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Abstract— In this paper, we share our experience with migration 

of a RVM testbench to SystemVerilog with a mixture of UVM 

and VMM methodologies. Various practical approaches and 

novel usage of UVM capabilities are presented as well as 

initialization and phasing in such a mixed environment. The 

purpose of this paper is to share our experience integrating 

various VIP’s that use different languages and methodologies in a 

unified environment. This paper shares our experiences with a 

complex System-on-Chip (SoC) ASIC verification process which 

integrates a number of externally and internally generated VIP’s 

using UVM methodology with VCS. We detail our conversion 

experience of an SoC level test bench and environment and 

provide guidelines on what needs to be considered and how the 

migration should be planned to achieve a successful VMM to 

UVM conversion of top level environment as well as all the tests. 

Our goal was to achieve the conversion at the least amount of 

time to minimize schedule impact. These could be used by the 

user community to plan the migration to UVM. 

Keywords-Verification, UVM, VMM,RVM, SoC Verification. 

I.  INTRODUCTION 

This paper details our experience of converting a 
Vera/RVM based testbench into a SystemVerilog/UVM based  
top level testbench with VMM sub-environments as well as 
Vera based sub components that were inherited from our 
legacy testbench. The conversion effort utilizes the Synopsys 
interoperability library for UVM1.0 release and we used 
VCS2011.03-SP1-2 as the simulation engine.  

A novel concept used from UVM 1.0, namely the Universal 
database (UDB), was utilized to register components and 
provide a mechanism to provide a new facility to synchronize 
various components in the three methodologies of RVM, 
VMM and UVM. The goal of this project was to demonstrate 
the ability to convert testbenches in layers from Vera to 
SystemVerilog in general and utilize UVM in particular. The 
ultimate goal is to eventually convert all IP VIP’s as well as 
SoC level VIP to the UVM methodology. 

In this project, we proved that the full conversion can be 
accomplished in layers and not the whole testbench needs to be 
converted to UVM in one step. This provides us with a 
migration path which gives our organization the flexibility to 
perform the conversion as resource and schedule permits 
without a need to jeopardize either constraint for the sake of 
accomplishing the conversion, 

II. THE TESTBENCH 

 

A. General Structure 

The verification environment was that of a Constraint 
Randomized Testbench (CRT) that is used to verify controller 
chips for a storage application. The ASIC was used in an 
embedded environment and required substantial amount of 
firmware in terms of programming CSR to allow the inter-
operation of various blocks as well as . This CSR programming 
and interrupt handling was one of the reasons we needed to re-
use portions of testbench from the IP testbenches, Verification 
IP (VIP’s),  and required further constraint definition at the  
SoC level to allow various components to work with each 
other. In general, the VIP’s are meant to stress the IP and cover 
a lot more functionality than is feasible both in terms of time 
and resources. Therefore, the goal of VIP reuse is to use the IP 
testbench with minimal structural modification and use the 
constraint setting to custom tailor the behavior of the VIP at the 
SoC level. 

The Device Under Test (DUT) consists of a number of 
internal and external Intellectual Property (IP) that was 
developed in both VHDL and Verilog. The supporting VIP’s 
were developed in both Vera and SystemVerilog languages as 
well. The challenge of creating SoC testbench was further 
complicated by the fact that various methodologies were 
utilized to develop VIP for various IP testbenches including 
RVM, VMM1.0, VMM1.1, VMM1.2 and UVM. Since our 
goal was to reuse as much as of the VIP’s as possible, we had 
to accommodate all the above methodologies in our testbench 
as the IP deliveries were on a tight schedule and we could not 
afford to re-engineer any of the VIP’s into a new methodology. 

 

B. Various methodologies (UVM vs. VMM) 

The fundamental issue we had to deal with when migrating 
from VMM top level to UVM was the object hierarchy in 
UVM versus VMM. In this discussion, VMM included all 
various versions as well as RVM as we had already developed 
testbenches with VMM as the top level. The environment 
object is the top level object in VMM where as test entities are 
the top level objects in UVM. Furthermore, in the RVM and 
VMM code that was supplied by various IP teams, the function 
“new” was used to instantiate children objects and the formal 
arguments to the new function was used to pass higher level 
object handles such as environment objects and firmware 
pointers to the various objects as opposed to breaking the 
instantiation and connection of various objects in various 
phases as advocated by the UVM methodology. 

