. Example of Verification Plan

mailto:Frank.Yang@analog.com
mailto:Andy.Sha@analog.com
mailto:Morton.Zhao@analog.com

C. Verification construct

1) UVM verification envioment build up
The UVM methodology has succeeded in tackling the
hardest verification challenges in digital design. It is a metric-
driven approach using coverage directed random stimulus
generation, supporting multiple verification languages. It is the
methodology of choice to be extended for supporting analog
verification. The extended methodology is named UVM-MS

[2]. Some simple real-life UVM code is shown in Fig.3.

// Integration for UVM-compliant Program block
// Interfaces

include "mstr_slv_intfs.incl”

module ldo_env_tb_mod; //integration module

import uvm pkg::*;
include "uvm macros.swvh"

/4 ENV+TEST
include "ldo_env V.5V
include "ldo_env_test.sv"

4/ ALl interfaces
typedef virtual ldo_magt if v_ifl;
typedef virtual ldo_sagt_if w_if2;
typedef virtual analog_stim_if w_if3;

/

~

Configure TB / Run Test
initial begin

uvm_config db #(v_ifl)::set(null,"","mst if",u_ldo_tb_sv . mst_if);

uvm _config_db #(v_if2)::set(null,"","slv_if",u_ldo_tb_sv.slv_if);
uvm_config_db #(v_if3)::set(null,"* x_analog_stim agt®","analog_agt_if",
u_ldo_tb_sv.x_analog_stim_ifo);

uvm_config_db #(v_if3)::set(null,"*.x_analog_stim_agtl","analog_agt_if",
u_ldo_tb_swv.x_analog_stim_ifl);

run_test();

end

endmodule: Lldo_env_th_mod

Fig. 3. UVM example

2) Analog/MS verification metric definition and
implementation

b) Real Number Functional Coverage

The following table shows the features which are suitable to
use real number function coverage to define metrics.

TABLE II. EXAMPLES OF REAL NUMBER FUNCTIONAL COVERAGE

Features Detailed Features and Examples

Voltage range ADC input voltage range

DAC output voltage range

Voltage reference range

Current range Bias current range

Clock frequency range PLL VCO clock frequency range

PLL input reference clock range

¢) Memery mapped register function coverage

Function coverage of memory mapped register is defined to
cover the function of each bit of memory mapped register.

d) Toggle coverage of analog/digital interface signals
The toggle coverage of analog/digital interface signals is
defined to cover the different control sequences.

e) Code coverage
Code coverage of RTL in analog control blocks.

1. REAL LIFE CASE STUDY: LDO

A. LDO specification

In our project there was a low drop-out regulator (LDO)
which provided a 1.8 V supply to the MCU chip, including all
1.8V analog blocks and all digital blocks, such as CORTEX-
M3, flash, SRAM etc. The LDO can output a maximum
current of 100 mA. A 4-bit trim was employed to tune the
LDO output level.

We defined the following types of analog/mixed-signal TABLEIll. LDO ELECTRONIC SPECIFICATION
verification metrics. Parameter Test Min. Typ. Max Unit
a) Real number analog assertions Condition
. . . Input 2.8 33 3.7 \Y
The following table shows the features which are suitable to Opzrating
use real number analog assertions to define metrics. voltage
Output 100 mA
TABLE I. EXAMPLES OF REAL NUMBER ANALOG ASSERTION current
_ Output Trimcode | 1.74 1.80 1.96 \%
Features Detailed Features and Examples voltage =9
Timing Settling time, none-overlap signals timing Trim step 0.02 \Y
— — for output
Digital Voltage trimming Reference/LDO/POR voltage
contr;)lled trip point trimming Quiescent 200 LA
tr?r?ﬁnc:g Current trimming Bias current trimming Current
9 Clock frequency trimming | VCOJ/Oscillator Power @ 1kHz -50 dB
trimming su_pply
Digital ADC offset/gain calibration Ledectlon 5 5
assisted DAC offset/gain calibration ase €
analog margin
calibration Gain 10 dB
Algorithm | ADC chop, average, redundant, dither... margin
Critical signal | Monitor power supply, reference and bias
monitors

TABLE IV. LDO MEMORY MAPPED REGISTER DEFINITION

Bits Bit Name Description Reset | Access
[4:1] LDO_VREG_ADJ | Trim bits to adjust the | 0x9 RW
LDO output voltage

0 LDO_PD LDO Power down | 0x0 RW

signal (active high).

