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What is vertical reuse? a@

SYSTEMS INITIATIVE

e Horizontal Reuse
— Reuse VIP across different projects

e \ertical Reuse

— Reuse new VIP, sequences, checkers among module,
subsystem and system testbenches in the same project

e Maximize Vertical Reuse
— Import full module testbenches to subsystem testbench
— Import full subsystem testbeches to system testbench
— Stitch subsystem testcases to create system testcase
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Benefits of vertical reuse a@

SYSTEMS INITIATIVE

o Parallel development of all testbenches

e Plug-n-play architecture to integrate system level testbench
from module and subsystem testbenches seamlessly

e Increase verification efficiency
— No duplication of development effort

— Less testbench code maintenance
e Changes in lower level testbench is propagated up automatically

— Better debug support from lower level testbench
e All lower level testbench the checkers and monitors are available

— Easier to move verification engineers among module,
subsystems and system level testing
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The testbench architecture a@
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e 200+ Million Gates Design
— Partition into 10 subsystems and over 50 modules
— Over 20 subsystem and module testbenches

e Testbench implemented in Specman UVMe
— All VIPs communicate using TLM interface

e The system testbench is integrated in 1 month
— 2-3 days to bring in a new subsystem testbench

— Early initial system level testing while subsystem
testbench is still finalizing features

4 of 12 ‘”
0




e Based on Cadence'’s
System UVC Architecture

e Module UVC

1. No master virtual sequence
or register sequence

2. UVCs are layered using
TLM ports

3. Separate protocol UVCs
from interface UVCs that
drive the RTL signals

e System UVC is created by
putting together multiple
module UVCs
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System UVC Architecture
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System UVC Example
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TLM port router

e TLM port limitations:

1. TLM transport port does not
support one-to-many binding

2. TLM analysis port always
broadcast

3. Port binding is static in the
simulation

e Solution: TLM port router
to support dynamic many-
to-many port binding with
build-in routing table
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SYSTEMS INITIATIVE
/l sample implementation of TLM analysis port router

template unit port_router_u of (<type>) {
in_ports : list of in interface_port of tim_analysis
of <type> is instance;
out_ports : list of out interface_port of tim_analysis
of <type> is instance;
get_channel_id(tr : <type>) : uintis {};
set_channel_id(tr : <type>, cid : uint) is {}
routing_table : list of src_route_table_entry_s;
;
struct dest_route_table_entry_s {
enable : bool,
port_id : uint;
channel_id : uint;
};
struct src_route_table_entry_s {
enable : bool;
port_id  :uint;
channel_id : uint;

destinations : list of dest_route_table_entry_s;

}; . a 914




Control

o Unify data structure to
control TLM port binding in
module UVC

e Enable/disable each
individual UVC, checker,
scoreboard inside the
module UVC

e Preserve all the binding
information of the module
UVC in system UVC
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Common UVC Configuration

SYSTEMS INITIATIVE

/I sample common config control data structure definition
struct config_ctrl_s {
layer_name : layer_t;
enable : bool;
is_active :uvm_active_passive_t;
bind_enable : bool;
I3
struct port_config_ctrl_s {
port_name  :port_t;
layer_config : list of config_ctrl_s;
;
extend uvm_env {
config_ctrl_table : list of port_config_ctrl_s;
get_uvc_enable(port:port_t, layer:layer_t) : bool is {};
get_uvc_is_active(port:port_t, layer:layer_t)
: uvm_active_passive_t is {};
get_uvc_bind_enable(port:port_t, layer:layer_t)

: uvm_active_passive_t is {};
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Seqguence

Testflow phases running in the
master vittual sequence only

Testflow phases running in serial

Tegflowphaszes running in parallel
with synchroni zation

synchronize the behavior

Tegflow phaszes running in parallel
with fire and forget

e Testflow to co-ordinate and

of imported module UVCs
virtual sequences

o Testflow phases are
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implemented as empty
TCM methods in the virtual
seguence base class

e Module UVC fill in testflow

phases using extension
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Benefits and results accelerd)
Gates count 60M 200M +133%

Total lines of code 575k 484k -16%

System testbench line of code 324k 215k -34%

% system testbench in total 56% 44% -22%

code

Gates verified per line of code 104k 413k +400%

e |ess code, less bugs
e More reuse, higher quality of the code
e System level testcase as short as 20 lines of code

e Better system level debug support from subsystem and
module level verification engineers
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Challenges and Solutions agcellerd)

SYSTEMS INITIATIVE

e Revision conflict of common VIP used by the testbenches

— Solution:
e Freeze common VIP revision early
e Make sure new revision is backward compatible

e Co-ordinate upgrade of non-backward compatible VIP revision
across all testbenches

e Poor quality code imported from lower level testbench
impact simulation performance

— Solution:

e All testbenches should run profiling to identify CPU and memory
bottleneck

e Frequent code review by experienced engineers
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Future development a@

e Port the framework to SystemVerilog UVM
e SV does not support Aspect Oriented Programming (AOP)

— Possible to work around using design patterns
e More lines of code and complex TB structure
e More upfront planning for hooks and APIs
e More intrusive code maintenance
e More revision control discipline

« ¢ constructs used in the framework
— e template -> SV parameterized type
— e keyed list -> SV associate array
— e predefined routines -> SV macro-based util libraries
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