
Method for Generating Unique Coverage
Classes to Enable Meaningful Covergroup

Merges Across Testbenches

Eldon Nelson, MS, PE (eldon_nelson@ieee.org)
Verification Engineer, Micron Technology, Inc.

Abstract- The SystemVerilog covergroup is a valuable tool for determining what conditions have been met in a design.
Coverage-driven testplans support two reference possibilities when using covergroups to satisfy verification
requirements: the covergroup type or the specific covergroup instance. Some coverage-driven testplans may even enable a
pattern of covergroup instances to be listed. Unfortunately, covergroup type and covergroup instance references each
have their own limitations that are only amplified when more than one testbench is part of the coverage-driven testplan.
This paper provides an improved method of implementing embedded covergroups by adding capability that can better
meet verification requirements.

I. INTRODUCTION

A SystemVerilog covergroup can be defined by either including it or importing it into a component. In the first

case, the covergroup will have a type path in the simulator hierarchy that is equal to that of the verification
component. The type path will be different for each testbench, thus preventing a merge from occurring. This paper
defines this type of covergroup as a simple covergroup.

If the covergroup is defined outside of the verification component through a coverage class and made available
with a SystemVerilog import, a different problem arises. The covergroup type becomes static but may not provide
the required specificity to meet certain verification requirements. This paper defines this type of covergroup as an
embedded covergroup [1]. A covergroup type with contributions from many unrelated covergroup instances yields
a merge with little value.

Solving the covergroup problem requires determining what combination of covergroup instances across multiple
verification environments creates a useful merged result. One possible solution is to perform manual pattern
matching of covergroups outside the simulator and code base in the coverage-driven testplan to meet the verification
requirements, but this method is not optimal because it is prone to mistakes and fragile to design changes. The
verification environment should generate these relevant covergroup types.

SOURCE CODE

The ideas presented in this paper are demonstrated through the use of example verification environments. To run

the examples and to see the full context of the file excerpts presented, the source code may be obtained from a Git
repository hosted on GitHub [2] at the URL provided below. No login is necessary and the source may be viewed
with a standard web browser. The website includes directions on how to run the examples in a SystemVerilog
simulator. The examples have been tested with Mentor Questa and Cadence Incisive. The source code is released
under the GNU General Public License Version 2 [3].

https://github.com/tenthousandfailures/uniquecoverage	

DUT DESIGN

In order to explain the results and approach, a description of the example environment is needed. The testbench is

a collection of first-in first-out (FIFO) designs under test (DUTs) that receive commands and forward them to
another identical DUT. The entire DUT source is shown in Figure 1. The testbenches vary in terms of the scope of
where in this FIFO chain the testbench starts and ends, but they include the same components and connections that
are in that scope. This example is used to mimic what happens in verification environments. Small testbenches

 2

encapsulate a portion of the DUT and then larger and larger collections of DUT components are included in
progressively higher-order testbenches.

module	
 dut	
 (

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dut_if.slave	
 slave,	
 	
 //	
 input	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dut_if.master	
 master	
 //	
 output	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	

	
 	
 	
 	
 //	
 assign	
 inputs	
 to	
 outputs	

	
 	
 	
 	
 always	
 @(posedge	
 slave.clk)	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 master.cmd	
 	
 <=	
 slave.cmd;	

	
 	
 	
 	
 	
 	
 	
 	
 master.adr	
 	
 <=	
 slave.adr;	

	
 	
 	
 	
 	
 	
 	
 	
 master.data	
 <=	
 slave.data;	

	
 	
 	
 	
 end	

endmodule	

	

FIGURE 1. DUT.SV

TESTBENCH DESIGN

Figure 2, shows testbench zero (TB0), which	
 includes three copies of the module dut named duta, dutb, and

dutc. These modules are connected by SystemVerilog interface instantiations of dut_if named with suffixes that
represent its connections. For example, dut_if_t_a is a connection from the testbench (t) to duta (a).

FIGURE 2. TESTBENCH TB0

FIGURE 3. TESTBENCH TB1

module TB0

dut duta dut dutb dut dutc

du
t_

if
du
t_
if_
a_
b

du
t_

if
du
t_
if_
b_
c

du
t_

if
du
t_
if_
c

du
t_

if
du
t_
if_
t_
a

module TB1

dut dutb dut dutc

du
t_

if
du
t_
if_
b_
c

du
t_

if
du
t_
if_
t_
b

du
t_

if
du
t_
if_
c

 3

Figure 3 shows TB1, which is a subset of TB0 and includes dutb and dutc. dut_if_t_b connects testbench (t)
to dutb (b).

COVERGROUP REFERENCES

A covergroup needs a purpose to give it meaning and value. A coverage-driven testplan gives the covergroup

purpose. A coverage-driven testplan is limited to two possible methods of referencing a covergroup: instance or
type. Choosing the appropriate reference to use in the testplan makes a significant difference in what the
covergroup’s coverage will mean. In order to explain the difference and the proposed improvement to these
reference methods, a comparison of instance coverage versus type coverage is provided in the following section.