B. Block-box verification approach

Black-box verification refers to the technique of
verification system with no knowledge of the internals of the
DUT. Black box testbenches do not have access to the source
code of the DUT, and are oblivious of the DUT architecture. A
black box testbench, typically, interacts with a system through
a user interface by providing inputs and examining outputs,
without knowing where and how the inputs were operated
upon. In black box verification, the target DUT is exercised
over a range of inputs, and the outputs are observed for
correctness. How those outputs are generated or what is inside
the box doesn't matter [3]. The black box symbol for the LDO
is shown in Fig.4.

[a)
Ido1p8 2
B \rec_ADI<3:0> READY D |
B ro o vips A —ll
— Virs D |l
B— VReF > REFBUFOUT il
3.3v

.

AGND
Fig. 4. Black-box symbol of LDO

We developed a black box reference model to auto-check
the LDO functionality. From functionality viewpoint LDO
output was the function of voltage reference vref and trim word
vreg_adj. The reference model code is shown in Fig.5.

function ldo_sagt_item ldo_sb::ref_model_process(ldo_magt_item tr};

if(tr == null)
uvm_fatal("LDO_SB", "Master ITEM is EMPTY")

else
begin
ref_model_process new("ref_model_process”)
if(tr.pd == 1)
begin
ref_model_process.vlp8 = 0.0;
ref_model_process. refbufout = 0.55;
end
else
begin
ref_model_process.vip8 tr.vref*(1.96+0. 0239+
[itreal(tr.vreg_adj)) - 10.0));
ref_model_process. refbufout = tr.vref/1.314;
end
end
endfunction

Fig. 5. LDO reference model

Based on the LDO specification and peer brainstorming
we defined the following black box verification metrics.

1) Real number analog assertion checks

For the analog/mixed-signal verification we’re often asked
to check the voltage value at certain condition. One real
number analog assertion v_checker was developed for this
purpose. It will be used in the later sections. The v_checker
code is shown in Fig.6.

// Real number analeog assertion for voltage checker
module v_checker

parameter base_point 2, // expected value
parameter tolerance 1, // Tolerance by relative value
parameter delay_check = 10 // Delay n sample clocks to check

@

3

0.0

input real compare_value, // Measured voltage value

input sample_clk, // sample clock
input disable_check, // Disable check condition
input compare_enable // Enable comparision

property value_check_assert;

@(posedge sample_clk) disable iff(disable_check)
(compare_enable) |-=> ## delay_check
(compare_value = base_point * (1 + tolerance))

&& (compare_wvalue > base_point *(1 - tolerance));
endproperty

a_value_checker: assert property (value_check_assert)
else
$display(“Assertion ERROR: the value comparasion\
has been failed at the time @%t",%$time)

c_value_check_assert: cover property (value_check_assert)
endmodule

Fig. 6. Voltage checker

2) Power supply rejection check
Real number analog assertions can be used not only for
functionality checks but also for some analog performance
checks. One example is the LDO power supply rejection
check. According to the LDO electronic specification, the PSR
was -50db, and we have shown the code for the real number
analog assertion in Fig.7.

