e — 4
2073 | February 25-28, 2013 a@: ’5

DoubleTree, San JOSE svsrews mmame

ion
Design & Verification Conference & Exhibitio

o —

Maximize Vertical Reuse, Building Module to
System Verification Environments with UVMe

Horace Chan Brian Vandegriend Deepali Joshi Corey Goss
PMC-Sierra PMC-Sierra PMC-Sierra Cadence

cadence

|

Sponsore d By:

What is vertical reuse? a@

SYSTEMS INITIATIVE

e Horizontal Reuse
— Reuse VIP across different projects

e \ertical Reuse

— Reuse new VIP, sequences, checkers among module,
subsystem and system testbenches in the same project

e Maximize Vertical Reuse
— Import full module testbenches to subsystem testbench
— Import full subsystem testbeches to system testbench
— Stitch subsystem testcases to create system testcase

2 of 12 ‘”
0

Sponsore d By:

Benefits of vertical reuse a@

SYSTEMS INITIATIVE

o Parallel development of all testbenches

e Plug-n-play architecture to integrate system level testbench
from module and subsystem testbenches seamlessly

e Increase verification efficiency
— No duplication of development effort

— Less testbench code maintenance
e Changes in lower level testbench is propagated up automatically

— Better debug support from lower level testbench
e All lower level testbench the checkers and monitors are available

— Easier to move verification engineers among module,
subsystems and system level testing

3o0f12 ‘“
Y O .

Sponsore d By:

The testbench architecture a@

IIIIIIIIIIIIIIIII

e 200+ Million Gates Design
— Partition into 10 subsystems and over 50 modules
— Over 20 subsystem and module testbenches

e Testbench implemented in Specman UVMe
— All VIPs communicate using TLM interface

e The system testbench is integrated in 1 month
— 2-3 days to bring in a new subsystem testbench

— Early initial system level testing while subsystem
testbench is still finalizing features

4 of 12 ‘”
0

e Based on Cadence'’s
System UVC Architecture

e Module UVC

1. No master virtual sequence
or register sequence

2. UVCs are layered using
TLM ports

3. Separate protocol UVCs
from interface UVCs that
drive the RTL signals

e System UVC is created by
putting together multiple
module UVCs

50f 12

System UVC Architecture

Sponsored By:

/]
Lo =7 master verificaion enviranment d

master virtual

I
| TLM port connection .
sEguence driver

I .
| hoirter connection

master regiser
segUence driver

I
|

!
|
| —
|
|
!

mociule LNC -
module vitual =egque

nce

tmocdule config UWC traffic
Sequence
module registers

register
TEGUENCE

mocule

-}

payload
generaar scoreboard
%W
protocol tmodule
WS TR checker

protocal
o LW (R

monitar

i

A

interface
LWZ (T

interface
WG (R

—>| Module RTL

i)

_a 914

System UVC Example

6 of 12

:Legend

|
| Tl patt connection

['
| pointer connedion

magter verification environment

master wirtual
sequence dhver

madter register
sequence driver

Design & Verification Conference &=

Sponsored By:

accellera

AS INITIATIVE

systerm UWC
| system virtual sequence ‘
| y
module & LUWC - madule B UWC -
module vitual sequence module vitual sequence
module config WC traffic register madule config NG tratfic register
SEQUENCE SEQUENCE SEGUENCE SEQUENCE
module registers module registers
payioad sccreboard pawosd
generatar ‘ de_Lt,lIe generator scorebosrd I-‘— maclulE
e maoritar LIviC monitar
protocal maciule protocal pratacol module praotocol
UNC (T o checker LISAC (R L2 (TH] checker e L' (R
y ' ~
irterface interfacs inter face interface
LMAC (T UMC (R LWAZ (TH) LG (R
System RTL
- Module A RTL {r—- Module B RTL

TLM port router

e TLM port limitations:

1. TLM transport port does not
support one-to-many binding

2. TLM analysis port always
broadcast

3. Port binding is static in the
simulation

e Solution: TLM port router
to support dynamic many-
to-many port binding with
build-in routing table

7 of 12

Sponsored By:

SYSTEMS INITIATIVE
/l sample implementation of TLM analysis port router

template unit port_router_u of (<type>) {
in_ports : list of in interface_port of tim_analysis
of <type> is instance;
out_ports : list of out interface_port of tim_analysis
of <type> is instance;
get_channel_id(tr : <type>) : uintis {};
set_channel_id(tr : <type>, cid : uint) is {}
routing_table : list of src_route_table_entry_s;
;
struct dest_route_table_entry_s {
enable : bool,
port_id : uint;
channel_id : uint;
};
struct src_route_table_entry_s {
enable : bool;
port_id :uint;
channel_id : uint;

destinations : list of dest_route_table_entry_s;

}; . a 914

Control

o Unify data structure to
control TLM port binding in
module UVC

e Enable/disable each
individual UVC, checker,
scoreboard inside the
module UVC

e Preserve all the binding
information of the module
UVC in system UVC

8 of 12

Common UVC Configuration

SYSTEMS INITIATIVE

/I sample common config control data structure definition
struct config_ctrl_s {
layer_name : layer_t;
enable : bool;
is_active :uvm_active_passive_t;
bind_enable : bool;
I3
struct port_config_ctrl_s {
port_name :port_t;
layer_config : list of config_ctrl_s;
;
extend uvm_env {
config_ctrl_table : list of port_config_ctrl_s;
get_uvc_enable(port:port_t, layer:layer_t) : bool is {};
get_uvc_is_active(port:port_t, layer:layer_t)
: uvm_active_passive_t is {};
get_uvc_bind_enable(port:port_t, layer:layer_t)

: uvm_active_passive_t is {};

_a 914

Seqguence

Testflow phases running in the
master vittual sequence only

Testflow phases running in serial

Tegflowphaszes running in parallel
with synchroni zation

synchronize the behavior

Tegflow phaszes running in parallel
with fire and forget

e Testflow to co-ordinate and

of imported module UVCs
virtual sequences

o Testflow phases are

Sponsored By:
n

fd

\TIVE

implemented as empty
TCM methods in the virtual
seguence base class

e Module UVC fill in testflow

phases using extension

9 of 12

Sponsored By:

Benefits and results accelerd)
Gates count 60M 200M +133%

Total lines of code 575k 484k -16%

System testbench line of code 324k 215k -34%

% system testbench in total 56% 44% -22%

code

Gates verified per line of code 104k 413k +400%

e |ess code, less bugs
e More reuse, higher quality of the code
e System level testcase as short as 20 lines of code

e Better system level debug support from subsystem and
module level verification engineers

10 of 12 M
w db

Sponsore d By:

Challenges and Solutions agcellerd)

SYSTEMS INITIATIVE

e Revision conflict of common VIP used by the testbenches

— Solution:
e Freeze common VIP revision early
e Make sure new revision is backward compatible

e Co-ordinate upgrade of non-backward compatible VIP revision
across all testbenches

e Poor quality code imported from lower level testbench
impact simulation performance

— Solution:

e All testbenches should run profiling to identify CPU and memory
bottleneck

e Frequent code review by experienced engineers

11 of 12 ‘”
0

Sponsore d By:

Future development a@

e Port the framework to SystemVerilog UVM
e SV does not support Aspect Oriented Programming (AOP)

— Possible to work around using design patterns
e More lines of code and complex TB structure
e More upfront planning for hooks and APIs
e More intrusive code maintenance
e More revision control discipline

« ¢ constructs used in the framework
— e template -> SV parameterized type
— e keyed list -> SV associate array
— e predefined routines -> SV macro-based util libraries

12 of 12 M
w db

