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Abstract— With the increasing number of 

processors and on-chip buses, the present day 

memory subsystems are more complex, making 

their verification a challenge. This paper talks 

about the complexities involved and innovative 

steps followed in developing efficient strategies to 

verify a memory subsystem. These steps enable us 

to locate performance bugs and reduce rework 

when the memory bank structure changes. 

 

Acronyms: 

AXI : AMBA Advanced eXtensible Interface 

DMA : Direct Memory Access        

DUT : Design Under Test 

ECC : Error Correcting Code  

IP : Intellectual Property 

ISR : Interrupt Service Routine 

RAL : Register Abstraction Layer 

RMW : Read Modify Write 

SoC : System on Chip 

UVM : Universal Verification Methodology 

VIP : Verification Intellectual Property     

VMM : Verification Methodology Manual 

 

I. INTRODUCTION  

 

As the SoC complexity grows with the number of 

processors and on-chip buses, the requirement for 

on-chip memory with different number of banks 

and sizes is also growing. In addition, changes to 

the architecture during the development might often 

result in changes to the memory requirement, thus 

causing a need for a robust and reusable verification 

strategy. This paper talks about various 

complexities involved and the verification strategies 

adopted in verifying a memory subsystem.  

  

The DUT/memory subsystem consists of multiple 

memory banks each having a third-party IP as the 

memory controller block with AXI interface. All 

these banks have a common register logic for 

control and status of the ECC functionality of all of 

the memories. Each memory bank is configurable in 

terms of number of sub-banks, data width, and 

address width.  

 

Fig. 1 depicts the DUT. As shown in the diagram, 

the memory controller(s) are connected to different 

memory bank(s). Each memory bank can further 

consist of multiple sub-banks. The numbers of 

banks in the design are variable and can be 

extended depending on the system design 

requirement.  

 

The need of the hour is a scalable environment, 

which can keep up with the changing design 

specifications.  

 

mailto:hivani.upasani@lsi.com
mailto:prashanth.srinivasa@lsi.com


  

Figure 1. Design Under Test 

 

For the verification of the memory subsystem, we 

adopted a coverage-driven verification 

methodology. Environment consists of generators 

for injecting random stimulus, RAL for register 

management, self-checking scoreboards, functional 

coverage models, utility scenarios like interrupt 

service routines, error injection mechanisms, etc. 

These are scalable and configurable based on the 

number of memory banks and address and data 

widths.  

 
The following challenges are encountered during 

verification of the Memory subsystem.  

  

1. There are two approaches to develop a 

scoreboard to test the memory subsystem. 

The traditional approach is to read the data 

directly from memory via backdoor after the 



transaction is seen at the AXI end. The new 

approach is to use a reference model to 

verify the DUT. 

 

2. In order to develop time-accurate checkers 

to predict the ECC behavior and interrupt set 

clear values, registers must be accessed. 

Reading the registers introduces a delay in 

these checks.  

 

3. We developed a completely re-usable 

checker to verify the power mode 

functionality of each bank/sub-bank inside 

the memory subsystem. This checker 

performs the connectivity check and also a 

functional check to  verify whether each 

bank has gone into correct low-power mode.  

 

 

 

II. CHALLENGES FACED AND 

RECOMMENDATIONS 

1. Scoreboard Strategy 

 

The verification strategy for this DUT involves 

verifying the data integrity across AXI at one end to 

the memory at the other end. This is achieved by 

placing monitors across all the design interfaces. 

These monitors capture the traffic and post the 

transactions to the bank scoreboard for comparison. 

Backdoor access to the memory is used to confirm 

that the correct data is read from or written into the 

memory.  

 

Fig. 2 depicts the verification strategy for the DUT. 

 

  

Figure 2. Verification Environment 



When the transaction reaches the AXI end, it is 

taken up by the AXI interface monitor and sent to 

the bank scoreboard. This scoreboard predicts the 

number of transactions that are supposed to occur 

on the memory interfaces. 

Each of the memory sub banks inside a memory 

slave is scoreboarded at a finer level by another 

scoreboard. For example: sub bank scoreboard 1, 2, 

etc.  

For a write transaction, the bank scoreboard predicts 

the writes expected on the sub-bank interface. When 

the writes occur at the memory end, it is read from 

the memory via the backdoor and compared with 

the predicted write data.  

For a read transaction, the bank scoreboard predicts 

the number of read accesses on the sub-bank 

interface. When those reads occur at the sub-bank 

interface, the data (accessed through backdoor) is 

updated to each of the predicted transaction. When 

this data reaches the AXI end, it is compared with 

each of the predicted data read.  