// Real number analog assertion: LDO power supply rejection performance check
module psr_chk_db
#(
// LDO PSR spec: -50 db
parameter psr_spec_db = -50.00,
// Expected voltage output of the LDO: 1.8v
parameter base_point = 1.8
// Amplitude of the sine wave noise: +/-50 mv

parameter power_noise 0.05
// Calculated torerance
parameter tolerance = (power_noise* 10**(psr_spec_db/20.0))/base_point

input real v1p8 a, // the voltage output of the LDO

input ldo_pd, // power down LDO
input sample_clk // Sample clock
v_checker

#(.base_point(base_point)
tolerance (tolerance),
delay_check(0)

)
u_v_checker
.compare_value(vlp8_a),
sample_clk(sample_clk)
.disable_check(ldo_pd),
.compare_enable(1'bl)

endmodule

Fig. 7. Top-level PSR analog assertion code

The simulation waveform for the PSR check is shown in Fig.8.

3.4 v (avdd) ‘
I e e
3.2

S T 7 [T]

v (vreg adj)
[9
v (vref)

0
> v (pd)

1

0
1.801 v(vlip8 a)

1.8008
1.8006
0

.5 1 1.5 2 2.5 3.5 4 4.5 5
time, xle—-3 Seconds

Fig. 8. Simulation waveform of LDO PSR check

The target trim value check

The target trim value should be in the center of trim range.
If the target trim value is close to the boundary of trim range
there is a risk that some devices cannot be trimmed to the
target value due to process variation. The 4 bits trim word
ldo_vadj was used to trim the LDO voltage to a target value of
1.8 V. The following top-level analog assertion code was used
to check if the target value 1.8 VV was at the center of the trim
range.
// Assertion check: Check if the targe trim value is around at

// the central of the trim range
trim_balance_point

{

.TRIM_WORD_WIDTH (4), S 4 bit trim word
.target_value(l.8), J/ Target trim value is 1.8v
ctrim_word_max_wvalue(l5), // Max trim word is 15

.trim word_min_value(©0), // Min trim word 1is ©
.tolerance (0.05) // 5% tolerance

)

u_trim balance_point

(

.voltage(ldo_out),

.disable check(pd || (lp_ref = 0.88) || (vdd3p3_ldo

.sample_clk(sample_clk),
ctrim_word(ldo_vadj)
)

= 2.8)),

Fig. 9. LDO target trim value check

Abnormal condition check

If the LDO was enabled but either the power or reference
supplies were not available then the correct LDO output would
not be provided. Analog assertion code for this check is shown
in Fig.10 and Fig.11.

module abn_input_check
#(parameter delay_abn_input_check = 20)
(
input sample_clk
input disable_check,
input lost_input // when some input lost,
f/ the ocutcome will generate.
input outcome_check

property abn_input_ast;

@(posedge sample_clk) disable iff (disable_check)
lost_input | = ##delay_abn_input_check outcome_check ;
endproperty
a_abn_input_ast: assert property (abn_input_ast)
else
$display("Assertion ERROR: the abn_input_ast has been \
failed at the time @%t",%$time);
cover_abn_input_ast: cover property (abn_input_ast)

endmodule

Fig. 10. LDO abnormal condition check #1

//this assertion is to check the abnormal input function check,
//either of the vdd3p3_ldo,lp_ref are lack of ,
//the output voltage should be @

abn_input_check
#(.delay_abn_input_check(2))
u_abn_input_check
(

.sample_clk(sample_clk),

.disable_check((vdd3p3_ldo =2.8) && (lp_ref > 0.88)),
lost_input((vdd3p3_ldo <0.5) || (lp_ref <0.5)),
.outcome_check(ldo_out = 0.7)

Fig. 11. LDO abnormal condition check #2

3) Real number functional coverage
Power supply voltage range

We defined the real number functional coverage to make
sure the minimum value, typical value, maximum value and
other values of the power supply were covered by our
verification. The real number functional coverage for the
power supply is shown in Fig.12.

