
Melting Verification Pot: Integrating RVM/VMM and

UVM, a Practical Guide and Lessons Learned.

Mark A. Azadpour azadpour@yahoo.com

Abstract— In this paper, we share our experience with migration

of a RVM testbench to SystemVerilog with a mixture of UVM

and VMM methodologies. Various practical approaches and

novel usage of UVM capabilities are presented as well as

initialization and phasing in such a mixed environment. The

purpose of this paper is to share our experience integrating

various VIP’s that use different languages and methodologies in a

unified environment. This paper shares our experiences with a

complex System-on-Chip (SoC) ASIC verification process which

integrates a number of externally and internally generated VIP’s

using UVM methodology with VCS. We detail our conversion

experience of an SoC level test bench and environment and

provide guidelines on what needs to be considered and how the

migration should be planned to achieve a successful VMM to

UVM conversion of top level environment as well as all the tests.

Our goal was to achieve the conversion at the least amount of

time to minimize schedule impact. These could be used by the

user community to plan the migration to UVM.

Keywords-Verification, UVM, VMM,RVM, SoC Verification.

I. INTRODUCTION

This paper details our experience of converting a
Vera/RVM based testbench into a SystemVerilog/UVM based
top level testbench with VMM sub-environments as well as
Vera based sub components that were inherited from our
legacy testbench. The conversion effort utilizes the Synopsys
interoperability library for UVM1.0 release and we used
VCS2011.03-SP1-2 as the simulation engine.

A novel concept used from UVM 1.0, namely the Universal
database (UDB), was utilized to register components and
provide a mechanism to provide a new facility to synchronize
various components in the three methodologies of RVM,
VMM and UVM. The goal of this project was to demonstrate
the ability to convert testbenches in layers from Vera to
SystemVerilog in general and utilize UVM in particular. The
ultimate goal is to eventually convert all IP VIP’s as well as
SoC level VIP to the UVM methodology.

In this project, we proved that the full conversion can be
accomplished in layers and not the whole testbench needs to be
converted to UVM in one step. This provides us with a
migration path which gives our organization the flexibility to
perform the conversion as resource and schedule permits
without a need to jeopardize either constraint for the sake of
accomplishing the conversion,

II. THE TESTBENCH

A. General Structure

The verification environment was that of a Constraint
Randomized Testbench (CRT) that is used to verify controller
chips for a storage application. The ASIC was used in an
embedded environment and required substantial amount of
firmware in terms of programming CSR to allow the inter-
operation of various blocks as well as . This CSR programming
and interrupt handling was one of the reasons we needed to re-
use portions of testbench from the IP testbenches, Verification
IP (VIP’s), and required further constraint definition at the
SoC level to allow various components to work with each
other. In general, the VIP’s are meant to stress the IP and cover
a lot more functionality than is feasible both in terms of time
and resources. Therefore, the goal of VIP reuse is to use the IP
testbench with minimal structural modification and use the
constraint setting to custom tailor the behavior of the VIP at the
SoC level.

The Device Under Test (DUT) consists of a number of
internal and external Intellectual Property (IP) that was
developed in both VHDL and Verilog. The supporting VIP’s
were developed in both Vera and SystemVerilog languages as
well. The challenge of creating SoC testbench was further
complicated by the fact that various methodologies were
utilized to develop VIP for various IP testbenches including
RVM, VMM1.0, VMM1.1, VMM1.2 and UVM. Since our
goal was to reuse as much as of the VIP’s as possible, we had
to accommodate all the above methodologies in our testbench
as the IP deliveries were on a tight schedule and we could not
afford to re-engineer any of the VIP’s into a new methodology.

B. Various methodologies (UVM vs. VMM)

The fundamental issue we had to deal with when migrating
from VMM top level to UVM was the object hierarchy in
UVM versus VMM. In this discussion, VMM included all
various versions as well as RVM as we had already developed
testbenches with VMM as the top level. The environment
object is the top level object in VMM where as test entities are
the top level objects in UVM. Furthermore, in the RVM and
VMM code that was supplied by various IP teams, the function
“new” was used to instantiate children objects and the formal
arguments to the new function was used to pass higher level
object handles such as environment objects and firmware
pointers to the various objects as opposed to breaking the
instantiation and connection of various objects in various
phases as advocated by the UVM methodology.

