
Memory Debugging of Virtual Prototypes with TLM 2.0

George F. Frazier 

Cadence Design Systems, Inc. 

georgef@cadence.com 

Neeti Bhatnagar 

Cadence Design Systems, Inc. 

neeti@cadence.com 

Qizhang Chao 

Cadence Design Systems, Inc. 

qzc@cadence.com 

Kathy Lang 

Cadence Design Systems, Inc. 

lang@cadence.com

 

 
Abstract— Memories are commonly modeled as TLM 2.0 

components in SystemC-based virtual prototypes. The role of 

memory models and memory subsystems in a virtual prototype is 

multi-fold. Memory models are often at the center of debugging 

activities for both hardware and embedded software.  

Because the TLM function transport_dbg allows inspection of 

target values without side effect, it is possible to create generic 

memory debugging tools for any design that models memory as a 

TLM 2.0 component.  This work examines the aspects of the 

TLM 2.0 standard that support memory debugging, in particular 

the transport_dbg function.  

We demonstrate with real debug problems encountered in the 

development of a virtual prototype that runs an embedded OS 

and other embedded software. We use the example to show how 

TLM 2.0 supported memory debugging can be used as part of an 

arsenal of tools to investigate debug problems familiar to virtual 

prototype designers. 

Keywords: TLM, System Level Design, Virtual Prototypes, Virtual 

Platforms, SystemC, Memory Modeling, Hardware Software Co-

design, Android. 

I.  INTRODUCTION 

Memories are commonly modeled as TLM 2.0
1
 

components in SystemC-based virtual prototypes (VPs). The 
role and use of memory models and memory subsystems in a 
virtual prototype is multi-fold. The program memory, data 
memory, and stack need not be stored in a single memory 
model – they can be split between multiple memory models. 
Alternately, they can be stored in a single memory model but 
implemented with sparse memory or other advanced memory 
modeling techniques that are often predicated by performance: 
loosely-timed (LT) models have to be implemented with the 
utmost efficiency. Memory models are often at the center of 
debugging activities for both hardware and embedded software. 

Because the TLM function transport_dbg allows inspection 
of target values without side effect, it is possible to create 
generic memory debugging tools

2,3
 for any design that models 

memory as a TLM 2.0 component.  Such frameworks do not 
require the user to do any hand-coding other than to specify the 
system memory map (either through proprietary methods or 
through a standard such as IP-XACT).  Such a framework can 
provide a system-level view of the memory-mapped target 

devices of a virtual prototype, interactive memory value 
viewing, memory cell or vector update, software disassembly 
display, and memory value tracing - all in a design-agnostic 
fashion. 

This work begins by examining the aspects of the TLM 2.0 
framework that support memory debugging, in particular the 
use of the standard transport functions to inspect and modify 
memory values, and how the use of TLM dmi affects visibility 
into memories (for example dmi supports access of different 
memory blocks/pointers from a single socket).  Dmi can make 
a model run very fast, but it can also make memory debugging 
a difficult challenge. 

We then demonstrate how the framework was used to solve 
difficult debug challenges during development of a virtual 
prototype that runs an embedded OS and other embedded 
software. The example includes dual processors – an ARM 
Cortex-A9 processor model and an ARM cortex M3 processor 
model - and a TLM-modeled RAM that boots an Android 
image. The Android image is ported to a SystemC-based 
virtual prototype that includes a collection of peripherals such 
as audio, battery, tty Ethernet, loader, and the Android skin all 
implemented in SystemC. 

Using the development of the Android virtual prototype, we 
show how the approach can be an essential aid in finding and 
fixing two classes of problems familiar to anyone that works 
with virtual prototypes: 

 Hardware peripheral design or Processor 
configuration errors that are discovered during early 
software development and require memory model 
access at the SystemC debug level. Often the 
hardware errors are discovered during the embedded 
OS port and involve dual hardware/software debug 
challenges. 

 “Bare metal” device driver logic and endianness 
errors that are very difficult to debug. 

The solutions require different debugging abstractions and 
approaches, but the capability of the TLM 2.0 standard to 
support target value introspection and modification allows the 
construction of powerful, integrated debug environments that 
operate across multiple levels of hardware and software 
development abstractions. 