COVERGROUP INSTANCES AND THE SIMPLE COVERGROUP

Instance coverage will give coverage of a particular covergroup in a single environment. Instance coverage is

defined by the hierarchal path to where the covergroup was instantiated plus the instance name. If only one
testbench is being used, a great degree of specificity is achieved by being able to specify one particular covergroup
instance. It is exact and it is simple.

The covergroup dut_if_cg, shown in Figure 4, has three inputs and has default settings for how coverage
should be merged. Contained within the covergroup is a single coverpoint with four possible bins in the cmd field.
This covergroup definition is used throughout all the examples in this paper and is included (`include) in the
source when the covergroup is required.

covergroup	
 dut_if_cg	
 (ref	
 logic	
 [3:0]	
 cmd,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 input	
 string	
 	
 	
 	
 inst_name,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 input	
 string	
 	
 	
 	
 comment);	

	

	
 	
 	
 	
 type_option.merge_instances	
 =	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 option.name	
 =	
 {name,	
 ".",	
 inst_name};	

	
 	
 	
 	
 option.per_instance	
 =	
 1;	

	

	
 	
 	
 	
 coverpoint	
 cmd	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 bins	
 _null	
 	
 =	
 {'h0};	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 bins	
 _read	
 	
 =	
 {'h1};	

	
 	
 	
 	
 	
 	
 	
 	
 bins	
 _write	
 =	
 {'h2};	

	
 	
 	
 	
 	
 	
 	
 	
 bins	
 _cfg	
 	
 	
 =	
 {'h3};	

	
 	
 	
 	
 }	

	
 	
 	
 	
 	

endgroup	

	

FIGURE 4. DUT_IF_CG.SVH

 The covergroup dut_if_cg is included in the dut_if interface, as shown in the initial block in Figure 5.

This pattern is a simple covergroup because the covergroup is defined and instantiated within the component that
will be sampling it. When this covergroup is instantiated with new, the type path for this covergroup is defined to
have the same path as the component it was defined in. In this example, the type path is the hierarchical path to
dut_if within the design. When the simulation is run, the example covergroup is visible in Mentor Questa from
the covergroup window [4], as shown in Figure 6.

 4

interface	
 dut_if	
 (input	
 logic	
 clk);	

	

	
 	
 	
 	
 string	
 	
 	
 	
 	
 	
 name	
 =	
 "simple";	

	

	
 	
 	
 	
 logic	
 [3:0]	
 adr,	
 cmd,	
 data;	

	
 	
 	
 	
 `include	
 "dut_if_cg.svh"	
 //	
 included	
 covergroup	
 definition	

	

	
 	
 	
 	
 dut_if_cg	
 simple_inst;	
 	
 	
 //	
 simple	
 covergroup	

	
 	
 	
 	

	
 	
 	
 	
 always	
 @(posedge	
 clk)	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 simple_inst.sample();	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 end	

	

	
 	
 	
 	
 initial	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 $sformat(inst_name,	
 "%m");	

	

	
 	
 	
 	
 	
 	
 	
 	
 simple_inst	
 =	
 new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .comment(simple_comment)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 end	

	

endinterface	

	

FIGURE 5. DUT_IF.SV

Every simulator has a different way of showing the active covergroups within a design. It is useful to analyze the

graphic that is based on the Mentor Questa output (Figure 6) from this example. The first line /TB0/dut_if_c is
the hierarchical path of the instantiated covergroup. Within the simulator, the type path for this covergroup is the
hierarchical path plus the TYPE:

/TB0/dut_if_c/dut_if_cg	

which is an important property of the covergroup. The type path determines what can be merged with this
covergroup. In order to merge a covergroup with this one, the corresponding covergroup must have the exact same
type path. A simple covergroup can never be merged with an instance of a covergroup other than its own because
its type path is specific to its component.

FIGURE 6. SIMPLE COVERGROUP

Name Class Type Coverage
/TB0/dut_if_c

TYPE dut_if_cg 50.0%

INST simple.TB0_dut_if_c 50.0%
B bin _null 1
B bin _read 0
B bin _write 0
B bin _cfg 96

CVP dut_if_cg::cmd 50.0%
B bin _null 1
B bin _read 0
B bin _write 0
B bin _cfg 96

 5

The coverpoint (CVP) is defined within the covergroup. INST stands for instance and defines the name and
details of the instance coverage. The name of this instance is custom-defined for clarity by defining the
option.name attribute of the covergroup. The coverage column defines the number of hits each bin had or the
percentage coverage for the line.

References to a specific covergroup occur within the coverage-driven testplan. Table 1 shows an example of a
coverage-driven testplan in the Mentor Questa XML [5] format. The value for the “Link” field is the type path to
the covergroup, followed by a comma, and then followed by the instance name.

