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Virtual Prototypes (VP)
• VPs are models of systems that typically contain a hardware 

design and software.
• Embedded OS, device drivers, bare metal test programs, 

applications, etc.
• VPs model instructions on the processor(s) accurately so 

are appropriate for full scale pre-RTL software 
development.

• Types of software involved informs the debug strategy.
• Challenge is to create debug environments that provide a 

richness & visibility not available to environments that 
contain physical prototypes of the hardware.

• TLM standard can help.
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SystemC VPs
• A SystemC-based VP is a SystemC/TLM-based model of the 

hardware along with software.
• Hardware components are written in SystemC or at least 

wrapped in TLM 2.0 interfaces.
• Includes hardware such as processor models and memories 

along with SystemC/TLM implementations of peripherals.
• Embedded software such as an embedded OS, drivers, and 

application software.
• TLM standard helps in creation of rich debug environments 

for both HW and SW for VP-based systems. 
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Role of Memory sub-systems in 
SystemC-based VPs
• Many possible memory implementations and configurations 

can exist.
• The program memory, data memory, and stack need not be 

stored in a single memory model.
• They can be stored in a single memory model but 

implemented with sparse memory or other advanced 
memory modeling techniques that are often predicated by 
performance.

• From a tooling perspective, we need a generic way to 
inspect and modify values of VP memories that is external 
to any implementation details of a particular system.

• This is where the TLM 2.0 standard assists us.
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TLM 2.0 functions for inspecting 
target values

Function name description Has side effects?

b_transport Blocking 
transport. 

Yes

nb_transport_fw Non-blocking 
forward transport

Yes

nb_transport_bw
Non-blocking 

backward 
transport

Yes

transport_dbg Debug transport 
call

No
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Provisioning a Memory “view” 
with transport_dbg
• If you know which blocks in a design 

represent memories, it is possible to collect 
the values of the memory for debugging 
purposes using transport_dbg calls.

• This can be done without side effects or 
advancing simulation time, and without 
modifying a user design.

• Values can be collected and presented as a 
“memory view”
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Memory “Viewer” provisioned by 
TLM target inspection
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TLM VP that runs Android

• Two ARM processor models 
(processor models were 
generated by ARM tools and have 
a TLM wrapper).
• A9 and M3.
• TLM Simple Memory (RAM).
• Devices connected to the bus.
• System Memory Map.
• Android Goldfish.
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Device name TLM Target Local start 
address

Local end 
address

System base 
address

ram ram.tsocket 0 0x5FFFFFF 0

Interrupt
controller interrupt.tsocket 0 0xFFF FF00000

timer timer.tsocket 0 0xFFF FF01000

tty tty0.tsocket 0 0xFFF FF02000

audio audio.tsocket 0 0xFFF FF03000

Battery battery.tsocket 0 0xFFF FF04000
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Common Steps in VP 
development
• Choose your processors and how to model them 

(QEMU, Arm, Imperas, etc).
• Create SystemC peripherals as needed.
• Write drivers for any hardware peripherals you 

authored, if you are only extending a system you 
might only need drivers for new hardware blocks 
you added.

• Port embedded OS.
• Run the system, and test by running middleware 

on the OS.
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Time to Debug!
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VP Debugging Terminology

• Device drivers and embedded programs that run 
on the VP without an OS are called “bare metal” 
programs.

• Debugging a bare metal program is called “bare 
metal” debugging.

• If the debugger deals natively with OS constructs 
such as threads and signals it is “OS-aware.”

• The following examples apply to “bare metal.”
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Bare Metal debugging of VPs is a 
low visibility endeavor. TLM-
based Memory Debug can help.

http://bach.as.arizona.edu/gallery/main.php?g2_itemId=3184&g2_imageViewsIndex=1
http://bach.as.arizona.edu/gallery/main.php?g2_itemId=3184&g2_imageViewsIndex=1
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Finding an endianness mismatch

• In any SOC design, it is important that 
processors, peripherals, and the embedded 
SW agree on endianness of data items 
passed between components.

• Sometimes it can be tricky to keep this 
straight.

• Tracking down an endianness mismatch can 
be very challenging.
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Big Endian



George Frazier, Cadence 16 of 25

Configuring endianness for ARM 
A9s
• At least 2 different ways.
• When we generated the A9 processor, host-

endianness of Linux was explicitly chosen 
(little endian).

• TLM standard suggests that for debug, 
choose endianness of host (LT models need 
to be fast). In this case both initiator and 
target share host endianness. 
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On boot-up, the system crashed

• So early in boot process no traditional 
embedded software debugging even of 
assembly language is possible.

• Instead we investigated memory using TLM-
based memory debug.

• Running the bare metal design, we noticed 
memory content register value was in big 
endian.
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Endian display in Memory View
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Led to investigation of other 
ways to set endianness for the 
ARM A9

MRC p15, 0, r0, c1, c0, 0 
ORR r0, r0, #0xf8 
MCR p15, 0, r0, c1, c0, 0

Arm documentation pointed to assembly language 
code that sets the core to big-endian.

•This was from code we inherited.
•TLM-based debug gathers the memory values of the 
RAM and supports displays in different endianness.
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Finding problems in dual-
processor boot up
• This issue related to the multi-

phase boot sequence for dual ARM 
Cores.

• We were working from a spec from 
ARM that explains how the bootup 
works.
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If the boot fails, the system 
freezes
• Early access to memory contents invaluable 

in this case.
• We examined the memory in the phase 

where A9 boots and copies the rest of the 
bootup code into memory so the M3 can 
read it.

• Only part of the bootup code made it.
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Possible Causes of the Problem

• Problem in synchronization of accesses to 
the RAM being used by the A9 and M3.

• A problem with the multi-processor 
communication hardware block.

• A problem with the interrupt configuration.
• Without TLM Memory debug, you would 

have to instrument the memory to dump its 
values and change the model.
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An ARM General Interrupt 
Controller programming error.
• We used values in the address registers to identify 

the location of the bootup code in RAM.
• Even with this, we had to go down several fruitless 

paths.
• By tracing interrupt signals, we found a missing 

signal which led to discovery of an error in GIC 
(Generic Interrupt Controller) programming.

• INTS[0] corresponds to GIC Interrupt ID 32, but 
the software wrote to a different bit in the register.
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Redirecting Android kernel 
messages to memory.
• Possible using TLM Memory Debug.
• Very early in the Android boot before the TTY is 

initialized, “printk” messages sit in the ring buffer 
in memory.

• Ring buffer is a static array:

static char __log_buf[__LOG_BUF_LEN]; 
static char *log_buf = __log_buf;
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Conclusion

• Debugging a SystemC-based VP can be a 
difficult challenge involving problems caused 
by the hardware models, the low-level 
software, the application software, or all 
three.

• TLM standard provides a powerful 
methodology for creating, via the 
transport_dbg interface, TLM-based debug 
tools such as Memory Debug.
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