
Mark Azadpour

Introduction
 we share our experience with migration of a RVM

testbench to SystemVerilog with a mixture of UVM
and VMM methodologies

 Internally & Externally Developed IP’s and VIP’s
 Did not wanted to impact schedule and did not have

control over the external VIP’s.
 The DUT was recently ported to Verilog with Legacy

mixed VHDL and Verilog.

Verification Env.
 Legacy RVM that was partially ported to VMM.
 Embedded system which required elaborate firmware

programming to set limits via CSR as well as service IRQ
and FIQ request as well as a sequencer that required special
load to operate properly.

 Verification IP (VIP) for various IP’s testbenches included
RVM, VMM1.0, VMM1.1, VMM1.2 and UVM.

 With the goal of reuse, we intended to use as much of the
VIP’s as possible in our SoC environment.

 Our SoC testbench had to be able to instantiate all of the
sub environments.

Choice of Top Level Methodology
 VMM on top with UVM sub-environments.

 As a proof of concept we were able to develop a testcase
with this configuration before diving completely into
either methodology.

 UVM on top with VMM and others as the sub-
components.
 This alternative was selected since our ultimate goal was

to port the whole test bench to UVM.
 In UVM, the top level object is the testcase
 In VMM it is the environment.

Migration Path
 Top Level UVM.
 Use Inter-operability library released for UVM1.0

 Messaging between VMM and UVM
 Phasing : If VMM1.2 was used, the phases were called

automatically.
 For explicit phasing, we wrapped the functionality in the

“run” routine in a phase aware routine which was called
automatically.

 Those subenv. with no phasing in RVM, were extended
to include phases added and called the appropriate
routines.

Migration Path to UVM
 import uvm_pkg::*;
 import vmm_std_lib::*;
 import uvi_interop_pkg::*;
 `include "vmm_ral.sv" .
 Register Access Language (RAL) from both VMM and
UVM were used in parallel with device memory map
divided between the two.
 We were able to call VMM RAL routines from the UVM side

with no problems.

Instantiation Differences
 We used intermingled VMM and UVM code.

 In VMM on new, handles are passed that “connects” the
entity with other Config. And instances. Legacy code
from RVM days.

 In UVM, phases are utilized.
 So the UVM objects did not necessarily know the status

of VMM objects. This caused synchronization issues.
 Solution: use the Universal DB as a registry mechanism so the

UVM side knew about the VMM objects and if necessary
instantiate the entities. This worked beautifully as it separate
the producers and consumers.

UVM Migration Path
 We developed a number of UVM transactors which

utilized RVM BFM’s to drive the data into the DUT.
 These BFM were called via an openVera class that was

extended in the UVM side. Therefore, we could call
the base function that was implemented in Vera
through an openVera wrapper.

UVM Migration Path
 We used TLM ports to pass transactions from UVM to

VMM and back.
 This worked beautifully as both Methodology support

TLM constructs.

Conclusion
 If you cannot afford the time and resources to convert

you testbench to UVM in one-shot, consider migration
in layers that allows you to move to UVM now and
start enjoying the benefits of the methodology for any
newly developed code while supporting the legacy
sub-environments.

 The Synopsys Interoperability library can be used to
ease the transition pain. Although it provides most of
capabilities, there is a large amount of manual
intervention is required so planning a strategy is key to
success.

	Melting Verification Pot: Integrating RVM/VMM and UVM, a Practical Guide and Lessons Learned.
	Introduction
	Verification Env.
	Choice of Top Level Methodology
	Migration Path
	Migration Path to UVM
	Instantiation Differences
	UVM Migration Path
	UVM Migration Path
	Conclusion