TABLE 1. TESTPLAN FOR SIMPLE COVERGROUP USING INSTANCE COVERAGE

Section Title Link Type

1 Simple Covergroup

1.1 cmd coverpoint for
interface _c on TB0 /TB0/dut_if_c/dut_if_cg,simple.TB0.dut_if_c:cmd CoverPoint

1.2 cmd coverpoint for
interface _c on TB1 /TB1/dut_if_c/dut_if_cg,simple.TB1.dut_if_c:cmd CoverPoint

1.3
cmd coverpoint for all
interfaces of _c
with wildcard

/TB*/dut_if_c/dut_if_cg,simple.TB*.dut_if_c:cmd CoverPoint

Specifying a covergroup instance may meet a verification requirement. However, if there are multiple

verification environments, a single covergroup instance may not be sufficient. If, for example, the requirement is
that this covergroup must reach a certain level of completeness in every verification environment, the testplan line
must be repeated with new covergroup instance paths and instance names for each verification environment.
Repeating lines in a testplan goes against the don't-repeat-yourself (DRY) [6] principle of software engineering. If a
line is repeated in the testplan multiple times only because the instance paths are changing for each verification
environment, something is wrong. Another solution for the "Link" field in the coverage-driven testplan is to use
wildcard (*) pattern matching, which can work successfully in some applications, but it requires that certain naming
structures are always followed, making this approach fragile to design changes.

COVERGROUP TYPE AND THE EMBEDDED COVERGROUP

Another way to reference a covergroup is by the covergroup type. The covergroup type is defined by where the

covergroup is declared. A covergroup type reference makes the most sense when the covergroup is defined within a
class. Figure 7 shows an example from the source that defines an embedded covergroup. The class is defined
within a package so it can be imported into the necessary components. Figure 8 shows how the interface instantiates
the embedded covergroup.

 6

package	
 emb_pkg;	

	

class	
 cov;	

	

	
 	
 	
 	
 	
 string	
 	
 	
 	
 	
 	
 name	
 =	
 "emb_pkg";	

	

	
 	
 	
 	
 `include	
 "dut_if_cg.svh"	
 //	
 included	
 covergroup	
 definition	

	

	
 	
 	
 	
 function	
 new(ref	
 logic	
 [3:0]	
 cmd,	
 ref	
 string	
 inst_name);	

	
 	
 	
 	
 	
 	
 	
 	
 dut_if_cg	
 =	
 new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .comment(“embedded	
 covergroup”)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 endfunction	

	

	
 	
 	
 	
 function	
 void	
 sample();	

	
 	
 	
 	
 	
 	
 	
 	
 dut_if_cg.sample();	

	
 	
 	
 	
 endfunction	

	
 	
 	
 	
 	
 	

endclass	

	

endpackage	

	

FIGURE 7. EMB_PKG.SV

interface	
 dut_if	
 (input	
 logic	
 clk);	

	

	
 	
 	
 	
 string	
 inst_name	
 =	
 "";	

	
 	
 	
 	
 logic	
 [3:0]	
 cmd,	
 adr,	
 data;	

	

	
 	
 	
 	
 emb_pkg::cov	
 emb_inst;	
 //	
 embedded	
 covergroup	
 	
 	
 	

	
 	
 	
 	
 	
 	

	
 	
 	
 	
 always	
 @(posedge	
 clk)	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 emb_inst.sample();	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 end	

	

	
 	
 	
 	
 initial	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 $sformat(inst_name,	
 "%m");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 emb_inst	
 =	
 new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 end	

	

endinterface	

FIGURE 8. DUT_IF.SV

Figure 9 shows the results of the embedded covergroup simulation in the Mentor Questa covergroup viewer.

Unlike the simple covergroup results, the “Class Type” field contains a value in the embedded covergroup results.
The simple covergroups had no class to contain the covergroup. The type path is freed from the component
hierarchy with embedded covergroups. The type path is based off of the package and class, which is ideal because it
enables new merging possibilities. Figure 9 shows that the /emb_pkg/cov covergroup type has contributions from
nine interfaces across three testbenches. While no single testbench or interface can reach more than fifty percent,
together, the covergroup type reaches one hundred percent because the union-merged contributions meet the
requirements of the covergroup type’s bins.

 7

FIGURE 9 EMBEDDED COVERGROUP

Instance coverage is still available when using embedded covergroups if the covergroup

option.get_int_coverage attribute is true. The simple embedded covergroup was only able to show
contributions to its type from one instance, but since the type path is identical for this embedded covergroup all of
the instances of the embedded covergroup can be merged which is why all of the instances are shown. The
coverage-driven testplan entry containing this covergroup is shown in Table 2. The “Link” field format includes the
covergroup type followed by the coverpoint name.

TABLE 2. TESTPLAN FOR EMBEDDED COVERGROUP USING TYPE COVERAGE

Section Title Link Type

2 Embedded Covergroup Method

2.1 cmd coverpoint for covergroup type
/emb_pkg/cov /emb_pkg/cov/dut_if_cg:cmd CoverPoint

The covergroup type can help efficiently prove that a certain condition is met with weighted-average merges or

with union-merged contributions from several instances. By changing the value of
type_option.merge_instances in the covergroup, its meaning is easily changed between weighted-average
merge and union merge. In some testplan tools, wildcards can be used to meet the weighted-average merge
requirement with simple covergroups. However, a union merged requirement cannot be met with wildcards.
Wildcard matching of simple covergroups cannot be used to perform a union merge of covergroups.