II. MEMORIES IN TLM 2.0 

A. Modeling Memory with TLM 2.0 

VPs of systems on a chip (SOC) generally contain hardware 
modules that access a shared memory sub-system through a 
memory interconnect

4
.  At the same time, application software 

can be running on the chip, or in the case of multi-core designs, 
multiple chips, which results in software-originated memory 
access requests.  A common memory sub-system implemented 
in SystemC/TLM-2.0 can be shared by both the hardware 
models of the VP and the software running on the system. A 
challenging goal of VPs is to efficiently model this shared 
access, either at the architectural or AT-level of TLM 2.0 or the 
higher level of abstraction provided by the loosely-timed style 
of TLM 2.0 modeling.  Loosely-timed models provide less 
accuracy but typically much greater throughput (cycles per 
second) than AT models which provide greater accuracy at the 
cost of performance. 

There are several ways memory subsystems are used in 
VPs, and in fact there is often more than one memory model in 
the system. Besides memory-mapped registers used for 
hardware communication, software requires program memory, 
data memory, and stack storage, which can be isolated in a 
single memory or split across multiple memory models. 
Whether the implementation uses sparse memories

5
 or other 

advanced memory modeling techniques, the ability to inspect 
memory values plays a critical role in debugging either the 
hardware design or the embedded software running on the 
system – and often in the case of VPs – both at the same time. 

Because of the generic nature of the TLM generic payload 
and the standardization of well-defined access functions for 
targets, it is possible to construct tools that allow inspection 
and modification of the memory subsystems of a VP without 
explicit hand-coding or modification of the SystemC code used 
to implement the memories (the only requirement is a 
“complete” implementation of the memory, i.e. appropriate 
dmi and transport_dbg functions must be correctly 
implemented for each model). The target sockets of the 
hardware components accept transactions to model the read 
and write operations to the memory of the component.  This 
allows creation of tool features that allow memory debug 
operations such as interactive memory state inspection, 
interactive memory cell modification, and tools, such as 
memory viewers, that aggregate these operations in a debugger 
or IDE.  

System memory maps are not a part of either the SystemC 
or TLM standards, but are almost always part of a VP and are 
important to memory debugging.  The system memory map is 
used to interpret the address field of the generic payload that 
enables tools to provide sophisticated debug information that is 
either target or system address aware. 

B. TLM 2.0 functions for inspecting target values 

Memories are implemented as targets in TLM 2.0, and so in 

principle all of the TLM transport functions and APIs can be 

used to access memory values.  The access value of the 

generic payload field can be set to either read or write 

according to the desired operation. 

   However b_transport, nb_transport_fw, and 

nb_transport_bw functions have side effects (Table 1). The 

TLM function transport_dbg, however, is an interface 

designed to allow the initiator to read or write memory in the 

target without either side effects in the system or the passage 

of time. The transport_dbg function can be used by memory 

debugging tools as the basis of memory inspection and 

modification. 

   The transport debug interface is a singleton (it does not have 

separate blocking and non-blocking versions) that uses the 

forward path exclusively. Sometimes TLM designs will supply 

“do-nothing” implementations of transport_dbg, but for 

memory debugging to work, correct implementations are 

required (Appendix A shows am example of a simple 

transport_dbg function that might be used for a TLM 2.0 

wrapped VP). 

 
unsigned int 

transport_dbg(tlm::tlm_generic_payload 

&trans){} 

   The transport_dbg method takes only the generic payload 

argument rather than the additional arguments of the transport 

interface, and indeed it operates on a restricted set of the 

generic payload fields: the command, address, data pointer, 

and the data length. The goal of the function is to copy as 

many bytes as possible and to return the number of actual 

bytes copied. A debug environment can then query the target 

by calling transport_dbg somewhere in appropriate initiator: 

 
unsigned int n_bytes =  

      socket->transport_dbg( *trans ); 

TABLE I.  TLM 2.0 TRANSPORT  FUNCTIONS AND MEMORY DEBUG 

Function name descripton Has side effects? 

b_transport Blocking transport.  Yes 

nb_transport_fw Non-blocking forward transport Yes 

nb_transport_bw Non-blocking backward transport Yes 

transport_dbg Debug transport call No 

 

Since either tlm_read or tlm_write can be specified in the 

command field of the generic payload, the function can be 

used either to query the value of memory or deposit a new 

value.  Using the command as part of a strategy to iterate over 

memory regions can result in a powerful data engine for 

memory viewing and editing tools. Figure 1 shows a sample 

view of memory that can be provisioned by TLM-based 

memory debug calls through transport_dbg. 

