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Abstract- Design-for-test, LBIST, memory technology mapping and clocking concerns require team-months of 

verification time as they traditionally happen at gate-level. We present a novel concern-oriented methodology that enables 

automatic insertion of these concerns at the register-transfer-level where verification is easier. At the heart of our 
methodology is a conservative flipflop inference transformation that takes entry RTL and outputs RTL where memory is 
separated from functionality. We prove the transformation correct by construction. We implemented the methodology in 

a tool that also automatically weaves the different concerns into the output RTL. The tool reduces verification time by 
40% when used in industry. 

I.   INTRODUCTION 

Recent research and industry reports suggest that hardware design and verification schemes incorporate separation 

of concerns and aspect oriented design to shorten verification debug time and meet the short time-to-market 

requirements [1]. System-on-Chip (SoC) and high-performance processor design flows use VHDL, Verilog, 

SystemVerilog, and less often SystemC as the Register Transfer Level (RTL) description in their design and 

verification platforms [2]. Existing RTL logic exhibits IP modules with high coupling between several concerns 

such as Design-for-Test (DFT), Logic Built-in Self-Test (LBIST), memory technology mapping, power-gating and 

clock divisions [3-6]; i.e. all these concerns exist in the same module. Logic designers are solely concerned with 

functionality of the code, timing engineers are concerned with the delay characteristics and models for purposes of 

timing verification, and power engineers are concerned with power grid, clock gating, and power-gating logic for 

purposes of power verification. Coupling all of these concerns in one module renders the RTL code too difficult to 

handle. Manual DFT Logic placement techniques [7], for example, require inspection of the whole RTL as well as 

explicit instantiation of the DFT elements. On the other hand, automated insertion of the DFT memory elements 

traditionally happens post-synthesis at the gate-level resulting in a significant overhead in the verification debug 

time. The designers long for a methodology that enables automatic separation of concerns at the RTL level, drives 

more automation, and improves design and verification efficiency.  

 

Separation of concerns in software applications is supported by means of Aspect-Oriented Programming (AOP) 

where functionality is explicitly separated from other concerns. These concerns are specified in aspects that are later 

automatically interwoven into the program. AspectVHDL considers concepts from AOP in HDL and proposes an 

aspect-oriented extension of VHDL [8]. It provides an approach for easily plugging extensions with aspects that 

crosscut a VHDL code base. It introduces to the VHDL language joint points of procedures, types, architectures, 

and process triggers, and related pointcut expressions and advices. However, the implementation is preliminary and 

the approach cannot capture logic design concerns such as DFT, LBIST and clock-gating. 

Frameworks for embedded systems design, such as Metropolis [9, 10, 11], and Behavior Interaction Priority (BIP) 

[12,13], explicitly separate concerns. Metropolis separates (1) communication from computation, (2) functionality 

from architecture, and (3) behavior from performance. BIP separates behavior from synchronization and data 

transfer structure through a hierarchy of prioritized interactions. A SystemC analog of BIP separates functionality, 

timing, synchronization, and transactional concerns [14]. These approaches address concern separation in 

heterogeneous systems by defining their own syntax and semantics.  

More recently, commercial solutions are being developed to render RTL scan-compliant [15,16]. Yet up to our 

knowledge, no solution exists that presents all design flow concerns separately at the RTL level. 

 



In this paper, we present a novel methodology for separation of logic design concerns at the RTL level focusing 

on improving design and verification efficiency. Our contributions are: 1) A flipflop inference based transformation 

that is conservative in that it instantiates a flipflop for every variable that could be a memory element. 2) The 

transformation results in the separation of the original RTL code into separate combinational and sequential 

programs. 3) A proof of correctness of the transformation. 4) A supporting tool that implements the methodology for 

Verilog systems.  

This methodology has the following advantages:  

1. It enables verification of the concerns at RTL, 

2. It allows automatic insertion of design elements relevant to DFT, LBIST, flipflop technology mapping and 

clocking concerns at the RTL level with reduced coupling, and  

3. It reduces verification time and thus enhances design cycle efficiency. 
 

The remainder of this paper is organized as follows. Section II provides a review of existing concern separation 

tools. Section III describes DFT insertion in current design flows in terms of automatic gate-level or manual RTL 

approaches. Section IV presents the proposed methodology along with an example program transformation. Section 

V provides a proof of correctness for the transformation. Section VI presents the experimental setup and results. 

Finally, section VII presents the conclusions. 