Using the covergroup type reference in the coverage-driven testplan is appropriate if the requirement involves
every instance of that covergroup across every possible verification environment. However, if the covergroup type
is used too broadly or encompasses instances that don't make sense, it may not be specific enough.

SOLUTION

The covergroup instance and covergroup type references both have useful applications in coverage-driven

testplans; however, these covergroup references have drawbacks as well. The absolute path of a covergroup
instance implemented with a simple covergroup is inflexible and invites replication into the coverage-driven
testplan. The global nature of covergroup types implemented with embedded covergroups is sometimes too broad to
capture exactly what is needed. This paper proposes implementing a covergroup type with unique embedded

Name Class Type Coverage
/emb_pkg/cov

TYPE dut_if_cg cov 100.0%
CVP dut_if_cg::cmd 100.0%
B bin _null 9
B bin _read 390
B bin _write 294
B bin _cfg 197
INST emb_pkg.TB0.dut_if_t_a 50.0%
INST emb_pkg.TB0.dut_if_a_b 50.0%
INST emb_pkg.TB0.dut_if_b_c 50.0%
INST emb_pkg.TB0.dut_if_c 50.0%
INST emb_pkg.TB1.dut_if_t_b 50.0%
INST emb_pkg.TB1.dut_if_b_c 50.0%
INST emb_pkg.TB1.dut_if_c 50.0%
INST emb_pkg.TB2.dut_if_t_c 50.0%
INST emb_pkg.TB2.dut_if_c 50.0%

 8

covergroups that can be specific enough to meet verification requirements and provide additional hierarchy that can
be used to create more powerful covergroup structures.

II. METHODOLOGY

The proposed solution is to create unique covergroup types that encapsulate particular verification goals. Figure

10 uses a partial unified modeling language (UML) [7] class diagram to illustrate the proposal. The package
uniq_pkg is created to hold class definitions whose ultimate parent is an abstract (virtual in terms of
SystemVerilog) class that defines common variables and the functions new and sample.

FIGURE 10. PARTIAL UML CLASS DIAGRAM SOLUTION

The base class is the first concrete class, which provides the same functionality as embedded covergroups. This

feature is useful because it makes the application of this method a superset of the existing and already accepted
embedded covergroup. The child class b_c represents internal communication between dutb and dutc that exists
in both TB0 and TB1. The b_c class can represent a verification requirement that dictates that a combination of, or
exhaustively, the communication between dutb and dutc must be exercised to a certain goal across all testbenches.

UML CLASS DIAGRAM OF SOLUTION

A unique covergroup type allows for merging of covergroups from different testbenches that exist in the present

and also ones that will come to exist in the future. The covergroup type denoted by the type path: /uniq_pkg/b_c
is available to be sampled and the meaning of this covergroup type is known and specific. It is a specific container
to hold coverage from a specific physical interface across all testbenches.

The simplified UML class diagram, shown in Figure 11, matches what is implemented in the source example. Its
six separate covergroup types each have their own meaning. Each covergroup type can be added to a testplan to
satisfy the particular requirements of the verification environment and operation of the DUT under external
stimulus. For example, if the requirement is that the t_c (testbench to dut_c) coverage is set to a particular goal,
the /uniq_pkg/t_c covergroup type can be used. If the requirement is to observe coverage between dutb and
dutc, the covergroup type /uniq_pkg/b_c can be used and will have contributions from any testbenches with
this connection present.

uniq_pkg

new(cmd:ref logic, inst_name:ref string)
sample()

name:string
comment:string

proto {abstract}
proto defines the class

interface

base provides
traditional covergroup

type behavior

b_c provides an
interface specific
covergroup type

new(cmd:ref logic, inst_name:ref string)
sample()

dut_if_cg:dut_if_cg
base

dut_if_cg:dut_if_cg
new(cmd:ref logic, inst_name:ref string)
sample()

b_c

 9

FIGURE 11. COMPLETE UML CLASS DIAGRAM SOLUTION

Figure 11 shows one example of a UML class diagram; additional levels of children can be added if further

categorization is needed to match verification requirements. Even non-symmetrical levels of hierarchy could be
added to encompass groups of covergroup instances that together yield a meaningful result.

CLASS IMPLEMENTATION OF SOLUTION

The SystemVerilog code template shown in Figure 12 is included (`include) in the unique embedded

covergroups. This template defines the new function that calls super.new and also instantiates the covergroup
dut_if_cg. It also defines the sample function that samples the parent class as well as the covergroup defined in
the local class itself. Sampling the parent is important because a child can trigger samples in all of its parents. This
provides compatibility with embedded covergroup behavior and enables aggregate parent covergroup types to be
sampled as well.