 

 



FIGURE 1 – WINDOW DISPLAY OF TLM-BASED MEMORY VALUES  

 

C. Implications of using dmi functions 

DMI functions are similar in some ways to the transport_dbg 

interface; however DMI is intended as a “back door” to speed 

up simulation time by by-passing the call chain of the transport 

functions for normal transactions. Although it is possible to 

instrument certain memory debugging operations using DMI, 

the TLM standard specifies the transport_dbg interface 

exclusively for debugging and is the preferred method for 

debug tools. 

III. TLM2.0-BASED VIRTUAL PROTOTYPES 

A. Definitions 

There are many ways to model an SOC at the system level. 

For the purpose of this paper, a Virtual Prototype is a 

SystemC/TLM-based model that enables pre-RTL software 

design, verification, and system analysis before committing to 

hardware design. Components of a VP generally include a 

model of the processors, SystemC/TLM implementations of 

the hardware peripherals, and software such as an embedded 

operating system, device drivers, and application software.  

Device drivers and embedded software that run on the system 

without the operating system are called "bare metal" programs. 

Debugging bare metal programs is called bare metal 

debugging – if the debugger also deals natively with OS 

constructs such as threads and signals then it is said to be OS-

aware. 

B. A TLM 2.0-based Virtual Prototype that runs Android 

The examples of TLM 2.0-enabled memory debug all 
operate on a VP of a SOC that boots Android. The example 
uses two ARM processor models and a TLM simple memory 
(RAM). Devices connected to the design have been written as 
SystemC models. Included in the collection of peripherals are 
the interrupt controller, timer, tty, audio and battery (this is just 
a sampling of the actual devices in the design). Figure 2 shows 
the system memory map for some of the devices.  The memory 
map is an essential part of the design – it provides a mapping 
from logical device names to the TLM target instances 

including the local start and end addresses and the system base 
address for the device in memory. 

FIGURE2. System Memory Map 

device name TLM Target 

Local 

start 

address 

Local end 

address 

System 

base 

address 

ram ram.tsocket 0 0x5FFFFFF 0 

Interrupt 

controller 
interrupt.tsocket 

0 0xFFF FF00000 

timer timer.tsocket 0 0xFFF FF01000 

tty tty0.tsocket 0 0xFFF FF02000 

audio audio.tsocket 0 0xFFF FF03000 

battery battery.tsocket 
0 0xFFF FF04000 

 

 

There are many options for modeling the processors for this VP 

including using vendor or third party provided SystemC or C-

based models
5
 or QEMU

6
-based models.  As this is a TLM-

based VP, the processors are TLM initiators in the design and 

are modeled with processor models generated by ARM tools
7
. 

Once the processor models are chosen and the SystemC 

peripherals are ready, the development of software can begin – 

in particular writing drivers and porting the embedded OS. 

Here we’ve used the Android Goldfish
8
 kernel. Once the OS is 

ported, running the system involves launching the emulator 

(Figure 3), booting the OS, and launching application software. 

   Each step in this process will typically result in modeling or 

software bugs, most of which are very difficult to track down 

without a dedicated hardware and software development 

environment that supports SystemC/TLM debug, bare metal 

debug, and OS-aware analysis and debug. The following 

sections show examples of three such problems and how TLM-

based memory debug can help. 

IV. DEBUG PROBLEMS AND SOLUTIONS THAT USE MEMORY 

DEBUG 

A. Finding an endianness mismatch 

The example Android VP is a collection of SystemC 
peripherals that communicate with ARM processor models. 
When working with any SOC design, it is important that the 
processors, the peripherals, and the embedded software agree 
on the endianness of data items passed between components. 
Endianness can be hidden at higher levels of abstraction by 
application software or the OS, but at the hardware and driver 
level, a common agreement on endianness is essential. In a VP 
it can be hard to keep this straight,

9
 and in the low visibility 

environment of bare metal debug, tracking down problems 
caused by mismatched endianness can be very challenging. 