Other parts of the testbench utilized VMM1.2 which uses
implicit phasing and the construction and connection of sub-

components are delegated to various phases. These portions of
the VMM1.2 testbench were used verbatim as the
interoperability library automatically took care of interaction
between VMM and UVM as detailed in the following sections.

C. Internal vs. External developed Intellectual Property.

In our testbench, we integrated a number of internally
developed VIP’s that are fairly coherent and follow the same
methodology for the most part as well as externally developed
testbenches and models that we have less control over and have
to make wrappers around various parts of the testbench to
integrate them in the SoC testbench.

III. MIGRATION PATH TO UVM

Before starting the migration process, we needed to decide
what methodology should be used as the top level. This is the
fundamental step needed in order to be able to utilize
interoperability library which allows VMM and UVM to
interact seamlessly for the most part as detailed next.

A. Synopsys Interoperability Library

The Synopsys interoperability library provides two
scenarios which the user must decide upfront before starting to
integrate a mixed environment of UVM and VMM verification
components.

In one scenario, the top level of the test bench is written in
UVM, UVM 1.1 in our case, with subordinate components
implemented in VMM methodology.

In the other scenario, the top level of the testbench is
implemented in VMM and the sub-groups are in UVM. This
designation is communicated to the interoperability library via
compile time switches and it determines the general flow of the
overall SoC testbench.

We wanted to evaluate the capabilities of interoperability
library as well as how much work was involved in terms of
glue code for each of the above scenarios. First, we set out to
test a top level VMM1.2 testbench with UVM1.1 sub-
envrironment to demonstrate the interoperability. We were able
to verify functionality in that configuration and compare to the
other scenario, it seemed for the test case, it required less
coding on the part of the user of the interoperability library for
our configuration.

Since our long term goal is to migrate to UVM exclusively,
we decided to choose a UVM top level to set the stage for
future migration of new components to UVM.

There are a number of benefits provided by the
interoperability library. One major facility is the seamless
messaging interoperability between VMM and UVM. For our
case, with UVM top level, all the `vmm_notes macros were
automatically taken care of to behave as if they were `uvm_info
and the messaging hierarchy was managed by the library and it
was seamless to us. This feature saved us a lot of manual labor
or scripting effort to manage this on our own.

The other area of interest to us was the implicit phasing and
once we created a general mapping between the two
methodologies as depicted in figures 2a, and 2b, the phasing
methods were called in the appropriate methodology
seamlessly. That saved us a lot of work during the creation of
the SoC testbench.

The following packages and include files were added at the
top-level module:

import uvm_pkg::*;

import vmm_std_lib::*;

import uvi_interop_pkg::*;

 `include "vmm_ral.sv"

The above packages are followed by the OpenVera packages.
The order is important as the interoperability package modifies
some of the macros in the open Vera package

import OpenVera::*;

import OpenVera::register ;

In the NTB mode, all the Vera code gets put in a package of

SystemVerilog. That gets imported by import Open Vera::*.

In our testbench, we had both the VMM Register Access
Language (RAL) and the UVM implementation residing in
parallel in one environment. In order to accomplish this, we
divided the memory map so that the new blocks were done in
UVM register space and the legacy code used the VMM RAL
from the previous projects. Since they are both object oriented
implementations, we were able to call the VMM RAL from
UVM sequences with no problems.

The following compilation options were included in our VCS
compile options to pull in appropriate libraries and to make the
interoperability work properly. In addition, the NTB options
were required for the Vera and SystemVerilog mixed
environment.

${lib_loc}/uvm_dpi.cc

CFLAGS -DVCS

-sverilog

-cpp g++

-debug_all

-cc gcc

+acc

-sverilog

-debug_all

+acc

+vpi

+define+VMM_UVM_INTEROP

+define+VMM_ON_TOP

+incdir+/home/mazadpou/interop/packages/uvm_vmm_intero

p/src

+define+END_NTB_OPTS__VCS

+define+START_TB__SV

+incdir+$RPATH.$L

Figure1- List of switches needed to compile with the
interoperability and UVM library.