It is useful to note that the class passes the sampled arguments to the covergroup by reference. If an argument is
not passed in by reference to a covergroup, it is only sampled with the value given to it when it is created with the
new operator [8]. Therefore, passing by reference is crucial to passing live values into the covergroup.

function	
 new(ref	
 logic	
 [3:0]	
 cmd,	
 ref	
 string	
 inst_name);	

	
 	
 	
 	
 super.new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 dut_if_cg	
 =	
 new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .comment(comment)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	

endfunction	

	

function	
 void	
 sample();	

	
 	
 	
 	
 super.sample();	

	
 	
 	
 	
 dut_if_cg.sample();	

endfunction	

	

FIGURE 12. UNIQ_PKG_FCN.SVH

uniq_pkg

base

proto {abstract}

c

b_c

a_b

t_a

t_b

t_c

traffic between:
duta, dutb, dutc

duta → dutb = a_b

traffic from
testbench to duta

t → a = t_a

the base and all children have the same
`include that defines the covergroup,

new() and sample() functions

 10

package	
 uniq_pkg;	

	

	
 	
 	
 	
 string	
 pkg_prefix	
 =	
 "uniq_pkg::";	

	
 	
 	
 	

virtual	
 class	
 proto;	

	

	
 	
 	
 	
 string	
 name	
 =	
 "proto";	

	
 	
 	
 	
 string	
 comment	
 =	
 "proto	
 comment";	

	

	
 	
 	
 	
 function	
 new(ref	
 logic	
 [3:0]	
 cmd,	
 ref	
 string	
 inst_name);	

	
 	
 	
 	
 endfunction	

	

	
 	
 	
 	
 function	
 void	
 sample();	

	
 	
 	
 	
 endfunction	

	

endclass	

	

class	
 base	
 extends	
 proto;	

	

	
 	
 	
 	
 string	
 name	
 =	
 {pkg_prefix,	
 "base"};	

	
 	
 	
 	
 string	
 comment	
 =	
 "uniq::base	
 default	
 comment";	

	

	
 	
 	
 `include	
 "dut_if_cg.svh"	

	
 	
 	
 `include	
 "uniq_pkg_fcn.svh"	

	

endclass	

	

class	
 b_c	
 extends	
 base;	

	

	
 	
 	
 	
 string	
 name	
 =	
 {pkg_prefix,	
 "b_c"};	

	
 	
 	
 	
 string	
 comment	
 =	
 "b_c	
 comment";	

	
 	
 	
 	
 	

	
 	
 	
 	
 `include	
 "dut_if_cg.svh"	

	
 	
 	
 	
 `include	
 "uniq_pkg_fcn.svh"	

	

endclass	

	

endpackage	

	

FIGURE 13. UNIQ_PKG.SV

The SystemVerilog shown in Figure 13 implements the partial UML class diagram of Figure 10. As shown in the

embedded covergroup and simple covergroup, the covergroup definition itself is defined once in dut_if_cg.svh	

(Figure 4) and included only when needed (`include	
 "dut_if_cg.svh"), replicating the covergroup definition
in each class. As children of the abstract class proto are defined, each concrete child includes the covergroup
definition in the class, enabling the creation a new covergroup type. This is done because the type path is created for
a covergroup from where the covergroup is defined and not where it is instantiated. The `include of the functions
for new and sample are required because if these functions are not overwritten at each child class, it would instead
call the parent version of those commands and not sample or instantiate the embedded covergroup within the local
class.

INTERFACE DUT_IF

Figure 14 shows the parameterized SystemVerilog interface dut_if. For simplicity in this example, the type

passed in is called T; however, in a production environment, a more descriptive name can be used. This
parameterization is an important distinction between an embedded covergroup and the proposed unique embedded
covergroup. An embedded covergroup would be statically instantiated in every instance of the interface. However,
in this interface, a unique embedded covergroup is parameterized in, which enables the interface to be customized in
terms of what covergroup and what parent covergroups are sampled.

 11

interface	
 dut_if	
 #(type	
 T	
 =	
 uniq_pkg::base)	
 (input	
 logic	
 clk);	

	

	
 	
 	
 	
 string	
 inst_name	
 =	
 "";	

	
 	
 	
 	
 logic	
 [3:0]	
 cmd,	
 adr,	
 data;	

	

	
 	
 	
 	
 T	
 cov_inst;	
 //	
 parameterized	
 unique	
 class	
 containing	
 covergroup	

	

	
 	
 	
 	
 always	
 @(posedge	
 clk)	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 cov_inst.sample();	

	
 	
 	
 	
 end	

	

	
 	
 	
 	
 initial	
 begin	

	
 	
 	
 	
 	
 	
 	
 	
 $sformat(inst_name,	
 "%m");	

	
 	
 	
 	
 	
 	
 	
 	
 cov_inst	
 =	
 new(.cmd(cmd),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .inst_name(inst_name)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 end	

	

endinterface	

	

FIGURE 14. DUT_IF.SV

TESTBENCH CONNECTIONS

Figure 15 shows the implementation of testbench TB0. SystemVerilog interfaces of dut_if connect the design

components together in a way that is familiar to the typical application of interfaces. The salient feature of this
testbench is that the interfaces are parameterized with context to what they will be connecting. For example, the
interface instantiation of dut_if_b_c is given a unique embedded covergroup of uniq_pkg::b_c, which
determines which series of covergroup types define the dutb to dutc interface.

