
February 28 – March 1, 2012

Memory Debugging of Virtual Platforms

by
George F. Frazier
Neeti Bhatnagar
Qizhang Chao
Kathy Lang

Cadence Design Systems, Inc.

George Frazier, Cadence 2 of 25

Virtual Prototypes (VP)
• VPs are models of systems that typically contain a hardware

design and software.
• Embedded OS, device drivers, bare metal test programs,

applications, etc.
• VPs model instructions on the processor(s) accurately so

are appropriate for full scale pre-RTL software
development.

• Types of software involved informs the debug strategy.
• Challenge is to create debug environments that provide a

richness & visibility not available to environments that
contain physical prototypes of the hardware.

• TLM standard can help.

George Frazier, Cadence 3 of 25

SystemC VPs
• A SystemC-based VP is a SystemC/TLM-based model of the

hardware along with software.
• Hardware components are written in SystemC or at least

wrapped in TLM 2.0 interfaces.
• Includes hardware such as processor models and memories

along with SystemC/TLM implementations of peripherals.
• Embedded software such as an embedded OS, drivers, and

application software.
• TLM standard helps in creation of rich debug environments

for both HW and SW for VP-based systems.

George Frazier, Cadence 4 of 25

Role of Memory sub-systems in
SystemC-based VPs
• Many possible memory implementations and configurations

can exist.
• The program memory, data memory, and stack need not be

stored in a single memory model.
• They can be stored in a single memory model but

implemented with sparse memory or other advanced
memory modeling techniques that are often predicated by
performance.

• From a tooling perspective, we need a generic way to
inspect and modify values of VP memories that is external
to any implementation details of a particular system.

• This is where the TLM 2.0 standard assists us.

George Frazier, Cadence 5 of 25

TLM 2.0 functions for inspecting
target values

Function name description Has side effects?

b_transport Blocking
transport.

Yes

nb_transport_fw Non-blocking
forward transport

Yes

nb_transport_bw
Non-blocking

backward
transport

Yes

transport_dbg Debug transport
call

No

George Frazier, Cadence 6 of 25

Provisioning a Memory “view”
with transport_dbg
• If you know which blocks in a design

represent memories, it is possible to collect
the values of the memory for debugging
purposes using transport_dbg calls.

• This can be done without side effects or
advancing simulation time, and without
modifying a user design.

• Values can be collected and presented as a
“memory view”

George Frazier, Cadence 7 of 25

Memory “Viewer” provisioned by
TLM target inspection

George Frazier, Cadence 8 of 25

TLM VP that runs Android

• Two ARM processor models
(processor models were
generated by ARM tools and have
a TLM wrapper).
• A9 and M3.
• TLM Simple Memory (RAM).
• Devices connected to the bus.
• System Memory Map.
• Android Goldfish.

George Frazier, Cadence 9 of 25

Device name TLM Target Local start
address

Local end
address

System base
address

ram ram.tsocket 0 0x5FFFFFF 0

Interrupt
controller interrupt.tsocket 0 0xFFF FF00000

timer timer.tsocket 0 0xFFF FF01000

tty tty0.tsocket 0 0xFFF FF02000

audio audio.tsocket 0 0xFFF FF03000

Battery battery.tsocket 0 0xFFF FF04000

George Frazier, Cadence 10 of 25

Common Steps in VP
development
• Choose your processors and how to model them

(QEMU, Arm, Imperas, etc).
• Create SystemC peripherals as needed.
• Write drivers for any hardware peripherals you

authored, if you are only extending a system you
might only need drivers for new hardware blocks
you added.

• Port embedded OS.
• Run the system, and test by running middleware

on the OS.

George Frazier, Cadence 11 of 25

Time to Debug!

George Frazier, Cadence 12 of 25

VP Debugging Terminology

• Device drivers and embedded programs that run
on the VP without an OS are called “bare metal”
programs.

• Debugging a bare metal program is called “bare
metal” debugging.

• If the debugger deals natively with OS constructs
such as threads and signals it is “OS-aware.”

• The following examples apply to “bare metal.”

George Frazier, Cadence 13 of 25

Bare Metal debugging of VPs is a
low visibility endeavor. TLM-
based Memory Debug can help.

http://bach.as.arizona.edu/gallery/main.php?g2_itemId=3184&g2_imageViewsIndex=1
http://bach.as.arizona.edu/gallery/main.php?g2_itemId=3184&g2_imageViewsIndex=1

George Frazier, Cadence 14 of 25

Finding an endianness mismatch

• In any SOC design, it is important that
processors, peripherals, and the embedded
SW agree on endianness of data items
passed between components.