With the last +incdir+ providing a mechanism to include files
that are customized per compilation to provide flexibility. This
allows us to customize each build for various targets and
testbenches.

Compilation of UVM/VMM mixture is hard to debug as the
error messages were not as descriptive as we would like them
to be. Therefore, it is wise to create two separate standalone
environment and do most of the work separately and bring the
files in two methodologies together at the end to save a lot of
debugging headaches as teams become savvy with the compiler
error messages and what they really mean

Following are a few of examples of error messages with the
cause of the error:

Error-[SV-ICA] Illegal class assignment

 Expression 'obj' on rhs is not a class or a compatible class and
hence cannot be assigned to a class handle on lhs.
 Error-[SV-ICA] Illegal class assignment.

The above error message is due to mixing uvm_test and
vmm_test instances in the same testbench. with UVM_TOP
defined as a compilation switch, the interoperability expects
uvm_test objects in the top level and not the vmm_test type
objects.

Here is another example of failure due to the library
compilation that may not be very obvious at the first glance:

undefined reference to `uvm_hdl_read'

collect2: ld returned 1 exit status

make: *** [product_timestamp] Error 1

Make exited with status 2

This is due to dpi.cc not being compiled in the compile options.

Next we will look at some of the RVM and VMM inclusion
points in our mixed testbench.

B. RVM and VMM

NTB mode of VCS allows RVM objects to be called from
VMM objects by importing NTB libraries. In this mode of
operation, a VMM class can be extended from a RVM class
and overloading of member functions is allowed. In this
manner, we were able to instantiate RVM objects in VMM or
UVM objects and extend functionality.

However, once the transition is made to RVM components,
the RVM objects may not call VMM or UVM based objects.
As a result, care must be taken that no transaction goes back

and forth and all the intermediate objects are implemented in
SystemVerilog (UVM or VMM). A sample code is shown in
Figure 3 detailing how an RVM method is called from a VMM
class.

The actual UVM code that is part of the test that was run is
shown in figure 4 where the function call is implemented to the
UVM sequence _item. In this case, a write takes place.

Figure 5 is the UVM intermediary function that is called.
This function in turn calls the VMM function. It should be
noted that this function is extended from the OpenVera
implementation of the micro class and the transfer occurs at
this level to the Vera implementation which is depicted in
Figure 6.

Figure 2-a Phasing between VMM and UVM.

The VMM phases refer to the UVM phases the passing of

execution order is designated with a UVM number in a box.

The receiving end of those boxes are shown in Fig 1-b

UVM1

111

UVM2

111

UVM6

111

UVM7

111

UVM8

111

UVM5

111

UVM4

111

UVM3

 111

Gen_Cfg

Build

VMM:

Rst_Dut

Cfg_Dut

Start

Wait_for_end

Stop

Report

Figure 3- Flow of RVM method call from a VMM object

Figure4 – The UVM code that is calling UVM sequence item

the in the main phase.

Figure 2-b Phasing between VMM and UVM.

The UVM phases refer to the phases that the execution order

is passed to. The UVM boxes with numbers in a box are the

entry points to the phase with arrow leaving the box and the

opposite is when the execution order is passed back to the

VMM side.. The receiving end of those boxes are shown in

Figure 2a.

Pre_/shutdown/post_

UVM

UVM1

111

UVM2

111

UVM3

 111 UVM4

111

UVM5

111

UVM6

111

UVM7

111

UVM8

111

Build

End_of_elab.

Connect

Pre_reset/reset/post

Pre_conf./config/post

Start_of_simulation

Pre_main

Main/post_main

Extract/check/report

Build

Connect

Extended class

Calls base

method.