covergroup real_avdd_bin_cg; // Function Coverage for LDO power supply range
option.per_instance = 1;
ldo_avdd_range : coverpoint avdd_r {

bins Avdd_Min = {2.8}; // Min value
bins Avdd_Typ = {3.3} // Typ Value
bins Avdd_Max = {3.7}; // Max value
bins Avdd_rangel = {[2.8 : 3.0]}; // 2.8-3.0
bins Avdd_rangeZ2 ={[3.0 : 3.1 1}; //3.8-3.1
bins Avdd_range3 =4[3.1 : 3.3 1}; // 3.1-3.3
bins Avdd_ranged =4{[3.3 : 3.5 1}; // 3.3-3.5
bins Avdd_rangell = {[3.5 : 3.7 1}; // 3.5-3.7
1
endgroup : real_avdd bin_cg

Fig. 12. Real number function coverage for LDO power supply

Voltage reference range

We defined the real number function coverage to make sure
the minimum value, typical value, maximum value and other
values of voltage reference were covered by our verification.
The real number function coverage for voltage reference is
shown in Fig.13.

real vref_r;

covergroup real_vref_bin_cqg; // Function Coveage for LDO Vref range
option.per_instance = 1
vref_in_range coverpoint vref_r {
bins Vref_Min = {0.89}; // Min value
bins Vref_Typ 92}; // Typ Value
bins Vref_Max 962} // Max value
bins Vref_rangel 89 : 0.92]}; // 0.89-0.92
bins Vref_range2 [0.92 : 0.962]1}; // 0.92-0.962
}

endgroup

real_vref_bin_cg

Fig. 13. Real number function coverage for LDO voltage reference

4) Function coverage
Virtual MMR bits for load configuration

The load conditions are very important for LDO
verification. In the test bench we defined virtual MMR bits
load_cfg[1:0] to configure the LDO load conditions.
If load cfg = 2’b00 a 1.8K Ohm resistor load will be selected.

If load cfg = 2°b01 a 180 Ohm resistor load will be selected.
If load cfg = 2’b10 a 36 Ohm resistor load will be selected.
If load cfg = 2°b11 a 18 Ohm resistor load will be selected.
In order to make sure all the load configurations were covered
during verification we defined the following functional
coverage.

covergroup cg_mmr_trans @(cg_mmr_event);
option.per_instance = 1;
load_cov: coverpoint load_cfg {
bins low = {2'bBO}; // 1 mA -
bins normal {2'b01}; // 10mA -
bins high {2'b10}; // S0mA -
bins V_high = {2'b11}; // 100mA -

1.8K Ohm resistor Load
180 Ohm resistor load
36 Ohm resistor load

18 Ohm resistor load

endgroup: cg_mmr_trans

Fig. 14. Function coverage for LDO load conditions

MMR bits coverage and control signal toggle coverage
Functional coverage for MMR bits was used to make sure

each function defined with MMR bits was covered during

verification. Toggle coverage of control signals was used to

cover different control sequences. The code is shown in Fig.15.

covergroup cg_mmr_trans @(cov_mmr_event) ;

option.per_instance = 1;
option.name = "ldo_stim cow"”;
pd: coverpoint tr.pd 1

bins zero
bins one
bins zZo
bins o2z

}

vreg: coverpoint tr.wvreg_adj;
endgroup: cg_mmr_trans

Fig. 15. Function coverage for MMR and toggle coverage for control signals

C. White-box verification approach

In white-box verification an internal perspective of design
are used to design test cases, and the test bench has access to
internal structures of design. The block diagram for the LDO
with internal structure is showed in Fig.16.

3.3V
AVDD @-

Po B —]
AVDD PD'
VDD
PDB'—| PD VREG_ADJ<3:0> (ummmmmmfll VREG_ADJ<3:0>
» PBD
LDO1P8_BIAS_TEST_LDO2 READY

VREF ————————4 VREF X3 VCORE_A ¢———@ V1P A
VCORE_D ¢———@ V1P8.D
REFBUFOUT ¢——@ REFBUFOUT

X2

AGND NBIAS »—I——< NBIAS

LDO1P8_AMP_TEST_LDO2
AGND

I

AGND @~

READY_IN VDD
READY_DELAY READY_D

DELAY CELL

VBIASN GND

Interited Connection Drivers:
NONE

Fig. 16. Block diagram of the LDO with internal structures

Internal bias check

Within the LDO there was a bias generation block to
provide ~10 pA bias and we needed to verify that the bias
current was always in the correct range. In the test bench the
current signal was converted to a voltage signal so we could
use the v_checker assertion described earlier to check the bias
current. The code is shown in Fig.17.