If the AXI write transfer is of lesser size than the 

memory bus width, partial writes or RMW are done 

by the memory controller on the memory interface. 

One write access at the AXI end is translated to read 

followed by write sequence at the memory end.  

Using the write strobe signals the bank scoreboard 

determines if a RMW operation is expected for any 

AXI transaction. These transactions are then 

verified as any read and write transactions as 

explained in the above two paragraphs. We found 

issues with the DUT in the following cases:  

a. Redundant reads found in case of wrap 

transfers. 

In case of AXI wrap, read transfers, if the address  

wraps back to the same memory word boundary, 

two reads are initiated (first read for first beat and 

second read when it wraps back), though a single 

read is sufficient. If it wraps back after next 

memory word, second read is must as we have only 

single register to store memory read data. Only in 

case of it wrapping back immediately to same 

memory word, the second read is redundant.  

For example, for a AXI WRAP transfer of length = 

4, size = byte, and start_address = 0x22, the valid 

transfers are 0x22, 0x23, 0x20 and 0x21. The 

memory controller should have read the memory 

location once and given back the data at the AXI 

end, but we observed that one read is done at 

memory end at address 0x20 for 0x22 and 0x23. 

One more read is done at the same address 0x20 for 

0x20 and 0x21.  

b. Redundant reads are seen in back-to-back 

read and write transfers when read and write 

transfer width is less than the bus width.  

In case of back-to-back read and write transfers 

with random delays from the AXI end, it is 

observed that due to the interleaving of reads and 

RMW at the memory controller end, redundant 

reads are observed to the address of   read transfers.  

 

c. Redundant reads seen in cases where ECC 

generation is disabled 

In this case, we observe that for any write transfer 

with burst size less than the bus width, it is not 

necessary to perform the RMW operation. But the 

memory controller initiates these redundant reads.  

 

The above issues are identified because of the 

reference model scoreboard approach, which 

actually predicts the n number of transfers that are 

expected on the memory interface depending on the 

AXI  burst type, burst size, and burst length. If any 

extra read or write is seen on the interface and it is 

not expected in the scoreboard queue or array the 

scoreboard raises an error flag.  

These redundant reads reduce the performance and 

the power efficiency of the memory subsystem. 

Therefore it is important to detect them in any 

memory subsystem.  

In case of a conventional scoreboard, approaches 

like reading directly from the memory via backdoor 

or creating a byte-by-byte scoreboard for 

comparison are not  helpful in locating these 

redundant reads.  

In case of scoreboards which read data from 

memory via backdoor, these redundant reads are 

missed.  



In case of scoreboards which use byte-by-byte 

address and data queue approach, the address and 

data queues are populated with data from read 

transfers seen on the interface. Redundant reads at 

the memory end are simply ignored or data gets 

over-written into the same address and data entry.  

If we apply these scoreboard approaches to the 

examples stated above, the redundant reads are 

either ignored or over-written and will go un-

noticed 

 

Therefore even though the time and complexity 

requirement of taking the reference model approach 

is more as compared to the traditional approaches,  

in our case the effort proved to be useful in 

detecting two important performance and power 

efficiency issues in the design.  

 

2. ECC and  Interrupt Handling:  

The memory subsystem supports ECC generation 

and check. The verification environment uses RAL 

extensively for verifying ECC functionality of the 

memory subsystem.  

 

Fig. 3 depicts the interrupt/exception checker logic. 

 

 

 

  

Figure 3. Interrupt and Exception Checker 



The verification environment scenarios inject either 

single bit or double bit error using the backdoor into 

any address location and generate read or write 

(unaligned) accesses to that location. This results in 

read or RMW sequences at the memory end.  

On detecting any read-modify-write transactions on 

the memory interface, the data which is read, is 

transmitted to the ECC reference model (an ECC 

generating algorithm) and compared with the read 

ECC value. 

During this transfer, if any correctable ECC error 

(single bit error) occurs, the memory subsystem 

goes ahead and sends the corrected data to the 

master and the data integrity for this phase is done 

in a similar fashion as that of full write. In case of a 

double bit error, the data with double bit error is 

sent back to the master 

In case of read transfers, the data read from the 

actual memory (which might have been corrupted 

by the environment itself), is transmitted to the ECC 

algorithm and type of ECC error is calculated. This 

ECC error information is then passed onto the 

interrupt checker. It waits for n number of clocks 

before it expects the DUT status registers to be 

updated with the correct error type  

Depending on the interrupt or exception enables, the 

interrupt or exception is predicted.  This is then 

compared with the actual interrupt or exception 

being generated by the DUT.  