module	
 TB0	
 ();	

	
 	
 	
 	

	
 	
 	
 	
 dut_if	
 #(uniq_pkg::t_a)	
 dut_if_t_a(clk);	

	
 	
 	
 	
 dut_if	
 #(uniq_pkg::a_b)	
 dut_if_a_b(clk);	

	
 	
 	
 	
 dut_if	
 #(uniq_pkg::b_c)	
 dut_if_b_c(clk);	

	
 	
 	
 	
 dut_if	
 #(uniq_pkg::c)	
 	
 	
 dut_if_c(clk);	

	

	
 	
 	
 	
 dut	
 duta(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .slave(dut_if_t_a),	
 //	
 input	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .master(dut_if_a_b)	
 //	
 output	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 dut	
 dutb(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .slave(dut_if_a_b),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .master(dut_if_b_c)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	
 dut	
 dutc(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .slave(dut_if_b_c),	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .master(dut_if_c)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
);	

	
 	
 	
 	

endmodule	

	

FIGURE 15. TB0.SV

 12

 UVM SOLUTION

The previous SystemVerilog solution uses unique embedded covergroups within interfaces that live within a

conventional SystemVerilog testbench. Many verification environments today are built on the Universal
Verification Methodology (UVM) framework. The UVM implementation in Figure 16 shows a solution using
unique embedded covergroups.

FIGURE 16. UVM SOLUTION DIAGRAM

The block diagram of the UVM verification environment shows how the UVM agent passes down its unique

embedded covergroup parameterization to its subcomponents. Because the agent instantiates its children, including
the cov class, it is necessary to parameterize the UVM agent so that it can pass down the correct parameterization at
build time. Where the coverage objects are instantiated in a UVM environment varies based on the verification
requirements. In this case, the goal is to be able to gather interface coverage between DUT components. Therefore,
having the coverage class live within the agent gives context, and UVM hierarchy, to the interface being covered.

module TB0TB0_test uvm_test_top

TB0_env env_h

agent #(class t_a) agent_t_a_h

monitor #(class t_a) monitor_h

cov #(class t_a) cov_h
dut duta

dut_if dut_if_t_a

agent #(class a_b) agent_a_b_h

monitor #(class a_b) monitor_h

cov #(class a_b) cov_h
dut dutb

dut_if dut_if_a_b

agent #(class b_c) agent_b_c_h

monitor #(class b_c) monitor_h

cov #(class b_c) cov_h
dut dutc

dut_if dut_if_b_c

agent #(class c) agent_c_h

monitor #(class c) monitor_h

cov #(class c) cov_h

dut_if dut_if_c

 13

UVM IMPLEMENTATION OF SOLUTION

Implementing the UVM solution is very similar to the SystemVerilog solution. In the package TB0_pkg shown

in Figure 17, typedefs are defined to make the parameterized agents easier to update in the future. The _t suffix
is added to signify type. Instead of parameterizing the SystemVerilog interfaces (dut_if) with the unique
embedded covergroups, like in the SystemVerilog solution, the UVM agents are parameterized.

package	
 TB0_pkg;	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 import	
 uvm_pkg::*;	

	
 	
 	
 	
 `include	
 "uvm_macros.svh"	

	
 	
 	
 	
 `include	
 "TB_common.svh"	

	

	
 	
 	
 	
 typedef	
 agent	
 #(uniq_pkg::t_a)	
 agent_t_a_t;	

	
 	
 	
 	
 typedef	
 agent	
 #(uniq_pkg::a_b)	
 agent_a_b_t;	

	
 	
 	
 	
 typedef	
 agent	
 #(uniq_pkg::b_c)	
 agent_b_c_t;	

	
 	
 	
 	
 typedef	
 agent	
 #(uniq_pkg::c)	
 	
 	
 agent_c_t;	

	
 	
 	
 	
 	

	
 	
 	
 	
 `include	
 "TB0_env.sv"	

	
 	
 	
 	
 `include	
 "TB0_test.sv"	

	

endpackage	
 	
 	

	
 	
 	

FIGURE 17. TB0_PKG.SV

The agents are instantiated during the build phase from these types and are given handles to their interfaces in the

DUT in the UVM environment TB0_env, as shown in Figure 18.

class	
 TB0_env	
 extends	
 uvm_env;	

	
 	
 	
 	
 `uvm_component_utils(TB0_env)	

	

	
 	
 	
 	
 dut_if_t_a_t	
 dut_if_t_a;	

	
 	
 	
 	
 dut_if_a_b_t	
 dut_if_a_b;	

	
 	
 	
 	
 dut_if_b_c_t	
 dut_if_b_c;	

	
 	
 	
 	
 dut_if_c_t	
 	
 	
 dut_if_c;	

	

	
 	
 	
 	
 agent_t_a_t	
 agent_t_a_h;	

	
 	
 	
 	
 agent_a_b_t	
 agent_a_b_h;	

	
 	
 	
 	
 agent_b_c_t	
 agent_b_c_h;	

	
 	
 	
 	
 agent_c_t	
 	
 	
 agent_c_h;	

	