Other parts of the testbench utilized VMM1.2 which uses 
implicit phasing and the construction and connection of sub-



 

components are delegated to various phases. These portions of 
the VMM1.2 testbench were used verbatim as the 
interoperability library automatically took care of interaction 
between VMM and UVM as detailed in the following sections. 

 

C. Internal vs. External developed Intellectual Property. 

In our testbench, we integrated a number of internally 
developed VIP’s that are fairly coherent and follow the same 
methodology for the most part as well as externally developed 
testbenches and models that we have less control over and have 
to make wrappers around various parts of the testbench to 
integrate them in the SoC testbench. 

 

III. MIGRATION PATH TO UVM 

Before starting the migration process, we needed to decide 
what methodology should be used as the top level. This is the 
fundamental step needed in order to be able to utilize 
interoperability library which allows VMM and UVM to 
interact seamlessly for the most part as detailed next. 

A. Synopsys Interoperability Library 

The Synopsys interoperability library provides two 
scenarios which the user must decide upfront before starting to 
integrate a mixed environment of UVM and VMM verification 
components. 

In one scenario, the top level of the test bench is written in 
UVM, UVM 1.1 in our case, with subordinate components 
implemented in VMM methodology.  

In the other scenario, the top level of the testbench is 
implemented in VMM and the sub-groups are in UVM. This 
designation is communicated to the interoperability library via 
compile time switches and it determines the general flow of the 
overall SoC testbench.  

We wanted to evaluate the capabilities of interoperability 
library as well as how much work was involved in terms of 
glue code for each of the above scenarios. First, we  set out to 
test a top level VMM1.2 testbench with UVM1.1 sub-
envrironment to demonstrate the interoperability. We were able 
to verify functionality in that configuration and compare to the 
other scenario, it seemed for the test case, it required less 
coding on the part of the user of the interoperability library for 
our configuration. 

Since our long term goal is to migrate to UVM exclusively, 
we decided to choose a UVM top level to set the stage for 
future migration of new components to UVM. 

There are a number of benefits provided by the 
interoperability library. One major facility is the seamless 
messaging interoperability between VMM and UVM. For our 
case, with UVM top level, all the `vmm_notes macros were 
automatically taken care of to behave as if they were `uvm_info 
and the messaging hierarchy was managed by the library and it 
was seamless to us. This feature saved us a lot of manual labor 
or scripting effort to manage this on our own. 

The other area of interest to us was the implicit phasing and 
once we created a general mapping between the two 
methodologies as depicted in figures 2a, and 2b, the phasing 
methods were called in the appropriate methodology 
seamlessly. That saved us a lot of work during the creation of 
the SoC testbench. 

The following packages and include files were added at the 
top-level module: 

import uvm_pkg::*; 

import vmm_std_lib::*; 

import uvi_interop_pkg::*; 

  `include "vmm_ral.sv"  

 
The above packages are followed by the OpenVera packages. 
The order is important as the interoperability package modifies 
some of the macros in the open Vera package 

import OpenVera::*; 

import OpenVera::register ; 

In the NTB mode, all the Vera code gets put in a package of 

SystemVerilog. That gets imported by import Open Vera::*. 

 
In our testbench, we had both the VMM Register Access 
Language (RAL) and the UVM implementation residing in 
parallel in one environment. In order to accomplish this, we 
divided the memory map so that the new blocks were done in 
UVM register space and the legacy code used the VMM RAL 
from the previous projects. Since they are both object oriented 
implementations, we were able to call the VMM RAL from 
UVM sequences with no problems. 

The following compilation options were included in our VCS 
compile options to pull in appropriate libraries and to make the 
interoperability work properly. In addition, the NTB options 
were  required for the Vera and SystemVerilog mixed 
environment. 

 

${lib_loc}/uvm_dpi.cc   

CFLAGS  -DVCS 

-sverilog 

-cpp g++ 

-debug_all 

-cc gcc 

+acc 

-sverilog 

-debug_all  

+acc 

+vpi 

+define+VMM_UVM_INTEROP 

+define+VMM_ON_TOP 

+incdir+/home/mazadpou/interop/packages/uvm_vmm_intero

p/src 

+define+END_NTB_OPTS__VCS  

+define+START_TB__SV  

+incdir+$RPATH.$L 
 

 



 

 

Figure1- List of switches needed to compile with the 
interoperability and UVM library. 