II.   RELATED WORK 

Metropolis is an embedded system design platform based on formal modeling and separation of concerns for an 

effective design process. It structurally separates communication from computation, behavior from performance, and 

function from architecture. Process and media structures ensure the communication-computation separation. The 

quantity manager structure, along with the annotator and the scheduler objects [11], manages energy, time and event 

priorities and thus separates behavior from performance. Networks are composed of processes and media objects 

that are connected via ports and interfaces. One mapping network separates functionality from architecture and maps 

the hierarchical networks to architecture specifying software or hardware implementations of each network.  

BIP is a component-based framework for embedded systems design with behavior, interaction, and priority layers 

that separate computation from communication and prioritization and enhance reusability, scheduling analysis, and 

re-configurability. Components in BIP are composed by the superposition of the three layers. A BIP extension of 

Petri-nets with data elements defines atomic component sand specifies the behavior layer. The connector objects 

specify interactions and allow communication among atomics. The scheduling of these interactions forms the 

priority layer [12,13].  

Transaction-level modeling is proposed as a methodology for separating timing and functionality in SoC [14]. A 

component is separated into a programmer view (PV) model and a PV with timing (PVT) model. PV models target 

functionality and are essential for programmers who are not concerned with micro-architecture and timing details. 

PVT models include realistic timing and are built on top of PV models. PV and PVT models are weaved 

dynamically by an alternating execution model that depends on System Synchronization Points (SSPs) explicitly 

declared in the PV model. 

These approaches address concern separation, however, by devising their own syntax and semantics. Furthermore, 

none of these approaches tackle the separation of concerns at the logic level like DFT, LBIST, memory technology 

mapping and clocking. We would like for our approach to target these concerns and to be applicable to industrial 

RTL such as Verilog and VHDL without enforcing any language restrictions. 

SpyGlassfrom Atrenta [15] creates a hardware virtual prototype of the design to enable early analysis and 

optimization of the area, timing and power constraints. SpyGlassDFT [16] wraps around the synthesis phase to 

ensure that RTL is scan-compliant and yields highest coverage. Up to our knowledge, no further description of their 

methodology is available in literature. Our approach, on the other hand, will provide a solution for concern 

separation solely at the RTL level with minor modifications to the original input RTL code. 

III.   DFT AND MEMORY RELATED CONCERN INSERTION FOR TRADITIONAL DESIGN FLOWS 

Currently, concerns are inserted in the design flow either manually at the RTL level at the expense of added 

design complexity, or automatically at the gate-level at the expense of additional verification time. In automatic 

gate-level concern insertion, the concern functionality (e.g., DFT), which is not coded as part of the RTL, is inserted 

automatically by synthesis tools at the gate-level [17] as illustrated in the design flow of Figure 1(a). The advantage 

of this approach is that it does not couple the design with a specific concern mechanism, and it frees logic designers 

from the concern functionality. However, this prohibits verification from occurring early at RTL and forces it at the  
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Figure 1 A traditional gate level flow (a) and the proposed RTL concern insertion flow (b). 
 

gate-level where it is more complicated and requires more design flow iterations. This results in significant increase 

in verification time. 

Concern insertion at the RTL level is therefore highly desired as it allows early verification of the concern 

functionality and reduces the number of design flow iterations between RTL and gate-level. Currently, this is 

enabled via manual concern insertion, where DFT scan chains, for example, are explicitly instantiated by the 

designers at the RTL.  

However, this is an exhaustive approach and the designers must abide by strict code style restrictions on RTL 

variables; hence, they need to ensure that all variables that are not explicitly instantiated as flipflops are purely 

combinational. Writing the RTL under these restrictions becomes challenging and time consuming. This is because 

the designer, who should be concerned about algorithms, now also needs to worry about the different variable 

definitions, blocking or non-blocking statement modifications, the instantiation, wiring, and implementation of the 

flipflop; thereby, guessing what the synthesis would have done. The designer also needs to handle the weaving of the 

different concerns properly. This includes sophisticated modules (hierarchically nested)  that  accommodate for 

multiple concerns as scan design, frequency division, clock-gating and DFT, as well as  sensitivity lists handling. 

Similarly, other concern specific vendor-based or proprietary industrial modules may be inserted. Other 

complexities may also require the designer to add local clock buffers (LCB), LCB control cells, and clock divisions 

as well as understand their semantics and implications.  