	
 	
 	
 	
 function	
 void	
 build_phase(uvm_phase	
 phase);	

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 agent_t_a_h	
 =	
 agent_t_a_t::type_id::create("agent_t_a_h",	
 this);	

	
 	
 	
 	
 	
 	
 	
 	
 agent_a_b_h	
 =	
 agent_a_b_t::type_id::create("agent_a_b_h",	
 this);	

	
 	
 	
 	
 	
 	
 	
 	
 agent_b_c_h	
 =	
 agent_b_c_t::type_id::create("agent_b_c_h",	
 this);	

	
 	
 	
 	
 	
 	
 	
 	
 agent_c_h	
 	
 	
 =	
 agent_c_t::type_id::create("agent_c_h",	
 this);	

	

	
 	
 	
 	
 	
 	
 	
 	
 agent_t_a_h.intf	
 =	
 dut_if_t_a;	

	
 	
 	
 	
 	
 	
 	
 	
 agent_a_b_h.intf	
 =	
 dut_if_a_b;	

	
 	
 	
 	
 	
 	
 	
 	
 agent_b_c_h.intf	
 =	
 dut_if_b_c;	

	
 	
 	
 	
 	
 	
 	
 	
 agent_c_h.intf	
 	
 	
 =	
 dut_if_c;	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 endfunction	

	

endclass	

	

FIGURE 18. TB0_ENV.SV

 14

III. RESULTS

The proposal is to improve embedded covergroups by adding context that makes the covergroup type meaningful

and unique. Just as the capabilities of embedded covergroups are an improvement compared to simple covergroups,
this too is an incremental improvement. Applying this method preserves the same functionality of embedded
covergroups. Unique embedded covergroups are, therefore, a superset of embedded covergroups.

FIGURE 19. PROGRESSION OF FEATURES THROUGH COVERGROUP METHODS

The example code used in this paper implements all three methods of gathering coverage simultaneously, which

enables a comparison of the results and a clear illustration of the methods available to implement covergroups. The
proposed unique embedded covergroup has the same capabilities as embedded covergroups, as shown in Figure 20;
an embedded covergroup with its singular class cov is shown on the left, and the proposed unique embedded
covergroup showing its base class type is shown on the right. The coverage is exactly the same.

FIGURE 20. COMPARISON OF EMBEDDED COVERGROUP

VERSUS UNIQUE EMBEDDED COVERGROUP

Having unique embedded covergroups inherit from their base class replicates the functionality of embedded

covergroups. This feature is useful for providing legacy functionality that SystemVerilog users are accustomed to
and is a useful data point in itself. Figure 20 also demonstrates the problem with embedded covergroups: the lack of
specificity. The comparison shown in Figure 20 includes contributions from nine interfaces across three testbenches,
yet, the result is a union-merged result across all of them. If a verification requirement is to know what is the union-
merged coverage between dutb and dutc from all testbenches, this information cannot be easily determined from a
single covergroup.

unique embedded
covergroup

embedded
covergroup

simple
covergroup

Name
/emb_pkg/cov

TYPE dut_if_cg
CVP dut_if_cg::cmd

bin _null
bin _read
bin _write
bin _cfg

INST emb_pkg.TB0.dut_if_t_a
INST emb_pkg.TB0.dut_if_a_b
INST emb_pkg.TB0.dut_if_b_c
INST emb_pkg.TB0.dut_if_c
INST emb_pkg.TB1.dut_if_t_b
INST emb_pkg.TB1.dut_if_b_c
INST emb_pkg.TB1.dut_if_c
INST emb_pkg.TB2.dut_if_t_c
INST emb_pkg.TB2.dut_if_c

Class Type Coverage

cov 100.0%
100.0%

9
390
294
197

50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%

Name

B bin _null
B bin _read
B bin _write
B bin _cfg

Class Type Coverage

cov 100.0%
100.0%

9
390
294
197

50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%

Name
/uniq_pkg/cov

TYPE dut_if_cg
CVP dut_if_cg::cmd
B bin _null
B bin _read
B bin _write
B bin _cfg
INST uniq_pkg::base.dut_if_t_a
INST uniq_pkg::base.TB0.dut_if_a_b
INST uniq_pkg::base.TB0.dut_if_b_c
INST uniq_pkg::base.TB0.dut_if_c
INST uniq_pkg::base.TB1.dut_if_t_b
INST uniq_pkg::base.TB1.dut_if_b_c
INST uniq_pkg::base.TB1.dut_if_c
INST uniq_pkg::base.TB2.dut_if_t_c
INST uniq_pkg::base.TB2.dut_if_c

Class Type Coverage

base 100.0%
100.0%

9
390
294
197

50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%
50.0%

 15

Applying this proposed method results in unique covergroup types that can answer specific questions. Figure 21
is created from the identical simulations but shows the combined coverage between dutb and dutc, which is
available at the same time as the base coverage and uses the same shared definition of the covergroup. The "Class
Type" can be seen as b_c, which represents the coverage between dutb and dutc. There were two testbenches that
had a DUT connection between dutb and dutc, which is shown in Figure 21.

