
Maximize Vertical Reuse, Building Module to 
System Verification Environments with UVMe 

 

Horace Chan 

PMC-Sierra 

 

 

Brian Vandegriend 

PMC-Sierra 

 

 

Deepali Joshi 

PMC-Sierra 

 

 

Corey Goss 

Cadence  

 



Sponsored By: 

 2 of 12 

What is vertical reuse? 

• Horizontal Reuse 

– Reuse VIP across different projects 

 

• Vertical Reuse 

– Reuse new VIP, sequences, checkers among module, 
subsystem and system testbenches in the same project 

 

• Maximize Vertical Reuse 

– Import full module testbenches to subsystem testbench 

– Import full subsystem testbeches to system testbench 

– Stitch subsystem testcases to create system testcase 

 

 

 

 



Sponsored By: 

 3 of 12 

Benefits of vertical reuse 

• Parallel development of all testbenches 

• Plug-n-play architecture to integrate system level testbench 
from module and subsystem testbenches seamlessly 

• Increase verification efficiency 

– No duplication of development effort 

– Less testbench code maintenance 

• Changes in lower level testbench is propagated up automatically 

– Better debug support from lower level testbench 

• All lower level testbench the checkers and monitors are available 

– Easier to move verification engineers among module, 
subsystems and system level testing 

 



Sponsored By: 

 4 of 12 

The testbench architecture 

• 200+ Million Gates Design 

– Partition into 10 subsystems and over 50 modules 

– Over 20 subsystem and module testbenches 

 

• Testbench implemented in Specman UVMe 

– All VIPs communicate using TLM interface 

 

• The system testbench is integrated in 1 month 

– 2-3 days to bring in a new subsystem testbench 

– Early initial system level testing while subsystem 
testbench is still finalizing features 

 

 

 

 

 



Sponsored By: 

 5 of 12 

System UVC Architecture 
 
• Based on Cadence’s 

System UVC Architecture 

• Module UVC 

1. No master virtual sequence 
or register sequence 

2. UVCs are layered using 
TLM ports 

3. Separate protocol UVCs 
from interface UVCs that 
drive the RTL signals 

• System UVC is created by 
putting together multiple 
module UVCs 

 



Sponsored By: 

 6 of 12 

System UVC Example 



Sponsored By: 

 7 of 12 

TLM port router 

• TLM port limitations: 

1. TLM transport port does not 
support one-to-many binding 

2. TLM analysis port always 
broadcast 

3. Port binding is static in the 
simulation 

 

• Solution: TLM port router 
to support dynamic many-
to-many port binding with 
build-in routing table 

 

 

// sample implementation of TLM analysis port router 
template unit port_router_u of (<type>) { 
    in_ports : list of in interface_port of  tlm_analysis  
                    of <type> is instance; 
    out_ports : list of out interface_port of  tlm_analysis  
                   of <type> is instance; 
     get_channel_id(tr : <type>) : uint is {};  
     set_channel_id(tr : <type>, cid : uint) is {} 
     routing_table : list of src_route_table_entry_s; 
}; 
 struct dest_route_table_entry_s { 
    enable     : bool; 
    port_id    : uint; 
    channel_id : uint; 
}; 
 struct src_route_table_entry_s { 
    enable       : bool; 
    port_id      : uint; 
    channel_id   : uint; 
    destinations : list of dest_route_table_entry_s; 
}; 
 



Sponsored By: 

 8 of 12 

Common UVC Configuration 
Control 
 • Unify data structure to 

control TLM port binding in 
module UVC 

 

• Enable/disable each 
individual UVC, checker, 
scoreboard inside the 
module UVC 

 

• Preserve all the binding 
information of the module 
UVC in system UVC 

 

// sample common config control data structure definition 
struct config_ctrl_s { 
    layer_name   : layer_t; 
    enable       : bool; 
    is_active    : uvm_active_passive_t; 
    bind_enable  : bool; 
}; 
struct port_config_ctrl_s { 
    port_name   : port_t; 
    layer_config : list of config_ctrl_s; 
}; 
extend uvm_env { 
    config_ctrl_table : list of port_config_ctrl_s; 
     get_uvc_enable(port:port_t, layer:layer_t)  : bool is {}; 
    get_uvc_is_active(port:port_t, layer:layer_t)  
                  : uvm_active_passive_t is {}; 
    get_uvc_bind_enable(port:port_t, layer:layer_t)  
                  : uvm_active_passive_t is {}; 
};  
   



Sponsored By: 

 9 of 12 

Common Test Flow Virtual 
Sequence 
 • Testflow to co-ordinate and 

synchronize the behavior 
of imported module UVCs 
virtual sequences 

 

• Testflow phases are 
implemented as empty 
TCM methods in the virtual 
sequence base class 

 

• Module UVC fill in testflow 
phases using extension 

 

 

 



Sponsored By: 

 10 of 12 

Benefits and results 

Statistic Measure Previous 
Project 

Current 
Project 

Changes 

Gates count 60M 200M +133% 

Total lines of code 575k 484k -16% 

System testbench line of code 324k 215k -34% 

% system testbench in total 
code 

56% 44% -22% 

Gates verified per line of code 104k 413k +400% 

• Less code, less bugs 

• More reuse, higher quality of the code 

• System level testcase as short as 20 lines of code 

• Better system level debug support from subsystem and 
module level verification engineers 



Sponsored By: 

 11 of 12 

Challenges and Solutions 

• Revision conflict of common VIP used by the testbenches 

– Solution: 

• Freeze common VIP revision early 

• Make sure new revision is backward compatible 

• Co-ordinate upgrade of non-backward compatible VIP revision 
across all testbenches 

 

• Poor quality code imported from lower level testbench 
impact simulation performance 

– Solution: 

• All testbenches should run profiling to identify CPU and memory 
bottleneck 

• Frequent code review by experienced engineers 

 



Sponsored By: 

 12 of 12 

Future development 

• Port the framework to SystemVerilog UVM 

• SV does not support Aspect Oriented Programming (AOP) 

– Possible to work around using design patterns 

• More lines of code and complex TB structure 

• More upfront planning for hooks and APIs 

• More intrusive code maintenance 

• More revision control discipline 

• e constructs used in the framework 

– e template -> SV parameterized type 

– e keyed list -> SV associate array 

– e predefined routines -> SV macro-based util libraries 

 

 

 


