

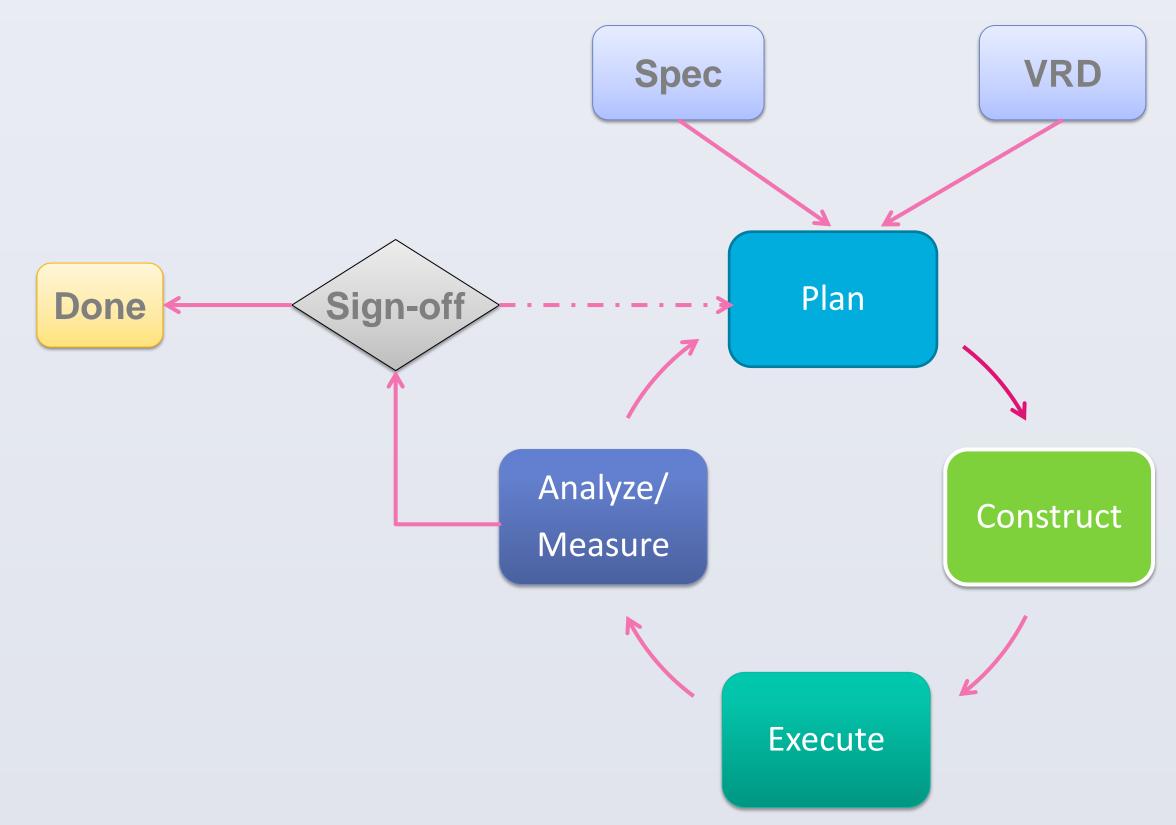
Metric Driven Mixed-Signal Verification Methodology and Practices for Complex Mixed-signal ASSPs

Frank Yang; Andy Sha; Morton Zhao

Yanping Sha

Analog Devices, Beijing, China

Cadence design Systems, Beijing, China


Abstract

Abstract - Most ASSPs today are mixed-signal systems and this higher level of integration means the verification of these ASSPs is becoming more and more complex. For the 'digital only' SOCs there already exists advanced verification methodologies are widely used throughout the industry i.e. VMM, UVM, metric driven verification (MDV). The push in verification is now to extend these advanced verification methodologies to be used in analog/mixed-signal ASSP verification as well.

A recent ASSP in ADI is an example of this trend. The ASSP was a true mixed signal development, incorporating a Cortex-M3 MCU with analog peripherals including, ADC, VDAC, IDAC and PLL etc. This paper will discuss how we implemented MDV for the mixed-signal ASSP, how we defined verification metrics for analog/mixed-signal blocks and how we built up the mixed-signal constrained random verification environment. Defining verification metrics for analog/mixed-signal blocks is a key common problem for mixed-signal MDV and a lot of the discussions will focus on this topic.

Metric Driven Verification Flow

The metric driven verification flow is shown as below.

Verification Plan

We used Eplanner as the verification plan tool. An example is shown as below.