FIGURE 21. UNIQUE EMBEDDED COVERGROUP AND INTERFACE SPECIFIC COVERAGE B_C

As shown in Table 3, the testplan entry for this covergroup reference is simple and works across all verification

environments. Because the unique covergroup types can be created so quickly and even defined before the
components exist, they can be linked into a testplan early, freeing the testplan from dependence on covergroup
instances that rely on hierarchical path names. No wildcards or changes to the "Link" field depending on which
testbench is used are necessary; this is an incredible improvement compared to simple covergroups. Unique
embedded covergroups provide specificity that embedded covergroups cannot offer.

TABLE 3. TESTPLAN FOR UNIQUE EMBEDDED COVERGROUP

Section Title Link Type

3 Proposed Unique Embedded Covergroup

3.1 Coverage between dutb and dutc /uniq_pkg/b_c/dut_if_cg:cmd CoverPoint

IV. SUMMARY

Using covergroup instances or covergroup type references has its tradeoffs. A lingering issue in either case is that

only certain covergroups can be merged depending on the covergroup type path. This paper proposes a method to
improve embedded covergroups by overcoming the limitations of covergroup instances and covergroup type
references.

UML class diagrams show how to layer covergroups into a class structure that gives context to each child
covergroup. The embedded covergroup behavior remains in the base class of the implementation while children of
the base class instantiate their own copies of the included covergroup definition. This paper describes how to
realize the proposal both in SystemVerilog and UVM in order to demonstrate the idea with common verification
environments. The full source code of the examples is provided, and important sections of the source
implementation decisions are explained.

Each method of using covergroups expands on its parent's functionality, from simple covergroups, to embedded
covergroups, and onto unique embedded covergroups. The enhancements to embedded covergroups allow for all of
the standard behavior that was present before, but also adds the ability to merge covergroups across testbenches that
are specific to a particular instantiated interface or component, the ability to sample multiple covergroups
simultaneously in a hierarchical way depending on their context, and a consistent structure that makes it easier to
reference unique covergroups by type in coverage-driven testplans without the use of wildcards.

The added abilities of unique embedded covergroups is a compelling improvement to embedded covergroups.
The ability to be more specific about how covergroups are merged using type coverage provided by unique
embedded covergroups is a valuable verification tool. Coverage-driven testplans crave type coverage because of the

Name Class Type Coverage
/uniq_pkg/b_c

TYPE dut_if_cg b_c 75.0%
CVP dut_if_cg::cmd 75.0%
B bin _null 2
B bin _read 97
B bin _write 98
B bin _cfg 0
INST uniq_pkg::b_c.TB0.dut_if_b_c 50.0%
INST uniq_pkg::b_c.TB1.dut_if_b_c 50.0%

 16

independence they provide without having to deal with design hierarchy. Unique embedded covergroups can
provide useful and specific covergroup type references earlier in the design cycle, enabling coverage metrics to be
tracked through every verification environment.

V. FUTURE WORK

A SystemVerilog macro can be created to reduce replication in the uniq_pkg.sv file (Figure 13); the macro is not

discussed in this paper to simplify the examples.
It might seem that the concrete classes could be parameterized in uniq_pkg.sv file (Figure 13) since then each

class would then be unique and the same benefit could be reached as achieved in unique embedded covergroups.
Unfortunately with current tools parameterized classes are not suitable for use in coverage-driven testplans. The
coverage-driven testplan needs a name of a covergroup for its reference, but a parameterized class name is
unpredictable. In the simulator each parameterized class will have its own class name that is currently an internal
auto-numbered one that is not related to the parameters used to create it. Not being able to predict the class name in
the coverage-driven testplan for parameterized classes forces the use of defined non-parameterized classes.

ACKNOWLEDGMENT

Thanks to Mentor Application Engineer Josh Rensch for encouragement and feedback on the paper and Mentor

Technical Writer Geoff Koch for editing help. Thanks to Cadence Application Engineer Brent Carlson for bringing
up the example design with the Cadence toolset. Thanks to my employer Micron Technology for sponsoring my
attendance at DVCon to share this paper.

REFERENCES

1 "IEEE Standard for System Verilog: IEEE Std 1800-2012, Using covergroup in classes" IEEE Computer

Society and IEEE Standards Association Corporate Advisory Group. Web. 21 Feb. 2013.
2. "Build Software Better, Together." Github. Web. 14 Dec. 2014.
3. "GNU General Public License, version 2." Free Software Foundation. Web. 14 Dec. 2014.
4. "Questa Sim User's Manual." Mentor. 2013.
5. "Questa Verification Management User Guide." Mentor. 2013
6. Hunt, Andy and Thomas, Dave. The Pragmatic Programmer. Indianapolis, IN: Addison-Wesley Professional.

1999.
7. "Unified Modeling Language." Wikipedia. Web. 14 Dec. 2014.
8. "IEEE Standard for System Verilog: IEEE Std 1800-2012, Defining the coverage model: covergroup" IEEE

Computer Society and IEEE Standards Association Corporate Advisory Group. Web. 21 Feb. 2013.