There are at least two different ways to configure the 
endianness of ARM processors. This contributed to a problem 
encountered when developing this VP.  While generating the 
A9 processor model, the host-endianness of the Linux 
development system (little-endian) was explicitly specified. 
This decision was made for the debug stage of the design in 
keeping with the TLM standard which specifies that, for 



optimal performance (LT models need to be fast), both initiator 
and target operate with little-endianness if that is the host 
endianness

1
.  When the hardware was initially booted, the 

system immediately crashed. This was so early in the boot 
process that no traditional embedded software debugging even 
of assembly instructions was possible, so an investigation of 
the memory was undertaken to look for clues. 

FIGURE 3. ANDROID 

 

.  

FIGURE 4.  MEMORY VALUE – “BIG-ENDIAN” 

 

 

 

Figure 4 shows the value of a CPU register and memory 
obtained through TLM-based memory debug where the TLM 
write deposited the value of the register in memory. 

 

 

FIGURE 5. MEMORY VALUE – “LITTLE-ENDIAN” 

 

 

 

When running the bare metal design the memory content 
register value showed big endian representations of data 
(Figure 5 shows how the same register would be represented in 
little-endian) which caused problems when the low level 
drivers interpreted them as little-endian. Since the processor 
was configured for little endian, that was not the cause of the 
problem. This led to an investigation of other ways to specify 
the endianness of the initiator, and the ARM documentation 
pointed to assembly language code that when loaded into the 
core set it to big endian (through co-processor 15 instructions), 
thus overriding the setting at build time.: 

MRC p15, 0, r0, c1, c0, 0 

ORR r0, r0, #0xf8 

MCR p15, 0, r0, c1, c0, 0 

In fact this code was left over from an earlier port and 
should have been cleaned up as part of development. 
Modifying the assembly snippet fixed the problem. In general, 
memory debug can be used to check for endianness issues at 
later stages of debug as well. The user can step through the 
assembly code, monitoring specific memory locations looking 
for changes. Memory Views provisioned by TLM-based 
methods for gathering memory values can be configured to 
display memory values in different endianness, which can 
speed up the identification of such problems (Figure 6). 
Watching how the memory cells get updated can provide clues 
about the endianness of the data items being passed between 
components in the generic payload. 

 

 

 

 

 

 

 

 



FIGURE 6.  ENDIAN DISPLAY IN TLM MEMORY VIEW 

 

B. Finding problems in the system dual- boot process 

In building this system, another problem related to the 
multi-phase boot sequence for the dual ARM cores. ARM 
provides a spec about how the boot sequence works

10
 – the task 

is to build the system design and make sure to model all of the 
steps that the OS needs for the multi-phase boot sequence 
(Figure 7).  

FIGURE 7.  MULTISTAGE CORE BOOT SEQUENCE 

 

 

 

As part of the communication between the A9 and the M3, 
there is a special hardware reset that synchronizes 
communication between the cores.   First the M3 boots, then it 
releases the A9 from reset, then the A9 boots and copies the 

rest of the boot-up code into memory that can be accessed by 
the M3. In particular, this copying requires synchronization 
between the two cores.  

If there are problems in the boot-up phase, the system just 
freezes and the debug task is to isolate the problem in the 
visibility-deprived state of the early boot. Fortunately, access to 
an accurate display of memory contents can make things much 
easier. When this problem was encountered, examining the 
memory showed that the boot strap copy phase had begun, but 
only part of the boot-up code was successfully transferred. 
There could be several possible sources for this error including: 

 A problem in the synchronization of accesses to 
the RAM being used by the A9 and M3. 

 A problem with the multi-processor 
communication hardware block. 

 A problem with the interrupt configuration. 

Without automated TLM-based memory debug, the only 
way to investigate whether the boot-up code is successfully 
copied is to manually instrument the RAM block to print its 
values, and instrument some sort of API to specify when and 
how much memory to print. This is independent of “who” does 
this inspection request – the stimulus here is software running 
on the processors. TLM-based memory debug allows an on-
demand request for memory contents from a component such 
as the RAM from a requester outside of the model code itself.  

