
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

A framework using an open source object oriented language “Ruby” is
presented to build complex Verilog designs programmatically.
A design is comprised of leaf level Verilog modules and accompanying
design hierarchy as shown below. Our framework translates the leaf
Verilog modules into Ruby classes. The design hierarchy is then created as
a data structure using object classes and their methods within the
programming language. The framework contains a toolkit to convert the
design hierarchy data structure into Verilog output containing instantiations
and signal connectivity.

Building Designs Programmatically

Objectives

To demonstrate the framework a generic router was designed. This router
consisted of two source FIFOs, a destination FIFO, a round robin arbiter,
and a router control module. These were all leaf level Verilog modules
except the FIFOs which were wrappers around a FIFO controller and a
generic memory.

Generic Router Design Adding Router Flops Conclusion

We were very pleased to be able to successfully create a generic RTL
design and keep it pristine across multiple implementations using the meta
design framework described in this paper.
Readability and reusability of the design were improved by separating the
differing implementations into different design scripts (instead of using
Ifdefs or multiple files).

Re-verification of existing variations was not required as new variations
were created.

In addition, we were able to take advantage of the power and flexibility of
an advanced programming language to build the design which made
complex connectivity simple.

We also believe that the described framework will increase designer’s
creativity when building complex Verilog designs

References
[1] Snyder, W. (n.d.). Verilog-mode Emacs. Retrieved from
http://www.veripool.org/wiki/verilog-mode
[2]Matsumoto, Y. (n.d.). Retrieved from https://www.ruby-lang.org/
[3]Snyder, W. (n.d.). Verilog-Perl. Retrieved from
http://www.veripool.org/wiki/verilog-perl
[4]Wall, L. (n.d.). Retrieved from https://www.perl.org/

Contact

Sanjeev Singh (sanjeevs@juniper.net)
Jonathan Sadowsky (jsadowsky@juniper.net)

Code Available at https://github.com/sanjeevs/verilog_gen

Download From https://rubygems.org/gems/verilog_gen

RTL design is getting way too entangled with generic RTL logic being
mixed with implementation specific logic like Vendor specific library
elements, backend logic like BIST etc.

We would like to “untangle” the hardware design by keeping these
components separate and using a program to create the final Verilog
output.
Our objective is
1. Keep RTL generic logic pristine across implementations.
2. Able to keep the rules for stitching and creating the final design in one

place.
3. Able to incrementally reuse/modify the rules using OOP

Juniper Networks

Sanjeev Singh, Jonathan Sadowsky
Meta Design Framework

A

B C D

E F G

Generic Router View

src
FIFO

RR Arbiter

Router
Controllersrc

FIFO

dst
FIFO

Finally, we wanted to demonstrate that the meta design framework could
be used to support multiple independent levels of hierarchy. In order to do
this, we envisioned a flow which reused the implementation specific
design as a black box, and added logic around that black box. The new
design simply added delay elements on each input and output port except
clocks and reset as seen below.

Generic
Router

Fifo
4x64

Fifo
4x64

Fifo
8x64

Rr
arb

Router
Ctl

64bit

Fifo
Ctl
4d

Generic
mem
4x64

Fifo
Ctl
8d

Generic
mem
8x64

Implementation Specific Router View

src
FIFO

RR Arbiter

Router
Controllersrc

FIFO

dst
FIFO

BIST Controller

RAM

RAM

RAM

Generic
Router

Fifo
4x64

Fifo
4x64

Fifo
8x64

Rr
arb

Router
Ctl

64bit

Fifo
Ctl
4d

Mem
16nm
4x64

Fifo
Ctl
8d

Mem
16nm
8x64

BIST
Controller

Flow Specific Router View

Implementation Specific Router (Black Box)

clock

reset

Imp.
Specific
Router

Flow
Wrapper

Flop
delay

Flop
delay

Flop
delay

Flop
delay

Flop
delay

Flop
delay

The Ruby script was used to create the hierarchy as shown below. The
shaded class objects are proxy class objects for the already written Verilog
leaf modules. The unshaded class objects were created by the Ruby script.
All connectivity overrides were part of the Ruby script.

.

Adding Vendor Memory Cells

https://www.ruby-lang.org/
http://www.veripool.org/wiki/verilog-perl
https://www.perl.org/
mailto:sanjeevs@juniper.net
mailto:jsadowsky@juniper.net
https://github.com/sanjeevs/verilog_gen

	Slide Number 1