In addition, the manually processed RTL will be coupled with a specific mechanism. Switching to other 

mechanisms or concerns requires RTL rewriting. Hence, there is a clear necessity for automating the process to 

leverage the advantages of RTL concern insertion.  

Our proposed methodology offers a solution for concern functionality integration that alleviates the disadvantages 

of approaches described above.  

IV.   PROPOSED METHODOLOGY 

Concerns that relate to design memory elements, represented as flipflops in the synthesized circuits, require the 

identification of these elements prior to integrating the concerns with the legacy code at either RTL or gate-level. 

Key to enabling the integration of these concerns at RTL is the capability of converting RTL with flipflop inference 

into RTL with flipflop instantiation. We propose a methodology that explicitly identifies memory elements, and 

automatically converts input RTL into output RTL where combinational logic is separated from sequential logic, 

and where concern insertion is a straight forward flipflop replacement at the RTL level within the sequential logic. 

The changes our method introduces in the output RTL are small such that a designer who understands the input RTL 

can easily understand the output RTL. Figure 1(b) presents the overall methodology flow diagram. Two major tools 

are involved to enable the automatic concern insertion at RTL. 
 

1. RTL-to-RTL transformation tool: Infers memory elements and transforms the original RTL into RTL with 

generic instantiated memory elements. 
a. Identifies RTL memory elements that can directly be mapped to flipflops. 

b. Maps original RTL blocks into separate (1) combinational RTL blocks and (2) sequential RTL blocks with generic RTL 

flipflop instantiations. 

c. Outputs separated and “normalized” RTL code where inferred memory elements are replaced with generic flipflop gates 

and Verilog formatting including comments, attributes and pragmas are preserved. 
 

2. Concern insertion tool: A tool to insert concern structures into a “normalized” RTL code. 
a. Re-maps the instantiated generic flipflops into library components that support the concern. The components route the 

additional clocking and the asynchronous logic signals across all the relevant module declarations.  

b. Instantiates LCBs, scan control cells …etc. 

c. Hooks up and balances scan chains. 

d. Is controlled by two sidefiles: 

 Library Side file: Specifies flipflop/LCB library and connection rules 
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 Design Side file: Permits some overriding of Library Side file, and specifies flipflop properties, LCB types, Scan 

chain types, and test ports …etc. 

e. Output RTL with concern insertion. 

This provides a complete design with weaved separated concerns and elevates concern verification to the RTL 

level. Translation of event traces all the way to the RTL will still be supported by the methodology when hardware 

synthesis optimizations are included in the design flow. This is because downstream hardware synthesis 

optimizations typically preserve a two-way mapping between the original and the optimized modules. In the 

following section, we describe the RTL-to-RTL transformation. 
 

A. RTL-to-RTL Transformation 

The proposed transformation applies to all synthesizable Verilog and VHDL constructs. We illustrate it for a 

sufficient subset of Verilog including: conditionals, assignments, arithmetic, and Boolean constructs. The steps we 

present below are for Verilog RTL. We rely on the example module in Figure 2 for illustration. For VHDL 

implementation, the main difference is in the flipflop inference step (step 1 below). 
 

Step1: Any variable assigned inside an always block with posedge or negedge is inferred as a flipflop.  

 In „Before‟ of Figure 2, r, r2, r3, and x are identified to be flipflops. 
 

Step2: For every flipflop u as determined in step 1, introduce two declarations „wire u‟ and „reg u_in‟ in „After‟ (in 

Figure 2) to represent the output and the next state (input) of the flipflop, respectively.  

 In „Before‟, we declare wires r, r2, r3, and x and regs r_in, r2_in, r3_in, and x_in for the inferred flipflops in step 1. 
 

Step3: For every flipflop u as determined in step 1, instantiate a library flipflop ff in „After‟ where „u‟ is the output 

and „u_in‟ is the next state function. ff  is a generic flipflop that will later be mapped to the technology that supports 

the target concern. Extract clocking and asynchronous logic from „Before‟ and pass them to the instantiated library 

flipflops in „After‟.  The flipflop instantiations constitute the sequential block. 

 In „Before‟, we instantiate generic flipflops ff_r, ff_r2, ff_r3, and ff_x. 
 

Step4: In „After‟ create a combinational always@(*) block. Copy all the assignments and their control logic from 

„Before‟ to „After‟. Modify them as follows. Step 4 is formally defined in Table 1. 