• Sometimes it can be tricky to keep this
straight.

• Tracking down an endianness mismatch can
be very challenging.

George Frazier, Cadence 15 of 25

Big Endian

George Frazier, Cadence 16 of 25

Configuring endianness for ARM
A9s
• At least 2 different ways.
• When we generated the A9 processor, host-

endianness of Linux was explicitly chosen
(little endian).

• TLM standard suggests that for debug,
choose endianness of host (LT models need
to be fast). In this case both initiator and
target share host endianness.

George Frazier, Cadence 17 of 25

On boot-up, the system crashed

• So early in boot process no traditional
embedded software debugging even of
assembly language is possible.

• Instead we investigated memory using TLM-
based memory debug.

• Running the bare metal design, we noticed
memory content register value was in big
endian.

George Frazier, Cadence 18 of 25

Endian display in Memory View

George Frazier, Cadence 19 of 25

Led to investigation of other
ways to set endianness for the
ARM A9

MRC p15, 0, r0, c1, c0, 0
ORR r0, r0, #0xf8
MCR p15, 0, r0, c1, c0, 0

Arm documentation pointed to assembly language
code that sets the core to big-endian.

•This was from code we inherited.
•TLM-based debug gathers the memory values of the
RAM and supports displays in different endianness.

George Frazier, Cadence 20 of 25

Finding problems in dual-
processor boot up
• This issue related to the multi-

phase boot sequence for dual ARM
Cores.

• We were working from a spec from
ARM that explains how the bootup
works.

George Frazier, Cadence 21 of 25

George Frazier, Cadence 22 of 25

If the boot fails, the system
freezes
• Early access to memory contents invaluable

in this case.
• We examined the memory in the phase

where A9 boots and copies the rest of the
bootup code into memory so the M3 can
read it.

• Only part of the bootup code made it.

George Frazier, Cadence 23 of 25

Possible Causes of the Problem

• Problem in synchronization of accesses to
the RAM being used by the A9 and M3.

• A problem with the multi-processor
communication hardware block.

• A problem with the interrupt configuration.
• Without TLM Memory debug, you would

have to instrument the memory to dump its
values and change the model.

George Frazier, Cadence 24 of 25

An ARM General Interrupt
Controller programming error.
• We used values in the address registers to identify

the location of the bootup code in RAM.
• Even with this, we had to go down several fruitless

paths.
• By tracing interrupt signals, we found a missing

signal which led to discovery of an error in GIC
(Generic Interrupt Controller) programming.

• INTS[0] corresponds to GIC Interrupt ID 32, but
the software wrote to a different bit in the register.

George Frazier, Cadence 25 of 25

Redirecting Android kernel
messages to memory.
• Possible using TLM Memory Debug.
• Very early in the Android boot before the TTY is

initialized, “printk” messages sit in the ring buffer
in memory.

• Ring buffer is a static array:

static char __log_buf[__LOG_BUF_LEN];
static char *log_buf = __log_buf;

George Frazier, Cadence 26 of 25

Conclusion

• Debugging a SystemC-based VP can be a
difficult challenge involving problems caused
by the hardware models, the low-level
software, the application software, or all
three.

• TLM standard provides a powerful
methodology for creating, via the
transport_dbg interface, TLM-based debug
tools such as Memory Debug.

	Memory Debugging of Virtual Platforms
	Virtual Prototypes (VP)
	SystemC VPs
	Role of Memory sub-systems in SystemC-based VPs
	TLM 2.0 functions for inspecting target values
	Provisioning a Memory “view” with transport_dbg
	Memory “Viewer” provisioned by TLM target inspection
	TLM VP that runs Android
	Slide Number 9
	Common Steps in VP development
	Time to Debug!
	VP Debugging Terminology
	Bare Metal debugging of VPs is a low visibility endeavor. TLM-based Memory Debug can help.
	Finding an endianness mismatch
	Big Endian
	Configuring endianness for ARM A9s
	On boot-up, the system crashed
	Endian display in Memory View
	Led to investigation of other ways to set endianness for the ARM A9
	Finding problems in dual-processor boot up
	Slide Number 21
	If the boot fails, the system freezes
	Possible Causes of the Problem
	An ARM General Interrupt Controller programming error.
	Redirecting Android kernel messages to memory.
	Conclusion

