
Memory Subsystem Verification: Can it be taken

for granted?

Shivani Upasani (shivani.upasani@lsi.com),

Prashanth Srinivasa (prashanth.srinivasa@lsi.com),

LSI India Research & Development Pvt. Ltd.,

Global Technology Park,

Marathahalli Outer Ring Road,

Devarabeesanahalli, Bangalore- 560103

India

Abstract— With the increasing number of

processors and on-chip buses, the present day

memory subsystems are more complex, making

their verification a challenge. This paper talks

about the complexities involved and innovative

steps followed in developing efficient strategies to

verify a memory subsystem. These steps enable us

to locate performance bugs and reduce rework

when the memory bank structure changes.

Acronyms:

AXI : AMBA Advanced eXtensible Interface

DMA : Direct Memory Access

DUT : Design Under Test

ECC : Error Correcting Code

IP : Intellectual Property

ISR : Interrupt Service Routine

RAL : Register Abstraction Layer

RMW : Read Modify Write

SoC : System on Chip

UVM : Universal Verification Methodology

VIP : Verification Intellectual Property

VMM : Verification Methodology Manual

I. INTRODUCTION

As the SoC complexity grows with the number of

processors and on-chip buses, the requirement for

on-chip memory with different number of banks

and sizes is also growing. In addition, changes to

the architecture during the development might often

result in changes to the memory requirement, thus

causing a need for a robust and reusable verification

strategy. This paper talks about various

complexities involved and the verification strategies

adopted in verifying a memory subsystem.

The DUT/memory subsystem consists of multiple

memory banks each having a third-party IP as the

memory controller block with AXI interface. All

these banks have a common register logic for

control and status of the ECC functionality of all of

the memories. Each memory bank is configurable in

terms of number of sub-banks, data width, and

address width.

Fig. 1 depicts the DUT. As shown in the diagram,

the memory controller(s) are connected to different

memory bank(s). Each memory bank can further

consist of multiple sub-banks. The numbers of

banks in the design are variable and can be

extended depending on the system design

requirement.

The need of the hour is a scalable environment,

which can keep up with the changing design

specifications.

mailto:hivani.upasani@lsi.com
mailto:prashanth.srinivasa@lsi.com

Figure 1. Design Under Test

For the verification of the memory subsystem, we

adopted a coverage-driven verification

methodology. Environment consists of generators

for injecting random stimulus, RAL for register

management, self-checking scoreboards, functional

coverage models, utility scenarios like interrupt

service routines, error injection mechanisms, etc.

These are scalable and configurable based on the

number of memory banks and address and data

widths.

The following challenges are encountered during

verification of the Memory subsystem.

1. There are two approaches to develop a

scoreboard to test the memory subsystem.

The traditional approach is to read the data

directly from memory via backdoor after the

transaction is seen at the AXI end. The new

approach is to use a reference model to

verify the DUT.

2. In order to develop time-accurate checkers

to predict the ECC behavior and interrupt set

clear values, registers must be accessed.

Reading the registers introduces a delay in

these checks.

3. We developed a completely re-usable

checker to verify the power mode

functionality of each bank/sub-bank inside

the memory subsystem. This checker

performs the connectivity check and also a

functional check to verify whether each

bank has gone into correct low-power mode.

II. CHALLENGES FACED AND

RECOMMENDATIONS

1. Scoreboard Strategy

The verification strategy for this DUT involves

verifying the data integrity across AXI at one end to

the memory at the other end. This is achieved by

placing monitors across all the design interfaces.

These monitors capture the traffic and post the

transactions to the bank scoreboard for comparison.

Backdoor access to the memory is used to confirm

that the correct data is read from or written into the

memory.

Fig. 2 depicts the verification strategy for the DUT.

Figure 2. Verification Environment

When the transaction reaches the AXI end, it is

taken up by the AXI interface monitor and sent to

the bank scoreboard. This scoreboard predicts the

number of transactions that are supposed to occur

on the memory interfaces.

Each of the memory sub banks inside a memory

slave is scoreboarded at a finer level by another

scoreboard. For example: sub bank scoreboard 1, 2,

etc.

For a write transaction, the bank scoreboard predicts

the writes expected on the sub-bank interface. When

the writes occur at the memory end, it is read from

the memory via the backdoor and compared with

the predicted write data.

For a read transaction, the bank scoreboard predicts

the number of read accesses on the sub-bank

interface. When those reads occur at the sub-bank

interface, the data (accessed through backdoor) is

updated to each of the predicted transaction. When

this data reaches the AXI end, it is compared with

each of the predicted data read.