 

With the last +incdir+ providing a mechanism to include files 
that are customized per compilation to provide flexibility. This 
allows us to customize each build for various targets and 
testbenches. 

Compilation of UVM/VMM mixture is hard to debug as the 
error messages were not as descriptive as we would like them 
to be.  Therefore, it is wise to create two separate standalone 
environment and do most of the work separately and bring the 
files in two methodologies together at the end to save a lot of 
debugging headaches as teams become savvy with the compiler 
error messages and what they really mean 

Following are a few of examples of error messages with the 
cause of the error: 

 

Error-[SV-ICA] Illegal class assignment 

  Expression 'obj' on rhs is not a class or a compatible class and 
hence cannot be assigned to a class handle on lhs. 
 Error-[SV-ICA] Illegal class assignment. 

 

 

The above error message is due to mixing uvm_test and 
vmm_test instances in the same testbench. with UVM_TOP 
defined as a compilation switch, the interoperability expects 
uvm_test objects in the top level and not the vmm_test type 
objects. 

Here is another example of failure due to the library 
compilation that may not be very obvious at the first glance: 

 

undefined reference to `uvm_hdl_read' 

collect2: ld returned 1 exit status 

make: *** [product_timestamp] Error 1 

Make exited with status 2  

 
This is due to dpi.cc not being compiled in the compile options. 

Next we will look at some of the RVM and VMM inclusion 
points in our mixed testbench. 

B. RVM and VMM 

NTB mode of VCS allows RVM objects to be called from 
VMM objects by importing NTB libraries. In this mode of 
operation, a VMM class can be extended from a RVM class 
and overloading of member functions is allowed. In this 
manner, we were able to instantiate RVM objects in VMM or 
UVM objects and extend functionality. 

However, once the transition is made to RVM components, 
the RVM objects may not call VMM or UVM based objects. 
As a result, care must be taken that no transaction goes back 

and forth and all the intermediate objects are implemented in 
SystemVerilog (UVM or VMM). A sample code is shown in 
Figure 3 detailing how an RVM method is called from a VMM 
class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

The actual UVM code that is part of the test that was run is 
shown in figure 4 where the function call is implemented to the 
UVM sequence _item. In this case, a write takes place.  

Figure 5 is the UVM intermediary function that is called. 
This function in turn calls the VMM function. It should be 
noted that this function is extended from the OpenVera 
implementation of the micro class and the transfer occurs at 
this level to the Vera implementation which is depicted in 
Figure 6.  

 

 

 

Figure 2-a  Phasing between VMM and UVM. 

The VMM phases refer to the UVM phases the passing of 

execution order is designated with a UVM number in a box. 

The receiving end of those boxes are shown in Fig 1-b 

    

 

UVM1 

111 

UVM2 

111 

UVM6 

111 

UVM7 

111 

UVM8 

111 

UVM5 

111 

UVM4 

111 

UVM3

 

 111 

Gen_Cfg 

Build 

VMM: 

Rst_Dut 

Cfg_Dut 

Start 

Wait_for_end 

Stop 

Report 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- Flow of RVM method call from a VMM object 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4 – The UVM code that is calling UVM sequence item 

the in the main phase. 

Figure 2-b  Phasing between VMM and UVM. 

The UVM phases refer to the phases that the execution order 

is passed to. The UVM boxes with numbers in a box are the 

entry points to the phase with arrow leaving the box and the 

opposite is when the execution order is passed back to the 

VMM side.. The receiving end of those boxes are shown in 

Figure 2a.  
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`ifndef FOO_TEST 

`define FOO_TEST 

 

import uvm_pkg::*; 

    

import OpenVera::*; 

`include "sregs.vri" 

`include "regs.vri" 

 

typedef class env; 

 

class foo_test extends base_class; 

   `uvm_component_utils(test_class_name);  

 

function new(string name = "foo_test",                                                                 

uvm_component parent = null);  

       super.new(name, parent);  

       `uvm_info(get_name(), $psprintf("Newing class 

%s.\n",name), UVM_NONE);  

   endfunction  

 

  env mEnv; 

 

virtual function void build_phase(uvm_phase phase); 