For every flipflop u as determined in step 1:  

a. If it is assigned with non-blocking assignments „<=‟: 

i. Replace it with the next state input „u_in‟ of the flipflop wherever it appears as a target (left hand-side) of an assignment.  

ii. Keep it as „u‟ wherever it appears as a reference (on the right hand-side). 

b. If it is assigned with blocking assignments „=‟: 

i. Replace it with the next state input „u_in‟ of the flipflop wherever it appears as a target of an assignment.  

ii. Replace it with the next state input „u_in‟ of the flipflop wherever it appears as a reference in an assignment. 

 For instance in „Before‟, given the following non-blocking and blocking assignment statements (where r3, r2 and x are 

flipflops determined in step 1): 

„r3 <= a;‟ „r2 <= r3 && x;‟  „x = a || b;‟  

We obtain in „After‟ the following assignment statements.  

„r3_in <= a;‟ „r2 _in<= r3 && x_in;‟ „x _in  = a || b;‟ 
 

Before   After 
module example ( 

inputs cond1, cond2, a, b, c, d,   
outputs reg r, r2,  

inputs clk, …); 

reg r3, x; 
 

always@ ( posedge clk, …) 

begin  

  if(cond1==1) begin 

    r3 <= a; 

    x = a || b; 
  end 

  r <= x; 

  if(cond2==1) begin 
    x = c && d; 

  end 

  r2 <= r3 && x; 
 end 
 
 

endmodule 

 module example (inputs cond1, cond2, a, b,  c, d,  outputs wire r, r2, input clk, …); 

wire r3,  x;    reg r_in, r2_in, r3_in, x_in; 
 

 Sequential Block Combinational Block 

 // instantiating flip flop with the ff(d, q, i, clk,…) 

// where d is the next state, i is the initial  
// value, q is the output, clk is the clock, and  

// „…‟ denotes wires for other concerns 

 

ff ff_r(r_in, r,0, clk ….); 

 

ff ff_r2(r2_in,r2,0,clk …); 
 

ff ff_r3(r3_in,r3,0,clk …); 

 
ff ff_x(x_in, x,0, clk …); 

always@(*)  begin   

  r_in = r; 
  r2_in = r2; 

  r3_in = r3; 

  x_in = x ; 
 

  if(cond1==1) begin 
    r3 _in <= a; 

    x _in = a || b; 

  end 
  r _in <= x_in; 

  if(cond2==1) begin 

    x_in = c && d; 
  end 

  r2_in <= r3 &&x_in; 

end 

 endmodule 

Figure 2. Example module before and after transformation. 



Thus, r3 being the target of a non-blocking assignment is replaced by r3_in only when it appears on the left hand-side of the 

assignment statements. x, on the other hand, being the target of a blocking assignment is replaced by x_in wherever it 

appears in the assignment statements. 
 

Step5: For every flipflop u as determined in step 1, add to the beginning of the combinational always@(*) block in 

„After‟ a blocking assignment „u_in=u;‟ assigning the output of the flipflop to its input by default. This ensures that 

no additional flipflops are inferred inside the combination always block during synthesis, and alleviates 

understanding flipflop inference algorithms. 
 

 For instance in „Before‟, we add “r_in = r;” for r and similar statements for r2, r3, and x. 

Figure 3 illustrates the corresponding circuit for „After‟. While the transformation separated the combinational logic 

from the sequential logic at the Verilog level, it is clear that it preserved logical functionality. In the following 

section, we provide a formal proof of correctness for the transformation. 
 

 

 

 

Figure 3. Circuit of the „After‟ generated code of Figure 2.Mc and Ms 

represent the circuits corresponding to the combinational and 

sequential blocks of „After‟ in Figure 2. 

 Figure 4. Mealy Machine structure. PI are the primary inputs.  

<ff1, ff2,..,ffk> denote the flipflops, Li denotes the output function 

of output oi, and    denotes the next state function of flipflop ffi. 

 

 V. RTL-TO-RTL CORRECTNESS 

Definition 1.Flipflop: A flipflop is a tuple ff=<rin, r, r0, clk, …> where rin is the next state input, r is the output, r0 is 

the initial value of r, “clk, …” denote the clocking and asynchronous logic inputs of the flipflop and might vary 

depending on the target concern. The basic semantics of a flipflop is defined in terms of the value of r across time. 

At time 0, r takes the value of r0,at time „t+1‟, r takes the value of rin at time „t‟.  

The time is a concept that is controlled by the clock and asynchronous logic inputs and might vary depending on the 

target concern. For example, a flipflop connected to a scan chain might pause logical time for the flipflop until all 

the values of the flipflops in the chains have been scanned.  
 