 VMM base

class “has a”

RVM object

(NTB)

 RVM Method

Is called

Vera

VMM

`ifndef FOO_TEST

`define FOO_TEST

import uvm_pkg::*;

import OpenVera::*;

`include "sregs.vri"

`include "regs.vri"

typedef class env;

class foo_test extends base_class;

 `uvm_component_utils(test_class_name);

function new(string name = "foo_test",

uvm_component parent = null);

 super.new(name, parent);

 `uvm_info(get_name(), $psprintf("Newing class

%s.\n",name), UVM_NONE);

 endfunction

 env mEnv;

virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 this.mEnv = super.mEnv;

 tb_env=mEnv;

 endfunction // build_ph

virtual function void

start_of_simulation_phase(uvm_phase phase);

 super.start_of_simulation_phase(phase);

……

Endfunction

virtual task main_phase(uvm_phase phase);

 register foo_reg;

 integer status;

 super.main_phase(phase);

 phase.raise_objection(this);

 mEnv.micro.write(rst_reg, 32'h1212,, 1);

endfunction

UVM

The transactor in Figure 6, calls the appropriate transactors

that are actually run the BFM to implement the detailed
transaction and return the results back.

Figure6 – The underlying VMM implementation that is called

through the wrapper UVM extended class.

import AXI_MODEL::*;

class Ccmd extends uvm_sequence_item;

 process process_id;

 integer transID;

 SCmd cmd=new;

endclass

class Micro extends OpenVera::micro;

 SAxi_cmd responses[$];

extern virtual task automatic write(register _reg,

 logic [31:0] value,

 integer enable=-1,

 integer stall=0,

 axi_cmd::priority_t

_priority=axi_cmd::priority_high,

 bit status=1);

 extern virtual task automatic read_task(register

_reg,

 axi_cmd::priority_t

_priority=axi_cmd::priority_high,

 bit status=1,

 ref integer read_data);

…

endclass

#include <rvm_std_lib.vrh>

#include "features.h"

class micro extends rvm_xactor {

 axi_cmd_channel out_chan;

 axi_cmd_channel in_chan;

 virtual task write(register _reg, bit [31:0] value,

integer enable=-1, integer stall=0,

axi_cmd::priority_t priority=axi_cmd::priority_high,

bit status=1) {

….

}

 virtual task read_task(register _reg,

 axi_cmd::priority_t

priority=axi_cmd::priority_high,

 bit status=1,

 var integer read_data)

 {

 axi_cmd cmd;

…

}

virtual task main_t() {

 axi_cmd cmd;

 super.main_t();

 fork

 monitor_results();

 join none

 while (1) {

 wait_if_stopped_or_empty_t(in_chan);

 cmd=in_chan.peek_t();

 if (cmd.stream_id!=this.stream_id) {

 cmd=in_chan.get_t();

 rvm_debug(log,psprintf("found

id(stream=%3d)!=ourid(stream=%3d), removed...",

 cmd.stream_id,this.stream_id));

 } else {

 void=in_chan.notify.wait_for_t(in_chan.GOT);

 }

 }

 }

}

Figure 5- Extension from the OpenVera to a UVM

C. Using UDB as a method to keep track of instantiations in

VMM.

Due to the mixture of languages and methodologies used in

our bench, we needed a way to keep track of various

components to be constructed and to ensure that a component

is constructed prior to being used. In the VMM code, that was

originally ported from RVM, the construction of sub-

components as well as connection among those components

were done in the “new()” method; therefore, we had to ensure

that the consumer of those component had a handle that was

pointing to the actual object prior to consumption.

In order to remove the order dependency among VMM and

UVM code, we utilized a registry mechanism that allowed us

to produce objects and register them to signal the existence of

the component to all consumers. And then at the consumer

end, we checked for the existence of the object before

consuming the information.

Universal Database (UDB) is a static Singleton which is a

perfect candidate for this operation. The static nature of this

object is perfect and made it available from the start of

simulation to both UVM and VMM as well as RVM objects

by the nature of inheritance that is available in the NTB.

Therefore, the consumer method would check with the registry

to ensure that an object of interest is registered with UDB. If it

is not, it would instantiate it and then goes through setting

constraints and finally doing randomization to ensure proper

constraints were applied.

As an example in the code snippet shown in Figure 7, in the

start simulation phase of the environment, if the configuration

object of a block called clkreset is not instantiated, then the

simulation is halted. This ensures that we never encounter

NULL pointers and that someone else would take care of

instantiation as well as registration of this object with the

config_db. This decouples the dependencies between VMM

and UVM and in fact, we create this object in the VMM side

and then register it with the config_db which is a UVM entity.