As in the endianness problem, it also helps to understand 
how the registers map into memory.  Figure 8 shows a register 
view with processor registers and register values. Using the 
values in the address registers to identify the location of the 
boot-up code in RAM, and then leveraging the TLM-based 
memory debug to inspect the data led to the discovery that only 
part of the boot-up code was present – thus the code transfer 
failed.  

With this information finding the exact cause still required 
several more steps. By tracing of the interrupt signals it was 
determined that only one interrupt was received when multiple 
interrupts were expected. This led to the discovery of an error 
in the GIC (ARM Generic Interrupt Controller) programming.  
The GIC code is part of the bare metal software of the design; 
in this case INTS[0] corresponds to GIC Interrupt ID 32, but 
the boot-up software was writing to a different bit in the 
register. After fixing the bit reference and using TLM-based 
memory debug to verify that the boot-up code was copied 
correctly, the problem was successfully fixed. 

C. Debug by redirecting Android kernel messages to memory 

While porting the Android Goldfish kernel to the VP, several 

port-related problems were encountered; some very early in 

the OS boot sequence. Android (which is Linux) provides the 

printk API call for kernel messages (this is part of the Android 

kernel logging layer which should not be confused with the 

user level logging modules such as liblog, logcat, etc.).   

 

During the OS boot, many printk() messages are produced. 

printk() messages can be used to instrument the OS code, 



serve as mile posts, and to look for errors even when source or 

instruction debugging is not an option. In general, different 

implementations of Linux take different approaches to 

displaying printk() output, although redirection to the terminal 

or a file is common.  Very early in the boot sequence before 

the TTY is initialized, terminal output is not available - the 

messages sit in the ring buffer in memory - and there is no 

straight-forward way to display the messages.   

 

   Since they exist in memory, TLM-based memory debug is a 

natural way to see the messages even before all of the device 

drivers are initialized. In Android, the ring buffer is a static 

array of characters: 
static char __log_buf[__LOG_BUF_LEN]; 

static char *log_buf = __log_buf; 

By finding the system address of the global variable 
__log_buf and using TLM-based memory debug to view the 
contents in ASCII format, early-phase printk() messages from 
the kernel could be used to trace progress during the port. 

V. CONCLUSION 

Debugging a SystemC-based virtual prototype can be a 
difficult challenge. Problems can be caused by logic errors in 
the programming of the hardware, software, or both. Hardware-
aware debug tools for both hardware and software debug 
provide a breakthrough in productivity – instead of staring at a 
blank xterm or a bricked phone (emulator), SOC teams now 
have the option of leveraging successful debug methodologies 
that can save days or weeks of effort. The TLM standard 
provides a powerful methodology for creating such tools, and 
in the case of memory debugging, the transport_dbg interface 
provides a solid core upon which to build full-featured memory 
debug and analysis tools for VP debug environments and IDEs. 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

FIGURE 8 – PROCESSOR REGISTERS AND MEMORY 

 

 



APPENDIXA – TRANSPORT_DBG EXAMPLE 

This is a simple example of a transport_dbg() implementation 

for a TLM 2.0-wrapped device in a virtual prototype; in this 

case a simple bus. First the data is validated with a simple 

dummy check. Then we make sure byte enable is not expected 

because we don’t support it. Our bus can only transfer 

quantities of a word, so we make this check as well. We get 

the offset and the data pointer (dptr), then check whether the 

request is a read or a write. Reads correspond to memory 

inspection, writes correspond to value deposit. We make the 

call on the example_bus object to read or write the actual 

values in the switch.  Finally we assign the data pointer and 

check whether there was an error during the operation. If so 

we set the response status to 
TLM_GENERIC_ERROR_RESPONSE. 

 

unsigned int 

example_bus_base_module::transport_dbg(tlm

_generic_payload& gp) 

{ 

  tlm_response_status rspstatus; 

 

  // Perform basic dummy test  

  // on the generic_payload data. 