     

    super.build_phase(phase); 

    this.mEnv = super.mEnv; 

    tb_env=mEnv;   

 

  endfunction // build_ph 

 

virtual function void 

start_of_simulation_phase(uvm_phase phase); 

    super.start_of_simulation_phase(phase); 

   

…… 

 

Endfunction 

 

virtual task main_phase(uvm_phase phase); 

    register foo_reg; 

    integer status; 

    super.main_phase(phase); 

 

   phase.raise_objection(this); 

 

   mEnv.micro.write(rst_reg, 32'h1212,, 1);        

endfunction 

 

UVM 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The transactor in Figure 6, calls the appropriate transactors 

that are actually run the BFM to implement the detailed 
transaction and return the results back. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6 – The underlying VMM implementation that is called 

through the wrapper UVM extended class. 

 

import AXI_MODEL::*; 

 

class Ccmd extends uvm_sequence_item; 

   process process_id; 

   integer transID; 

   SCmd cmd=new; 

endclass 

 

class Micro extends OpenVera::micro; 

  SAxi_cmd responses[$]; 

 

extern virtual task automatic write( register _reg,  

                             logic [31:0]  value,  

                             integer enable=-1,  

                             integer stall=0, 

                             axi_cmd::priority_t 

_priority=axi_cmd::priority_high,  

                             bit status=1); 

   

  extern virtual task automatic read_task( register 

_reg,  

                                 axi_cmd::priority_t 

_priority=axi_cmd::priority_high,  

                                 bit status=1, 

                                 ref integer read_data); 

… 

 

endclass 

#include <rvm_std_lib.vrh> 

#include "features.h" 

 

class micro extends rvm_xactor { 

 

  axi_cmd_channel out_chan; 

  axi_cmd_channel in_chan; 

 

  virtual task write(register _reg, bit [31:0]  value, 

integer enable=-1, integer stall=0, 

axi_cmd::priority_t priority=axi_cmd::priority_high, 

bit status=1) { 

…. 

} 

 

  virtual task read_task(register _reg, 

                         axi_cmd::priority_t 

priority=axi_cmd::priority_high, 

                         bit status=1, 

                         var integer read_data) 

  { 

 

     axi_cmd cmd; 

… 

} 

 

virtual  task main_t() { 

    axi_cmd cmd; 

    super.main_t(); 

    fork 

       monitor_results(); 

    join none 

     

    while (1) { 

      wait_if_stopped_or_empty_t(in_chan); 

      cmd=in_chan.peek_t(); 

      if (cmd.stream_id!=this.stream_id) { 

        cmd=in_chan.get_t(); 

        rvm_debug(log,psprintf("found 

id(stream=%3d)!=ourid(stream=%3d), removed...", 

                             cmd.stream_id,this.stream_id)); 

      } else { 

        void=in_chan.notify.wait_for_t(in_chan.GOT); 

      } 

    }    

  } 

 

 

 

} 

Figure 5- Extension from the OpenVera to a UVM 



C. Using UDB as a method to keep track of instantiations in 

VMM. 

Due to the mixture of languages and methodologies used in 

our bench, we needed a way to keep track of various 

components to be constructed and to ensure that a component 

is constructed prior to being used. In the VMM code, that was 

originally ported from RVM, the construction of sub-

components as well as connection among those components 

were done in the “new()” method; therefore, we had to ensure 

that the consumer of those component had a handle that was 

pointing to the actual object prior to consumption. 

In order to remove the order dependency among VMM and 

UVM code, we utilized a registry mechanism that allowed us 

to produce objects and register them to signal the existence of 

the component to all consumers. And then at the consumer 

end, we checked for the existence of the object before 

consuming the information. 

Universal Database (UDB) is a static Singleton which is a 

perfect  candidate for this operation.  The static nature of this 

object is perfect and made it available from the start of 

simulation to both UVM and VMM as well as RVM objects 

by the nature of inheritance that is available in the NTB. 

 

Therefore, the consumer method would check with the registry 

to ensure that an object of interest is registered with UDB. If it 

is not, it would instantiate it and then goes through setting 

constraints and finally doing randomization to ensure proper 

constraints were applied.   