A side-effect to watch out for that was experienced was that in

one of the phase implementations, we had forgotten to call the

super function. In that phase, since super.xxxx is not called,

the reference to the config_db is not set and one must call

uvm_config_db.get() to set the reference manually. This is a

pitfall in the set and get routines to retrieve things from the

UDB database that might be hard to pin-point as the error

messages are not descriptive.

Figure7- A code snippet showing how the config_db can be

used as a mechanism to ensire objects are created and

registered prior to using them.

UVM Components

There were a number of UVM components and
environment that were instantiated in the testbench. The major
components included a set of base-testcase classes that all the
testcases were inherited from. This allowed for information
hiding and extending those base classes that housed the
common code among a set of tests is supported of coping
common code.

The top environment classes as well as top firmware classes
were implemented a UVM component to ease interaction as
well as one of the register programming blocks.

TLM1.0 facilities provided by UVM were used in the
testbench. The TLM export and import ports as well as TLM
FIFO’s were used in such manner that allowed for another
method of data production and consumption between VMM1.2
and UVM1.1 entities and provided for seamless integration. A
code snippet in Figure 9 represents the uvm_tlm_fifo and the
put and get port s that were used to throttle the information
being sent to the virtual sequencer.

function void

env::start_of_simulation_phase(uvm_phase phase);

 super.start_of_simulation_phase(phase);

 `uvm_info("TRACE", $sformatf("%m"),

UVM_HIGH);

 uvm_report_cb::add(null,mUEC);

 // bind the configurations

 if (!(uvm_config_db

#(clkrst_cfg)::get(uvm_top,"","CLKRST_CFG",firm.m

ClkRstFw.mCfg)))

 `uvm_fatal("DUT_ENV","failed to get the

ClkRst_cfg handle\n");

uvm_config_db

#(uvm_object_wrapper)::set(mCtrlAxiMaster,

 "sequencer.main_phase",

 "default_sequence",

AXI_MODEL::AxiCmdSequence::get_type());

 uvm_config_db

#(uvm_object_wrapper)::set(mSrvoAxiMaster,

 "sequencer.main_phase",

 "default_sequence",

AXI_MODEL::AxiCmdSequence::get_type());

……

endfunction

Figure 8- Code snippet showing the creation and registration

of the entity with the config_db.

Figure9- Code snippet showing the extension of an OpenVera

class in a UVM sequence-item.

class clkrst_agent extends uvm_agent;

 `uvm_component_utils(clkrst_agent)

 typedef uvm_sequencer#()

clkrst_firmware_sequencer;

 clkrst_firmware_sequencer clkrst_seqr;

 virtual function void build_phase(uvm_phase

phase);

 super.build_phase(phase);

 clkrst_seqr =

clkrst_firmware_sequencer::type_id::create("clkrst_s

eqr", this);

 // set the execution phase of the sequence to

config_phase since that is when firmware is invoked.

 uvm_config_db #(clkrst_cfg)::set(uvm_top,

"clkrst_seqr.config_phase", "default_sequence",

clkrst_firmware::get_type());

 endfunction

endclass

Class cThrottle extends OpenVera::micro;

 S_cmd responses[$];

static integer transID=0;

 AxiMasterAgent mAxiAgent;

 uvm_tlm_fifo #(SAxi_cmd) micro_cmd_queue;

 uvm_put_port #(SAxi_cmd,SAxi_cmd) p;

 uvm_get_port #(SAxi_cmd,SAxi_cmd) g;

 logic process_cmd_queue_flag =0;

 event read_complete;

 function new(string instance="Micro", integer stream_id=-

1, AxiMasterAgent axi_agent);

 super.new(instance, stream_id);

 mAxiAgent = axi_agent;

micro_cmd_queue=new($sformatf("%s.micro_cmd_queue",

instance),uvm_top,0);

 p = new($sformatf("%s.p",instance), null);

 g = new($sformatf("%s.g",instance), null);

 p.connect(micro_cmd_queue.put_export);

 g.connect(micro_cmd_queue.get_export);

 endfunction

 task automatic ::check(register _reg,

 integer value,

 integer enable=-1,

 integer stall=0,

 axi_cmd::priority_t

_priority=axi_cmd::priority_high);