// This assertion check LDO nbias current

v_checker

#
.base_point(10), // Expected nbias is 10uA,
.tolerance(0.1), // +/- 10% Tolerance
.delay_check(15

u_v_checker
|
compare_value(nbias_i2v),// nbias value after current to volteage conversion
.sample_clk(sample_clk)
.disable_check(ldo_pd)
.compare_enable((lp_ref > 0.88) && (vdd3p3_ldo = 2.8))

Fig. 17. Bias current check

D. Constrained random testbench build

We built the constrained random test bench to speed-up the
verification closure. Both analog and digital signals can be
randomized. For example the power supply was randomized
from 2.8V to 3.7 V, reference voltage was randomized from
0892V to 0.947V and the power down signal was
randomized with 85% on and 15% off. The code is shown in
Fig.18.

T
// generate random avdd/vref/pd/trim to check if
// the output is the same with golden model
e b e e e
class sequence_l extends base_sequence; // normal
byte sa;
“uvm_object utils(sequence_1)
"uvm_declare_p_sequencer(ldo_magt_sqr)
uvm add to seq lib(sequence_ 1, ldo_magt_sqr_sequence_library)
function new(string name = "seq_1");

virtual task body();
#400ns;
repeat(20) begin
‘uvm_do_with(req, {
// Power Supply is 2.8V~3.7V
avdd inside {[2.8:3.7]}
// Reference Voltage is 0.892V~0.947V
vref inside {[0.892:0.947]}
// Ground is 0.0V
agnd == 0.0;
// Power 85%---ON 15%---OFF
pd dist {0:=85, 1:=15}

#1500us;
end
endt

endclass

Fig. 18. Code for constrained random test bench

The simulation waveform is shown in Fig.19.

v (avdd)

P L A L e W

4
3
2
1 v (vref
9
8

. [T—~—n, J
v(vre§ adg')

5 V(pd)
2.5 R i i
-2.5

" v(vlp8 a)

2 | [

0 il

o

20 40 60 80 100 120
time, xle-3 Seconds

Fig. 19. Simulation waveform for constained random

E. Verification sign-off

We used Emanager to manage the regressions and metric
collection. The collected metric data was mapped onto planned
metrics in vPlan, and displayed in a html report of which a
screenshot is shown in Fig.20.

= Soal Relative
£ wvPlan B0 i o

@ Info

Refinement Mode: local
Perspective: [automatic topl

2 - autornatic_top
2.1 - LDO1PS
2.1.1 - Tesicases
Ido_enw_test_normal
Ido_tests. Ido_enw_test_normal
Ido_erv_test_sin
Ido_tests. ldo_env_test_sin
Ido_ermv_test_power_on
Ido_tests. Ido_env_test_power_on

N 1 00% oF

I :oo% (oF

L) S R Fased
I I 1 0 0% (oF

[~

e B 100% (F) 2.1.2 - Metrics

=3 2.1.2.1 - Function Cowerage
£ 8 power down Tunction check
- L8 Trimming function check
- [power supply range function check
ol [C3 loop stahility function check
o1 [abnormal input function check
+- 8 readhy functio ko
£l § Startup Tuncr heck
- [power supply rejection function check
o e [critical points voltage check