As an example in the code snippet shown in Figure 7, in the 

start simulation phase of the environment, if the configuration 

object of a block called clkreset is not instantiated, then the 

simulation is halted. This ensures that we never encounter 

NULL pointers and that someone else would take care of 

instantiation as well as registration of this object with the 

config_db. This decouples the dependencies between VMM 

and UVM and in fact, we create this object in the VMM side 

and then register it with the config_db which is a UVM entity. 

 

 

A side-effect to watch out for that was experienced was that in 

one of the phase implementations, we had forgotten to call the 

super function. In that phase, since super.xxxx is not called, 

the reference to the config_db is not set and one must call 

uvm_config_db.get() to set the reference manually. This is a 

pitfall in the set and get routines to retrieve things from the 

UDB database that might be hard to pin-point as the error 

messages are not descriptive. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7- A code snippet showing how the config_db can be 

used as a mechanism to ensire objects are created and 

registered prior to using them. 

 

UVM Components 

There were a number of UVM components and 
environment that were instantiated in the testbench. The major 
components included a set of base-testcase classes that all the 
testcases were inherited from. This allowed for information 
hiding and extending those base classes that housed the 
common code among a set of  tests is supported of coping 
common code. 

The top environment classes as well as top firmware classes 
were implemented  a UVM component to ease interaction as 
well as one of the register programming blocks. 

TLM1.0 facilities provided by UVM were used in the 
testbench. The TLM export and import ports as well as TLM 
FIFO’s were used in such manner that allowed for another 
method of data production and consumption between VMM1.2 
and UVM1.1 entities and provided for seamless integration.  A 
code snippet in Figure 9 represents the uvm_tlm_fifo and the 
put and get port s that were used to throttle the information 
being sent to the virtual sequencer. 

 

 

function void 

env::start_of_simulation_phase(uvm_phase phase); 

  super.start_of_simulation_phase(phase); 

  `uvm_info("TRACE", $sformatf("%m"), 

UVM_HIGH); 

 

   uvm_report_cb::add(null,mUEC); 

 

   // bind the configurations 

   if ( !(uvm_config_db 

#(clkrst_cfg)::get(uvm_top,"","CLKRST_CFG",firm.m

ClkRstFw.mCfg))) 

     `uvm_fatal("DUT_ENV","failed to get the 

ClkRst_cfg handle\n");    

 

uvm_config_db 

#(uvm_object_wrapper)::set(mCtrlAxiMaster, 

                                           "sequencer.main_phase", 

                                           "default_sequence", 

AXI_MODEL::AxiCmdSequence::get_type()); 

   

  uvm_config_db 

#(uvm_object_wrapper)::set(mSrvoAxiMaster, 

                                           "sequencer.main_phase", 

                                           "default_sequence", 

AXI_MODEL::AxiCmdSequence::get_type());  

…… 

endfunction  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8- Code snippet showing the creation and registration 

of the entity with the config_db.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure9- Code snippet showing the extension of an OpenVera 

class in a UVM  sequence-item. 
 

 

 

 

 

 

 

class clkrst_agent extends uvm_agent; 

  `uvm_component_utils(clkrst_agent)    

  

  typedef uvm_sequencer#() 

clkrst_firmware_sequencer; 

 

   clkrst_firmware_sequencer clkrst_seqr; 

    

      

    virtual function void build_phase(uvm_phase 

phase); 

      super.build_phase(phase); 

 

       clkrst_seqr = 

clkrst_firmware_sequencer::type_id::create("clkrst_s

eqr", this); 

 

      // set the execution phase of the sequence to 

config_phase since that is when firmware is invoked.  

      uvm_config_db #(clkrst_cfg)::set(uvm_top, 

"clkrst_seqr.config_phase", "default_sequence", 

clkrst_firmware::get_type()); 

    endfunction 

endclass 

 

Class cThrottle extends OpenVera::micro; 

  S_cmd responses[$]; 

static   integer transID=0;    

  AxiMasterAgent mAxiAgent; 

   uvm_tlm_fifo #(SAxi_cmd) micro_cmd_queue; 

   uvm_put_port #(SAxi_cmd,SAxi_cmd) p; 

   uvm_get_port #(SAxi_cmd,SAxi_cmd) g; 

   logic process_cmd_queue_flag =0; 

    

   event read_complete; 

    

  function new(string instance="Micro", integer stream_id=-

1, AxiMasterAgent axi_agent); 

    super.new(instance, stream_id); 

    mAxiAgent = axi_agent; 