 

  rspstatus = validate_request(gp, true); 

     

  if (rspstatus != TLM_OK_RESPONSE) { 

     gp.set_response_status(rspstatus); 

     return (0); 

  } 

     

  // Does not support byte enable. 

  if (gp.get_byte_enable_ptr()!= NULL) { 

   gp.set_response_status 

       (TLM_BYTE_ENABLE_ERROR_RESPONSE); 

   return (0); 

  } 

 

  unsigned int dlen = p.get_data_length(); 

  unsigned int wordsize =     

               sizeof(BUS_DATA_TYPE_32); 

 

  // Transfer must be full word. 

  if (dlen != wordsize) { 

   gp.set_response_status 

        (TLM_GENERIC_ERROR_RESPONSE); 

        return (0); 

  } 

 

  // Get offset address 

  BUS_ADDR_TYPE_64 addr =    

    static_cast<BUS_ADDR_TYPE_64> 

    (gp.get_address()); 

     

  BUS_ADDR_TYPE_64 offset =       

example_bus_example_bus_REG_ADDR_MASK 

& addr; 
 

  BUS_DATA_TYPE_32* dptr; 

  dptr =     

reinterpret_cast<BUS_DATA_TYPE_32*> 

    (gp.get_data_ptr()); 

 

  bool status = true; 

     

  switch (gp.get_command()) { 

   case TLM_READ_COMMAND: { 

    status =this->example_bus.bus_read_dbg 

           (offset, *dptr); 

   break; 

 } 

 case TLM_WRITE_COMMAND: { 

   status =this->example_bus.bus_write_dbg 

         (offset, *dptr); 

 break; 

 } 

 default : 

 // Do some sort of reasonable 

 // validation on this case 

 break; 

 } 

 

 BUS_DATA_TYPE_32 data = *dptr; 

 ::std::string cmd =  

    (gp.get_command() == TLM_READ_COMMAND)  

                 ? "Read" : "Write"; 

 if (status) { 

  gp.set_response_status 

                (TLM_OK_RESPONSE); 

 return(dlen); 

 } 

 else { 

  gp.set_response_status 

          (TLM_GENERIC_ERROR_RESPONSE); 

  return (0); 

 } 

} 

 



REFERENCES 

 
[1] Open SystemC Initiative. “TLM-2.0 Standard.” 

http://www.systemc.org/downloads/standards/tlm20. Retrieved 
December 1, 2011. 

[2] Frazier, G., Motel, V., Bhatnagar, N., Larue, W. “Automatic 
Quantitative Analysis of Simulations of TLM 2.0 Loosely Timed 
Models.” Proceedings of DesignCon. Feb. 2010.  

[3] Frazier, G., Motel, V., Bhatnagar, N., Larue, W. “An Automatic Visual 
System Performance Stress Test for TLM Designs” Proceedings of 
DVCON Feb. 2011. 

[4] Poursepanj, A. “A Common System Memory Model for SoC Software 
and Architecture Models using a SystemC/TLM-2.0 Interface” 
Proceedings of DVCON Feb. 2011. 

[5] Open SystemC Initiative. “OVP Technology enabled in OSCI TLM2.0” 
http://www.ovpworld.org/technology_TLM2.0.php, Retrieved 
December 1, 2011. 

[6] Cadence Design Systems. “Cadence Virtual System Platform”,  
http://www.cadence.com/products/sd/virtual_system/pages/default.aspx.  
Retrieved December 1, 2011. 

[7] arm.com. “Cortex-A9 Processor”,  
http://www.arm.com/products/processors/cortex-a/cortex-a9.php. 
Retrieved December 1, 2011. 

[8] eLinux.org. “Android on OMAP.” http://elinux.org/Android_on_OMAP. 
Retrieved December 1, 2011. 

[9] Andrews, J..  Co-Verification of Hardware and Software for ARM SoC 
Design. pgs 98-99. Elsevier. 2005. 

[10] arm.com. “Arm Generic Interrupt Controller Architecture Specification”,  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0048a/
CHDGCFJI.html Retrieved December 1, 2011.  

 

 

 

 

http://www.systemc.org/downloads/standards/tlm20
http://www.ovpworld.org/technology_TLM2.0.php
http://www.cadence.com/products/sd/virtual_system/pages/default.aspx
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0048a/CHDGCFJI.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0048a/CHDGCFJI.html