=-Ca 6 I i oo coF 2.1.2.2 - Checker_Assertions
- % [I 1 00% (0F Ido_pd_assertion
- ([I 1 00% (oF) ldo_trim_asserion
- (T8 [BRI ldo_line_regulation_assertion
- I8 I : oo oF Ido_loop_stability assertion
o (0 T I 1 oo oF Ido_abnormal input assertion
- % [I 1 00% (0F Ido_ready._time assertion
- % [T I 1 0% (0F Ido_enable time assertion
e (% S I 1 00% (oF) Ida power suppRly rejection assertion
o [T IS I 1 oo (oF Ido_critical points voltage assertion

Fig. 20. Metric data mapped back to vPlan

1l. CHIP-LEVEL VERIFICATION

A. Chip-level connection verification

1) Level shifter check

Level shifters should be placed when the signals cross the
power domains within the design. The LDO power down and
trim word signals passed from the 1.8 V digital power domain
to the 3.3 V analog power domain. So when we did top-level
verification we needed to check if level shifters existed. We
could use a simple voltage checker to do this task. The code is
shown in Fig.21.

// This assertion check 1T there are level shifters Tor ldo control signals
// from 1.8 v digital power domain to 3.3 v analog power domain
module ldo_level_shifter_check (

input real 1ldo_pd_a

input real 1ldo_wvadj ©

input real 1ldo_wvadj_1,

input real 1ldo_wvadj_2,

input real ldo_vadj_3,

input real wvdd3p3_ldo

input sample_clk

v_checker
#(.base_point(3.3),
tolerance(0.1)
delay_check(15))
u_level_shifter_chk_0
compare_value(ldo_pd_a),// ldo_pd should be in 3.3 power domain
sample_clk(sample_clk)
disable_check(ldo_pd_a =< 1.6),
compare_enable(vdd3p3_ldo = 3.1))

/4 3.3v power domain
S/ +f- 10% Tolerance

v_checker
#(.base_point(3.3), // 3.3v power domain
tolerance(0.1), // +/- 10% Tolerance
delay_check(15))
u_level_shifter_chk_1
compare_value(ldo_vadj_0),// lod_vadj[0] should be in 3.3 power domain
sample_clk(sample_clk),
disable_check(ldo_vadj_© = 1.6
compare_enable{vdd3p3_ldo = 3.1));

Fig. 21. Level shifter check

2) Critical signal connection check
When we did the top-level verification we needed to check
that all critical signal connections, that is, the power supply and
reference connections were made correctly. Our code for these
checks is shown in Fig.22.

// This assertion check if connections for LDO power supply and reference
module ldo_connection_check |

input ldo_pd

input real ldo_vref,

input real vdd3p3_ldo

input sample_clk

v_checker
(.base_point(0.92),// 0.92v LDO vref
tolerance (0 . I/ +/- 3% Tolerance
delay_check(15)) // Check after 15 sample clocks
u_connection_chk_6
(.compare_value(ldo_vref),
sample_clk(sample_clk)
disable_check(ldo_pd)
.compare_enable(l'bl));

// LDO reference connection check

v_checker
#(.base_point(3.3),// 3.3v LDO power supply
.tolerance(0 // +/-10% Tolerance
.delay_check(15)) // Check after 15 sample clocks
u_connection_chk_1
(.compare_value(vdd3p3_ldo), // LDO power supply cronnection check
.sample_clk(sample_clk)
disable_check(ldo_pd)
.compare_enable(l'bl)};

Fig. 22. Power supply and reference connections check

B. Metrics reuse for model validation

A key component in chip-level mixed-signal verification is
modeling. In order to make sure the analog models were
correct we needed to run model validation. All the black-box
metrics which were used for analog block-level verification
could be reused for model validation. The white-box metrics
could be or could not be reused for module validation
depending on the abstraction level of the model.