Definition 2.Mealy Machine: A Mealy Machine is a tuple M=〈              〉, where ff is a vector of flipflops, RI 

is a vector of initial values of the flipflops, I is a vector of primary inputs, O is a vector of outputs,   and L are 

vectors of next state and output functions, respectively, ranging over the outputs of ff and I. The semantics of M, as 

illustrated in Figure 4, are given in terms of traces of values across time where the values of the outputs of ff at time 

0 are given by RI, the values of I are non-deterministic, the values of the outputs of ff at time „t+1‟ are given by the 

values of the next state inputs of ff at time „t‟ which are connected directly to   ; i.e., (     =                Finally, 

the values of     are given by L; i.e.,                 . 
 

Definition 3.Module: A module P(V, S) consists of variables V and statements S. A variable is declared to be an 

input, an output, a reg, or a wire. An expression ranges over variables and Boolean and arithmetic operators. A 

blocking assignment statement is of the form “v=exp” where v is a variable and exp is a well formed expression. A 

non-blocking assignment statement is of the form “v<=exp”. Let BSS, and NBSS be the set of blocking and non-

blocking assignment statements, respectively. A flipflop instantiation statement is of the form “ff(d,q,i,clk,…)” 

where d is the next state input, q is the output, i is the initial value, and “clk,…” denote the clocking and 

asynchronous logic that can vary depending on the target concern. The semantics of a module follow the regular 

Verilog execution semantics and are well represented in the synthesis transformation below.  



For simplicity, we assume all statements of entry level P to be assignment statements inside an always block with a 

sensitivity list. For programs with conditional statements, preprocessing can embed the condition predicates into the 

assignment statements in a fashion similar to multiplexers. We denote by RV the set of assigned variables inside 

an always block with posedge or negedge, OV is the set of outputs{       },  V is the set of inputs {       }, 
and  V is the remaining set of variables {       }. 
 

Definition 4.Flipflop inference: Every variable assigned in an always block with a posedge or a negedge is inferred 

as a flipflop. This is exactly similar to flipflop inference step 1 in Section IV.A. 
 

Definition 5.Synthesis: Given a module P(V, S) we construct a Mealy Machine M=〈              〉=Synthesis(P) 

as formally defined in [20] and as shown in Table 1 that implements P and defines its semantics. In brief, 

Synthesis(P) performs the following steps: 

1.For every input and output in P there is a corresponding input and output wire in M respectively. 

2.For every rin R in P, let Sr = {s1, s2, …,s|Sr|} be the set of assignment statements in S with target rand under 

Boolean conditional statements {c1, c2, …, c|Sr|}S respectively. A single non-blocking assignment is generated 

such that it assigns r to either of the expressions {exp1, exp2, …,exp|Sr|} corresponding to right hand-side of the 

statements s1, s2, …, s|Sr| according to values of c1, c2, …, c|Sr|. The resulting assignment is of the form: 

  r<= c1? exp1 : [c2? exp2: [……: r]]] 

For variables that are more than one bit wide, bit blasting is performed. Each generated assignment statement is 

synthesized to a flipflop ff in ff in M. The corresponding next state function   is composed of a sequence of 

multiplexers fed by the synthesized logic of the expressions and ff, and controlled by the synthesized logic of 

the conditions. 

3.For every expression setting a variable o in O in P, we construct a corresponding output function L that encodes 

the logic of the expression and connects it to the corresponding output in M. L ranges over the inputs and 

flipflop outputs in M corresponding to the expression variables. 
 

Theorem 1: Given a module  ; let         where T is the transformation of Section IV.A, P and P‟ are 

equivalent. That is for the same initial values and trace of input values both P and P‟ produce the same trace of 

output values. 
 

Sketch of proof: Theorem 1 is correct by construction. P‟ consists of the flipflop instantiation block P
s 
and the list 

of assignment statements housed in a combinational always@(*) block P
c 

as illustrated in Table 1. P
c
 and P

s
 are 

formally defined in Table 1. 
 

 

TABLE 1. SEPARATION AT RTL LEVEL OF COMBINATIONAL AND SEQUENTIAL BLOCKS AND THEIR CORRESPONDING 

MEALY MACHINES. 
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Consider the Mealy machines M=〈              〉=Synthesis(P),    〈                    〉= Synthesis(P
s
) and 

   〈                    〉=Synthesis(P
c
) resulting from the synthesis of P, P

s
 and P

c
, respectively. P is 

equivalent to P‟ since M is equivalent to M‟; the Mealy machine resulting from the composition of M
c
 and M

s
 as 

illustrated in Figure 5. The proof follows by structural induction.  