 SAxi_cmd Scmd;

 int num_of_entry;

 AxiCmdSequence seq;

continued on the next page …

I. CONCLUSION

This paper demonstrated that migration to UVM can be

accomplished in stages to ease the transition pain. In addition,

the legacy code could be used while the new code is

developed or ported to the new methodology in a multi-tier IP

development and SoC organization. This migration allows for

organizations to port various portions of the testbench as time

and resources are available rather than waiting for a one-shot

conversion that inherently will incur downtime as well as

recovery time and the learning curve involved for testbench

users after the conversion. In addition, this layered approach

allows organizations to introduce a new methodology

gradually and independent from the IP deliveries to allow a

smooth transition. In our case, we had legacy Vera code and

we used Synopsys’s NTB and interoperability library to allow

the transition from the top level with possibility of moving

various sub-environments at a later date.

In this paper we detailed the migration of a RVM/VMM to a

top level UVM compliant testbench with lower levels to be

converted at a later time. Various practical and novel usage of

UVM capabilities were presented to coordinate the

initialization and phasing in various methodologies.

Integrating various VIP’s that use different languages and

methodologies in a unified environment was the goal of this

project and we were successful in achieving this goal.. We

shared our conversion experience of an SoC level test bench

and environment with the goal of providing guidelines on

what needs to be considered and how the migration should be

planned to achieve a successful VMM to UVM conversion of

top level environment as well as all the tests. Our conversion

goal was to achieve the fastest conversion time with maximum

depth of conversion with minimum schedule impact.

Hopefully, our experience could be used by the user

community to plan their migration to UVM.

REFERENCES

[1] Chris Spear, SystemVerilog for Verification,, 2nd edition Springer

[2] Training Department at Synopsys, SystemVerilog UVM 1.0 Workshop,
Student Guide, 2011.03.

[3] Wlillamette HDL staff, Introduction to the Unviersal Verification
Methodlogy, part number 071988

[4] Doulos, UVM Golden Reference Guide, Doulos, May 2011.

[5] VCS 2011.03 reference manual, Synopsys Corporation..

[6] UVM/OVM Methodology Cookbook. Mentor Graphics
uvm.mentor.com or http://verificationacademy.com/uvm-ovm.

[7] UVM refernce guide at http://www.accellera.org

Contin….

 forever begin

 this.g.get(Scmd);

 num_of_entry = micro_cmd_queue.used();

 `uvm_info("TRACE", $sformatf("%m : fifo depth %d

\n",num_of_entry),UVM_NONE);

 seq = new;

 if ((Scmd.process_id.status !== process::KILLED)||

(Scmd.process_id.status !== process::FINISHED)) begin

 seq.axi_cmd = Scmd.cmd;

// $display(" process start\n");

 seq.start(mAxiAgent.mSeqr);

// $display("Process ended\n");

 if (Scmd.cmd.mKind == AxiCmd::READ)

begin

 responses.push_back(Scmd);

 -> read_complete;

 #1;

 end

 end else begin

 `uvm_info("TRACE", $sformatf("%m ,a

killed process's command was removed from queue "),

UVM_NONE);

 end

 end

endtask

task Trottle::pull_data;

 int process_index[$], process_id;

 Scmd.cmd = cmd;

 Scmd.process_id = process::self();

 p.put(Scmd);

 `uvm_info("TRACE", $sformatf("%m : fifo depth %d

\n",micro_cmd_queue.used()),UVM_NONE);

 do begin

 @read_complete;

 process_index = responses.find_index(x) with (

x.transID == Scmd.transID); //responses.first_index()

with i: (responses[i].process_id == Scmd.process_id);

 if (process_index.size() > 0) begin

 process_id = process_index.pop_front();

 if (process_id >= 0) begin

 read_data = responses[process_id].cmd.mData[0]

>> (responses[process_id].cmd.mAddr[1:0] * 8);

 responses.delete(process_id);

 end

 end

 end

 while (responses.size() > 0);

 end else begin

 super.read_task(_reg, _priority, status, read_data);

 end

endtask