ੋਂ ≰ vPlan	Goal Relativi Grade	Refinement Mode: local Perspective: [automatic top]		
Info				
□··· 100% 1009	% (OF) 2 - auto	matic_top		
in 100% (0F) 2.1 – LDO1P8				
□ 100%	100% (0F) 2	.1.1 - Testcases		
□ 100%	100% (OF)	Ido_env_test_normal		
	0% Passed			
□ 100%	100% (0F)	Ido_env_test_sin		
	0% Passed	ldo_tests.ldo_env_test_sin		
⊟ 🔯 100%	100% (0F)	Ido_env_test_power_on		
	10% Passed	ldo_tests.ldo_env_test_power_on		
□ □ 100%	100% (0F) 2	.1.2 – Metrics		
□ 100%	(no checks)	2.1.2.1 - Function Coverage		
	(no checks)	power down function check		
	10% (no checks)	Trimming function check		
	(no checks)	power supply range function check		
. ⊕ 10	(no checks)	loop stability function check		
. ⊕ 10	(no checks)	abnormal input function check		
	10% (no checks)	ready function check		
	(no checks)	startup function check		
	10% (no checks)	power supply rejection function check		
	0% (no checks)	critical points voltage check		
100%	100% (0F)	2.1.2.2 - Checker_Assertions		
	100% (OF)	Ido_pd_assertion		
	100% (OF)	ldo_trim_assertion		
	100% (OF)	ldo_line_regulation_assertion		
	100% (OF)	Ido_loop_stability assertion		
	100% (OF)	Ido_abnormal input assertion		
	100% (OF)	ldo_ready_time assertion		
	100% (OF)	Ido_enable time assertion		
	100% (OF)	ldo power supply rejection assertion		
<u>+</u>	100% (OF)	ldo_critical points voltage assertion		

UVM Verification Environment Build Up

Some simple real-life UVM code is shown as blow.

```
// Integration for UVM-compliant Program block
// Interfaces
`include "mstr_slv_intfs.incl"
module ldo_env_tb_mod; //integration module
`include "uvm_macros.svh"
 include "ldo_env_env.sv"
`include "ldo_env_test.sv"
// All interfaces
  typedef virtual ldo_magt_if v_if1;
  typedef virtual ldo_sagt_if v_if2;
  typedef virtual analog_stim_if v_if3;
// Configure TB / Run Test
  initial begin
     uvm_config_db #(v_if1)::set(null, "", "mst_if", u_ldo_tb_sv.mst_if);
     uvm_config_db #(v_if2)::set(null,"","slv_if",u_ldo_tb_sv.slv_if);
     uvm_config_db #(v_if3)::set(null, "*.x_analog_stim_agt0", "analog_agt_if",
     u_ldo_tb_sv.x_analog_stim_if0);
     uvm_config_db #(v_if3)::set(null,"*.x_analog_stim_agt1","analog_agt_if",
     u_ldo_tb_sv.x_analog_stim_if1);
     run_test();
endmodule: ldo_env_tb_mod
```

Analog/MS verification metric definition and implementation

We defined the following types of analog/mixed-signal verification metrics.

Real number analog assertions

The following table shows the features which are suitable to use real number analog assertions to define metrics.

Features	Detailed Features and Examples	
Timing	Settling time, none-overlap signals timing	
Digital controlled analog	Voltage trimming	Reference/LDO/POR trip point
trimming		trimming
	Current trimming	Bias current trimming
	Clock frequency	VCO/Oscillator trimming
	trimming	
Digital assisted analog	ADC offset/gain calibration	
calibration	DAC offset/gain calibration	
Algorithm	ADC chop, average, redundant, dither	
Critical signal monitors	Monitor power supply, reference and bias	

The following code shows a real number analog assertion example: LDO power supply rejection performance check.

• Real Number Functional Coverage

The following table shows the features which are suitable to use real number function coverage to define metrics.

Features	Detailed Features and Examples
Voltage range	ADC input voltage range
	DAC output voltage range
	Voltage reference range
Current range	Bias current range
Clock frequency range	PLL VCO clock frequency range
	PLL input reference clock range

The system verilog real number functional coverage code for ADC input range is shown as below.

```
real ain_r
covergroup real_bin_cg
 option.per_instance = 1
  adc in range : coverpoint ain r {
                     = {<mark>0</mark>};
   bins HalfScale = {1.25};
                                         // half scale input
   bins FullScale = \{2.5\};
    bins OverFlow
    bins ain_rangel = \{[0.1 : 0.25]\}; // 0.1-0.25
    bins ain_range2 = \{[0.25:0.5]\}; // 0.25-0.5
    bins ain_range3 = \{[0.5 : 0.75]\}; // 0.5-0.75
    bins ain_range4 = \{[0.75 : 1.0]\}; // 0.75-1.0
    bins ain_range5 = {[1.0 : 1.25 ]}; // 1.0-1.25
    bins ain_range6 = \{[1.25 : 1.5]\}; // 1.25-1.5
    bins ain_range7 = {[1.5 : 1.75 ]}; // 1.5-1.75
    bins ain_range8 = {[1.75 : 2.0 ]}; // 1.75-2.0
   bins ain_range9 = \{[2.0 : 2.25]\}; // 2.0-2.25
   bins ain_range10 = {[2.25 : 2.5 ]}; // 2.25-2.5
endgroup : real_bin_cg
```

Memery mapped register function coverage

Function coverage of memory mapped register is defined to cover the function of each bit of memory mapped register.

• Toggle coverage of analog/digital interface signals

The toggle coverage of analog/digital interface signals is defined to cover the different control sequences.

Code coverage

Code coverage of RTL in analog control blocks.

Conclusions

Implementing these advanced metric driven mixed-signal verification techniques on our recent ASSP development was a great success and resulted in first pass silicon success. The initial revision of silicon was successfully sampled to our customers.

<u>Acknowledgements</u>

Thank you to David Brownell for reviewing and polishing this paper and to Bridge Dowling for editing and formatting help.

Contacts

We can be contacted by email Frank.Yang@analog.com and Andy.Sha@analog.com