VI.   IMPLEMENTATION AND EXPERIMENTAL RESULTS 

We implemented our tool in an industrial design framework for Verilog RTL. The tool takes a Verilog RTL as 

input on which it applies the transformation and outputs a concern-RTL Verilog as was described in Figure 1(b). 

Typical verification methodologies and techniques are then applied such as simulation, model checking, and 

debugging tools. We use verification time per designer team and number of lines of code as metrics to analyze the 

transformation efficiency and the design complexity, respectively.  

In previous design cycles, designers in our teams dropped verification at the gate-level due to the large 

verification time and adopted the manual RTL insertion methodology (Method 1) which is at least an order of 

magnitude faster. In the current design cycle, the designers used our proposed methodology (Method 2) to further 

improve verification time. We report the advantages of Method 2 in comparison with Method 1. Both methods were 

effectively executed by the same team. The reported results are for the following two Verilog designs. 

1) Embedded PowerPC core: a 32-bit RISC CPU for use in custom logic applications. 

2) Embedded PCIE PCS: The Physical Coding Sublayer of the Peripheral Component Interconnect Express [21], a 

high-speed serial computer expansion bus standard. 
 

Table 2 compares the RTL implementation size of the two designs before and after the transformation of Method 

2. The advantages of the concern specific RTL in terms of verification time improvement compared to gate-level 

verification outweigh the linear increase in the implementation size. It‟s worth noting that the original RTL is still 

used directly for pure functional verification where nonfunctional design concerns are not relevant; thus, our 

methodology has no negative effect on that. Table 2 also lists the resulting gate-level netlist size for illustration 

purposes; the gate-level netlist was not used for the verification of concerns covered at RTL verification. 
 

TABLE 2. IMPLEMENTATION SIZE FOR INDUSTRIAL EMBEDDED 

POWER PC AND PCIE PCS (A HIGHLY SEQUENTIAL DESIGN) USING 

METHOD 2. 

# Lines of Code (thousands) 

                                    Design 

Type of Code 

Embedded 

PowerPC 

Embedded 

PCIE PCS 

RTL 

w/ Inference 94.0 15.0 

w/ Instantiation 98.0 15.5 

w/ Concern Insertion 99.0 49.0 

Gate-Level w/ Concern Insertion 398.0 340.0 
 

TABLE 3. VERIFICATION TIME COMPARISON FOR INDUSTRIAL 

DESIGNS. 

 

Verification Time (team weeks) 

Concerns Insertion 
Embedded 

PowerPC 

Embedded 

PCIE PCS 

RTL 
Method 1 (Manual)  12.9 8.6 

Method 2 (Proposed)  7.0 5.0 

Gate-Level Post-Synthesis  NA: Large NA: Large 
 

 

For the current design cycle, these designs were converted by Method 2 to Verilog RTL with the memory 

elements explicitly extracted. The mapping to proprietary technology was carried out at the RTL level. This involves 

replacing generic flipflops with technology flipflops as well as weaving of scan chains insertion and proper 

clocking. This further improved verification time by 40% compared to Method 1 (RTL manual insertion) as 

illustrated in Table 3.  
 

 

Figure 5. Mealy machine    constructed from connecting Mc and Ms. 

I = I‟ = <PI‟, clk > = <PI, clk>



Concern insertion automation frees the designer from the complexities that are concern-specific. For example, 

DFT pervasive verification and scan chain debugging require a lot of team months mainly due to time overhead for 

flipflop instantiation and concern weaving. 

VII.   CONCLUSION 

We present a conservative flipflop inference based design methodology that leverages the separation of memory 

from functionality concerns in custom logic designs to reduce verification overhead. Our method enables activities 

such as Design-for-Test, LBIST, memory technology mapping and clocking to happen at the RTL where design and 

verification engineers are more comfortable. The methodology takes input RTL and automatically generates output 

RTL with separate sequential and combinational blocks. The different concerns are then automatically weaved as 

instantiated concern specific flipflops, in place of the generic flipflops, in the sequential blocks of the output RTL. 

We present a formal proof of correctness. Our method is currently used in an industrial setting and has produced 

significant design cycle time savings for state-of-the-art SoC designs where verification time was reduced by 40%.  
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