If the AXI write transfer is of lesser size than the

memory bus width, partial writes or RMW are done

by the memory controller on the memory interface.

One write access at the AXI end is translated to read

followed by write sequence at the memory end.

Using the write strobe signals the bank scoreboard

determines if a RMW operation is expected for any

AXI transaction. These transactions are then

verified as any read and write transactions as

explained in the above two paragraphs. We found

issues with the DUT in the following cases:

a. Redundant reads found in case of wrap

transfers.

In case of AXI wrap, read transfers, if the address

wraps back to the same memory word boundary,

two reads are initiated (first read for first beat and

second read when it wraps back), though a single

read is sufficient. If it wraps back after next

memory word, second read is must as we have only

single register to store memory read data. Only in

case of it wrapping back immediately to same

memory word, the second read is redundant.

For example, for a AXI WRAP transfer of length =

4, size = byte, and start_address = 0x22, the valid

transfers are 0x22, 0x23, 0x20 and 0x21. The

memory controller should have read the memory

location once and given back the data at the AXI

end, but we observed that one read is done at

memory end at address 0x20 for 0x22 and 0x23.

One more read is done at the same address 0x20 for

0x20 and 0x21.

b. Redundant reads are seen in back-to-back

read and write transfers when read and write

transfer width is less than the bus width.

In case of back-to-back read and write transfers

with random delays from the AXI end, it is

observed that due to the interleaving of reads and

RMW at the memory controller end, redundant

reads are observed to the address of read transfers.

c. Redundant reads seen in cases where ECC

generation is disabled

In this case, we observe that for any write transfer

with burst size less than the bus width, it is not

necessary to perform the RMW operation. But the

memory controller initiates these redundant reads.

The above issues are identified because of the

reference model scoreboard approach, which

actually predicts the n number of transfers that are

expected on the memory interface depending on the

AXI burst type, burst size, and burst length. If any

extra read or write is seen on the interface and it is

not expected in the scoreboard queue or array the

scoreboard raises an error flag.

These redundant reads reduce the performance and

the power efficiency of the memory subsystem.

Therefore it is important to detect them in any

memory subsystem.

In case of a conventional scoreboard, approaches

like reading directly from the memory via backdoor

or creating a byte-by-byte scoreboard for

comparison are not helpful in locating these

redundant reads.

In case of scoreboards which read data from

memory via backdoor, these redundant reads are

missed.

In case of scoreboards which use byte-by-byte

address and data queue approach, the address and

data queues are populated with data from read

transfers seen on the interface. Redundant reads at

the memory end are simply ignored or data gets

over-written into the same address and data entry.

If we apply these scoreboard approaches to the

examples stated above, the redundant reads are

either ignored or over-written and will go un-

noticed

Therefore even though the time and complexity

requirement of taking the reference model approach

is more as compared to the traditional approaches,

in our case the effort proved to be useful in

detecting two important performance and power

efficiency issues in the design.

2. ECC and Interrupt Handling:

The memory subsystem supports ECC generation

and check. The verification environment uses RAL

extensively for verifying ECC functionality of the

memory subsystem.

Fig. 3 depicts the interrupt/exception checker logic.

Figure 3. Interrupt and Exception Checker

The verification environment scenarios inject either

single bit or double bit error using the backdoor into

any address location and generate read or write

(unaligned) accesses to that location. This results in

read or RMW sequences at the memory end.

On detecting any read-modify-write transactions on

the memory interface, the data which is read, is

transmitted to the ECC reference model (an ECC

generating algorithm) and compared with the read

ECC value.

During this transfer, if any correctable ECC error

(single bit error) occurs, the memory subsystem

goes ahead and sends the corrected data to the

master and the data integrity for this phase is done

in a similar fashion as that of full write. In case of a

double bit error, the data with double bit error is

sent back to the master

In case of read transfers, the data read from the

actual memory (which might have been corrupted

by the environment itself), is transmitted to the ECC

algorithm and type of ECC error is calculated. This

ECC error information is then passed onto the

interrupt checker. It waits for n number of clocks

before it expects the DUT status registers to be

updated with the correct error type

Depending on the interrupt or exception enables, the

interrupt or exception is predicted. This is then

compared with the actual interrupt or exception

being generated by the DUT.

During the error being detected by the environment,

the address, syndrome, read/write values, etc. are

passed to the bank status checker. These checkers

are instantiated per bank. This checker keeps track

of the changing address and syndrome values in the

individual banks depending on the sequence of

errors being detected in each individual bank. It is a

requirement that the address/syndrome values do

not change if the previous error is not serviced.