C. Auto generation of MMR functional coverage

We developed scripts to automatically generate all the
MMR functional coverage codes. One piece of MMR

functionality coverage code for ADC control register is shown
in Fig.23.

clas: STNEEOIEMERN =xtends uvn_req;
rand wem_reg_fisld C_TYPE;
rand wem_reg_field CNV_DMA;
rand wem_reg_field SEQ_DMA;
cand uem_reg_field Restart_ADC;
cand uem_reg_field REFB_PUP;
cand wem_reg_fisld PUP;
rand uem_reg_field SOFT_RESET;

constraint C_TYPE_walid {
constraint CNV_DMA_valid ¢
constraint SEQ DMA valid {
constraint Restart ADC valid {
constraint REFE PUP valid i
constraint PUP valid I
constraint SOFT RESET valid {

covergroup cg_vals;
option.per_instance = 1;
C_TYPE: coverpoint G TYPE. valve[2:0];
CNV_IMA: coverpoint CHV DMA.value[0:0];
SEQ_IMA: coverpoint SEQ DMA.value[0:0];
Restart ADC: coverpoint Restart ADC.value[D:0];
REFB PUP: coverpoint REFE PUP.value[0:0];
PUP: cowerpeint PUP.value[D:0];
SOFT RESET: coverpoint SOFT RESET.value[5:0];
endgronp
function new(string name = "ADCGON");
super.new (. nane{name}, .n bits (1), . has_coverage (UVl VR FIELD VALS));
if (has_coverage (UVM CVR FIELD VALS)) begin
cg_wals = new():
end
endfunction: new

Fig. 23. Auto-generated MMR function coverage

D. Power-up sequence verification

For multi-power domain systems the power up sequence is
very critical. We defined 2 timing parameters for power ramp
up: t1, the start time of the power ramp up, and t2, the power
ramp up time. There were 2 power supplies avddl and avdd2
in our chip. By defining the functional coverage which is
shown in Fig.24 we could make sure that all the power up
sequence scenarios were covered by verification.

covergroup [lzx\doipowerioniseq;

option.per instance = 1;
option.name = "ldo power on seq";
avddl t1: coverpoint piteml.tl {

bins awddl_t1 A = {[1060.8:2000.0]};
bins avddl_tl B = {[2000.0:3000.0]};
bins avddl_tl C = {[3000.0:4000.0]};
bins avddl_tl D = {[4000.8:50008.0]};
¥
avdd2_tl: coverpoint pitemz.tl {
bins avdd2_t1 A = {[1060.8:2000.0]};
bins awdd?_t1 B = {[2060.8:3800.0]};
bins awdd2_t1 C = {[3060.8:40800.0]};
bins awdd2_t1 D = {[40080.8:5000.0]};
H
avddl_t2: coverpoint piteml.t2 {
bins avddl t2 A - {[1060.0:2008.0]};
bins avddl_t2 B = {[2060.8:3800.0]};
bins awddl_t2 C = {[3060.8:4800.0]};
bins avddl_t2 D = {[4060.8:5800.0]};
I
avdd2_t2: coverpoint pitem2.t2 {
bins avdd2_t2_A = {[1000.0:2000.0]};
bins avdd2_t2 B = {[2000.0:3000.0]};
bins avdd2_t2 C — {[3000.0:4008.0]};
bins avddz_t2 D = {[4060.8:5800.0]};

}
power on: cross avddl tl, avdd2 t1, avddl t2, avdd2 t2;

endgroup

Fig. 24. Function coverage for power up sequence

V. CONCLUSIONS

Implementing these advanced metric driven mixed-signal
verification techniques on our recent ASSP development was a
great success and resulted in first pass silicon success. The

initial revision of silicon was successfully sampled to our
customers.

REFERENCES
[1] Jess Chen, Michael Henrie, Monter F. Mar, Mladen Nizic, Mixed-Signal
Methodology Guide, ISBN 978-1-300-03520-6

[2] Bishnupriya B., John D., Gary H., Nick H., Yaron K., Neyaz K., Zeev
K., Efrat S., 2012, Advanced Verification Topics, Cadence Design
Systems, ISBN 978-1-105-11375-8

[3] http://testbench.in/TB_34 WHITE_GRAY_BLACK_BOX.html

http://testbench.in/TB_34_WHITE_GRAY_BLACK_BOX.html