 

During the error being detected by the environment, 

the address, syndrome, read/write values, etc. are 

passed to the bank status checker. These checkers 

are instantiated per bank.  This checker keeps track 

of the changing address and syndrome values in the 

individual banks depending on the sequence of 

errors being detected in each individual bank. It is a 

requirement that the address/syndrome values do 

not change if the previous error is not serviced.   

 

We have modeled a system level ISR in our 

verification environment. On seeing any interrupt or 

exception, the ISR randomly waits and then clears 

the status register for any previously generated 

errors. If the ISR does not clear all the error bits, 

then the interrupt/exception remains set.  

 While implementing the checker/ISR for ECC we 

came across the following issues:  

a. One major challenge in this checker is to get 

the expected value of the DUT status 

register almost at the time that it is updated 

in the DUT. We accomplished this using the 

RAL backdoor access to the status register 

which returns the value in zero simulation 

time. 

 

b. The latest RAL comes with a feature where 

same register can be accessed in parallel 

using the backdoor access. This feature 

helps in accessing the status register from 

two classes simultaneously. One is to check 

the status being set on any ECC error 

detected. Second is to clear the status 

register from the interrupt service routine.  

 

 

c. We also faced issues with the reusability of 

the checker since the register names are 

changing, so we started using parameterized 

RAL model register names. These are 

passed using the new function of the checker 

class and used internally for the functional 

check. If the register names change, they 

only need to be passed once and the code for 

the remaining check need not change. 

 

With this approach we were able to locate couple of 

issues with the glue logic which is used to latch the 

ECC error information into the register block.  

First issue is that the address and syndrome values 

latched in the memory bank status registers were 

changing before the previous error status was 

cleared from the Status register.  

Second issue is seen in back to back error injection. 

When Single bit error is followed by a double bit 

error, the Status register fails to capture the double 

bit error status. 

 

 



3. Power mode verification 

The power modes supported by the memory models 

(Light Sleep (LS), Deep Sleep (DS), and Shutdown 

(SD)) are verified as a part of the memory 

subsystem verification. Two types of checks are 

done in this case – connectivity and functional.  

Connectivity checks are assertion checks, which not 

only test the respective bank being put into low 

power but also that any other bank’s low power 

mode is not set due to any short in the RTL. It also 

checks for the low power mode signals being driven 

correctly to all the sub-banks 

It is important to confirm that no access occurs to 

the memory during low power modes and hence 

functional check becomes a necessity in this case. 

Fig. 4 shows the pictorial representation of the 

power mode verification done for the memory 

subsystem.  

 

Figure 4. Power Mode Checker 

If a write is initiated to the memory bank in case of 

any of the LS, DS, or SD mode, the write should not 

occur at the memory end. If a read in initiated to the 

memory bank in case of low power modes, then for 

LS, memory should return previously read data, and 

for DS and SD modes it should return 0. 

In our verification environment we randomly drive 

the LS, DS, and SD modes of a particular memory 

bank while the other banks are still in operation. 

This confirms that while one memory is in power- 

down mode, the other memories are up and running. 

In light sleep mode, if a write is initiated to the 

memory bank, then it does not get written. This is 

verified by reading from the same address location 

after the light sleep mode is inactive. If the memory 

is in light sleep mode and a read is initiated, then 

the memory continues to latch the previous read 

data onto the read data bus.  

In case of deep sleep mode, if a write is initiated to 

the memory, it is not forwarded to the memory and 

in case of read transfer, the memory returns a value 

of 0.  

In case of shut down mode, writes do not occur to 

the memory. For read transfers the data read is 

always 0 (‘x’ in case of timing simulations). The 

memory is initialized again and tested for any data 

transfer to make sure that it comes out of shut down 

correctly.  

Thus, the memory power modes are verified in this 

subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 



III. RESULT  AND CONCLUSION 

 

1. Using the reference model scoreboard 

approach, we are able to find performance 

issues with the third party IP, which is doing 

redundant reads. This bug would have been 

missed if non reference model approach was 

used. The development for the reference 

model scoreboard took us close to three 

weeks and we are estimating an approximate 

effort of one week for developing the 

scoreboard using non reference model 

approach. Though the effort is three times 

more, it proved helpful in locating 

performance and power efficiency bugs in 

this design.  

2. This environment can be scaled to support 

any memory bank configuration.  

3.  We successfully verified the low-power 

modes of the memory by carrying 

connectivity checks and functional checks. 
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