We have modeled a system level ISR in our

verification environment. On seeing any interrupt or

exception, the ISR randomly waits and then clears

the status register for any previously generated

errors. If the ISR does not clear all the error bits,

then the interrupt/exception remains set.

 While implementing the checker/ISR for ECC we

came across the following issues:

a. One major challenge in this checker is to get

the expected value of the DUT status

register almost at the time that it is updated

in the DUT. We accomplished this using the

RAL backdoor access to the status register

which returns the value in zero simulation

time.

b. The latest RAL comes with a feature where

same register can be accessed in parallel

using the backdoor access. This feature

helps in accessing the status register from

two classes simultaneously. One is to check

the status being set on any ECC error

detected. Second is to clear the status

register from the interrupt service routine.

c. We also faced issues with the reusability of

the checker since the register names are

changing, so we started using parameterized

RAL model register names. These are

passed using the new function of the checker

class and used internally for the functional

check. If the register names change, they

only need to be passed once and the code for

the remaining check need not change.

With this approach we were able to locate couple of

issues with the glue logic which is used to latch the

ECC error information into the register block.

First issue is that the address and syndrome values

latched in the memory bank status registers were

changing before the previous error status was

cleared from the Status register.

Second issue is seen in back to back error injection.

When Single bit error is followed by a double bit

error, the Status register fails to capture the double

bit error status.

3. Power mode verification

The power modes supported by the memory models

(Light Sleep (LS), Deep Sleep (DS), and Shutdown

(SD)) are verified as a part of the memory

subsystem verification. Two types of checks are

done in this case – connectivity and functional.

Connectivity checks are assertion checks, which not

only test the respective bank being put into low

power but also that any other bank’s low power

mode is not set due to any short in the RTL. It also

checks for the low power mode signals being driven

correctly to all the sub-banks

It is important to confirm that no access occurs to

the memory during low power modes and hence

functional check becomes a necessity in this case.

Fig. 4 shows the pictorial representation of the

power mode verification done for the memory

subsystem.

Figure 4. Power Mode Checker

If a write is initiated to the memory bank in case of

any of the LS, DS, or SD mode, the write should not

occur at the memory end. If a read in initiated to the

memory bank in case of low power modes, then for

LS, memory should return previously read data, and

for DS and SD modes it should return 0.

In our verification environment we randomly drive

the LS, DS, and SD modes of a particular memory

bank while the other banks are still in operation.

This confirms that while one memory is in power-

down mode, the other memories are up and running.

In light sleep mode, if a write is initiated to the

memory bank, then it does not get written. This is

verified by reading from the same address location

after the light sleep mode is inactive. If the memory

is in light sleep mode and a read is initiated, then

the memory continues to latch the previous read

data onto the read data bus.

In case of deep sleep mode, if a write is initiated to

the memory, it is not forwarded to the memory and

in case of read transfer, the memory returns a value

of 0.

In case of shut down mode, writes do not occur to

the memory. For read transfers the data read is

always 0 (‘x’ in case of timing simulations). The

memory is initialized again and tested for any data

transfer to make sure that it comes out of shut down

correctly.

Thus, the memory power modes are verified in this

subsystem.

III. RESULT AND CONCLUSION

1. Using the reference model scoreboard

approach, we are able to find performance

issues with the third party IP, which is doing

redundant reads. This bug would have been

missed if non reference model approach was

used. The development for the reference

model scoreboard took us close to three

weeks and we are estimating an approximate

effort of one week for developing the

scoreboard using non reference model

approach. Though the effort is three times

more, it proved helpful in locating

performance and power efficiency bugs in

this design.

2. This environment can be scaled to support

any memory bank configuration.

3. We successfully verified the low-power

modes of the memory by carrying

connectivity checks and functional checks.

IV. ACKNOWLEDGEMENT

We would like to thank LSI and DVCon for
giving us the opportunity to present our work and
share our experience in a diversified forum. We also
express our gratitude to Dwaraka Jayendra, our
manager for his guidance and help.

V. REFERENCE

[1] IEEE Standard for System Verilog - Unified
Hardware Design, Specification,and Verification
Language

[2] Verification Methodology Manual for
SystemVerilog by Janick Bergeron, Eduard Cerny,
Alan Hunter and Andrew Nightingale

http://vmm-sv.org/
http://vmm-sv.org/
http://vmm-sv.org/