    

micro_cmd_queue=new($sformatf("%s.micro_cmd_queue",

instance),uvm_top,0); 

    p = new($sformatf("%s.p",instance), null); 

    g = new($sformatf("%s.g",instance), null);     

    p.connect(micro_cmd_queue.put_export); 

    g.connect(micro_cmd_queue.get_export); 

     

  endfunction 

 

  task automatic ::check( register _reg,  

                   integer value,  

                   integer enable=-1,  

                   integer stall=0, 

                   axi_cmd::priority_t 

_priority=axi_cmd::priority_high); 

 

   SAxi_cmd Scmd; 

   int num_of_entry; 

   AxiCmdSequence seq; 

    

continued on the next  page … 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. CONCLUSION 

This paper demonstrated that migration to UVM can be 

accomplished in stages to ease the transition pain. In addition, 

the legacy code could be used while the new code is 

developed or ported to the new methodology in a multi-tier IP 

development and SoC organization. This migration allows for 

organizations to port various portions of the testbench as time 

and resources are available rather than waiting for a one-shot 

conversion that inherently will incur downtime as well as 

recovery time and the learning curve involved for testbench 

users after the conversion. In addition, this layered approach 

allows organizations to introduce a  new methodology 

gradually and  independent from the IP deliveries to allow a 

smooth transition. In our case, we had legacy Vera code and 

we used  Synopsys’s NTB and interoperability library to allow 

the transition from the top level with possibility of moving 

various sub-environments at a later date.  

In this paper we detailed the migration of a RVM/VMM to a 

top level UVM compliant testbench with lower levels to be 

converted at a later time. Various practical and novel usage of 

UVM capabilities were presented to coordinate the 

initialization and phasing in various methodologies. 

Integrating various VIP’s that use different languages and 

methodologies in a unified environment was the goal of this 

project and we were successful in achieving this goal.. We 

shared our conversion experience of an SoC level test bench 

and environment with the goal of providing guidelines on 

what needs to be considered and how the migration should be 

planned to achieve a successful VMM to UVM conversion of 

top level environment as well as all the tests. Our conversion 

goal was to achieve the fastest conversion time with maximum 

depth of conversion with minimum schedule impact. 

Hopefully, our experience could be used by the user 

community to plan their migration to UVM. 
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Contin…. 

  

   forever begin 

      this.g.get(Scmd); 

      num_of_entry = micro_cmd_queue.used(); 

      `uvm_info("TRACE", $sformatf("%m : fifo depth %d 

\n",num_of_entry),UVM_NONE); 

      seq = new; 

      if ((Scmd.process_id.status !== process::KILLED)|| 

(Scmd.process_id.status !== process::FINISHED)) begin 

        seq.axi_cmd = Scmd.cmd; 

//  $display(" process start\n");   

        seq.start(mAxiAgent.mSeqr); 

//  $display("Process ended\n"); 

   

 if (Scmd.cmd.mKind == AxiCmd::READ) 

begin 

   responses.push_back(Scmd); 

   -> read_complete; 

    #1; 

 end    

      end else begin 

     `uvm_info("TRACE", $sformatf("%m ,a 

killed process's command was removed from queue "), 

UVM_NONE);  

       end   

   end    

endtask 

 

task Trottle::pull_data; 

  int   process_index[$], process_id;   

    Scmd.cmd = cmd; 

    Scmd.process_id = process::self(); 

    p.put(Scmd); 

    `uvm_info("TRACE", $sformatf("%m : fifo depth %d 

\n",micro_cmd_queue.used()),UVM_NONE); 

    do begin 

      @read_complete; 

      process_index = responses.find_index(x) with ( 

x.transID == Scmd.transID );  //responses.first_index() 

with i: (responses[i].process_id == Scmd.process_id); 

       

      if (process_index.size() > 0) begin 

        process_id = process_index.pop_front(); 

  

        if ( process_id >= 0) begin 

          read_data = responses[process_id].cmd.mData[0] 

>> (responses[process_id].cmd.mAddr[1:0] * 8); 

   responses.delete(process_id);    

        end 

      end 

    end 

    while ( responses.size() > 0); 

     

  end else begin 

    super.read_task(_reg, _priority, status, read_data); 

  end 

endtask 

 


