
Matrix Math package for VHDL 
 

David W. Bishop 
Intrinsix Corp 

175 Willowbrook office park 
Fairport NY, 14450 

dbishop@vhdl.org dbishop@intrinsix.com 
http://www.Intrinsix.com 

 
 

Abstract-A matrix is just a way of looking at a group of associated numbers. Most standard math functions are 
defined for matrix math. In HDL, many operations can be done in parallel, speeding up these operations. This paper 
describes a package which is designed for people who are familiar with Matlab ™ matrix manipulation. It is designed to 
perform basic matrix functions for the standard VHDL "REAL" type.  This package is a candidate for inclusion in the 
next VHDL LRM. 

 
I.   INTRODUCTION 

The arithmetic rules of matrix math are very different from the rules we use for linear math.  In Matrix math A*B 
does not equal B*A.  A matrix can take the form of a vector or an array. The uses of matrices cover almost all of the 
branch of science. 

To make implementation easier, the package is based on the popular MatLab ™ tools.   Most of the functions 
work almost identically to the functions found it this tool. 

 
II.   THE PACKAGE 

The VHDL matrix math packages can be downloaded at: 
http://www.vhdl.org/fphdl/real_matrix_pkg.zip  
 

In the ZIP archive you will find the following files: 
• “real_matrix_pkg.vhdl” and “real_matrix_pkg_body.vhdl” (for types “REAL” and “INTEGER”) 
• “real_matrix_pkg_93.vhdl” and “real_matrix_pkg_body_93.vhdl” (for types “REAL” and “INTEGER”, 

VHDL-2002 compatible version) 
• “complex_matrix_pkg.vhdl”, and “complex_matrix_pkg_body.vhdl” (for types COMPLEX and 

COMPLEX_POLAR) 
• “complex_matrix_pkg_body_93.vhdl” (VHDL-2002 compatible version of the complex math package 

body) 
•  “test_real_matrix.vhdl”, and “test_complex_matrix.vhdl” which test the functionality of these packages. 
• “compile.mti” – A compile script. 
• “compile_93.mti” – Compile script for VHDL-93 (to 2002 rules for shared variables) 

These packages have been designed for use in VHDL-2008.  However, a compatibility version of the packages is 
provided that works for VHDL-1993.  The VHDL-1993 versions of the packages have an “_93” at the end if their 
file names.   These packages were designed to be compiled into the IEEE_PROPOSED library. 
 
Dependencies: 

• “real_matrix_pkg” is dependant only on IEEE.MATH_REAL.   
• “complex_matrix_pkg” is dependent on “real_matrix_pkg”, IEEE.MATH_REAL and 

IEEE.MATH_COMPLEX. 

mailto:dbishop@vhdl.org
mailto:dbishop@intrinsix.com
http://www.vhdl.org/fphdl/real_matrix_pkg.zip


 
III.   OVERVIEW 

The “real_matrix_pkg” package defines the types “real_matrix” and “integer_matrix”.  The VHDL-1993 
version defines the types “real_vector” and “integer_vector” (which are normally predefined in VHDL-2008).  
These types are defined as follows: 

 
type real_matrix is array (NATURAL range <>, NATURAL range <>) of REAL; 
type integer_matrix is array (NATURAL range <>, NATURAL range <>) of 

INTEGER; 
 
Usage model: 

use ieee.real_matrix_pkg.all; -- ieee_proposed for compatibility version 
.... 
  signal a: real_matrix (0 to 3, 0 to 1); 
  signal b: real_matrix (0 to 1, 0 to 2); 
  signal c: real_matrix (0 to 3, 0 to 2); 
begin 
.... 
c <= a * b; -- Matrix multiply 
 

As a concession to C, all matrices are assumed to be in row, column format, and starting at index “0”.  Thus for the 
matrix: 

Z := ((1.0, 2.0, 3.0), 
      (4.0, 5.0, 6.0), 
      (7.0, 8.0, 9.0)); 
Z (0,2) = 3.0 

 
Note that this notation is different from the MatLab notation.  In that language the first column is column “1”, not 

“0”.   However, if you define a matrix starting at location “1”, the VHDL won’t care. 
 

All matrices are assumed to be of the “X to Y” range.    If a “downto” range is specified it will result in an error 
message. 
 

A vector is assumed to be a matrix with one row.  All functions which read in vectors treat them in this manner.   
If you want a matrix with one column, then you need to define them as follows: 

 
signal z : real_matrix (0 to 3, 0 to 0); 

 
One of the wonderful things about Matlab is the ability to pull a slice out of a vector or a matrix.   In Matlab you 

can say “(i:j)” or “(:,j)” or “(r,i:j)”.  Due to the strong typing in VHDL we do not have that ability, so we have 
several functions which are designed to do this. 
 

IV.   BASIC MATRIX MATH 
Once you have defined a matrix, any of the standard math operations can be use on it.   The operations are all 

defined to behave the same way that they behave in Matlab, thus: 
 

use ieee_proposed.real_matrix_pkg.all; 
 
signal a : real_matrix (1 to 2, 1 to 4); 
signal b : real_matrix (1 to 3, 1 to 2); 
signal c : real_matrix (1 to 3, 1 to 4); 
begin 
… 
c <= a * b; -- Matrix Multiply 



 
Figure 1 
 

As a result of the  operation in Figure 1, C(1,2) will be A(1,1)*B(1,2)+ A(1,2)*B(2,2), with all other entries in the 
resultant matrix computed in a similar method. 
 

V.   TAKING A MATRIX APART 
For this you need the “SubMatrix” command 
 

Result := submatrix (arg, row, column, rows, columns) 
 
where : arg – Input matrix 
 row – “x” or row location to start from 
 column – “y” or column location to start from  
 rows – number of rows in result 
 columns – number of columns in result 
 
Examples: 
Take the matrix: 

variable A : real_matrix (0 to 3, 0 to 3); 
A := ((1.0,   2.0,  3.0,  4.0), 
  (5.0,   6.0,  7.0,  8.0), 
  (9.0,  10.0, 11.0, 12.0), 
  (13.0, 14.0, 15.0, 16.0)); 
 
B := submatrix (A, 1,1,2,2); 

 
Would return a 2x2 matrix (real_matrix (0 to 1, 0 to 1)) starting at location (1,1) in the input matrix A, or: 
 

B := ((6.0, 7.0), (10.0, 11.0)); 
 
If “rows”  is a “1” then the vector version can be used: 
 

variable BV : real_vector (0 to 2); 
BV := submatrix (A, 1,0, 1, 3); 
 

Would return 1 row, 3 columns (real_vector (0 to 2)) starting at location (1,0) or: 
 

BV := (5.0, 6.0, 7.0); 



 
 

VI.   PUTTING A MATRIX BACK TOGETHER 

 

In Matlab it is very easy to create a new matrix from an already existing matrix.   Due to the strong typing in VHDL, 
this is not possible.   Thus several functions were created to perform these functions.   BuildMatrix allows you to 
manipulate a matrix the same way the matlab sub index works. 
 
BuildMatrix (arg, result, row, column) 
where: arg – submatrix to put in the “result” matrix (input) 
 result – Final matrix (inout) 
 row – “x” or row location to start from 
 column – “y” or column location to start from 
 
Examples: 

variable A : real_matrix (0 to 3, 0 to 3); 
variable B : real_matrix (0 to 1, 0 to 1) 
B := ((7.0, 2.0), (3.0, 4.0)); 
A := ones (A’length(1), A’length(2)); 
buildmatrix (B, A, 1, 1); 

 
Will result in: 

((1.0, 1.0, 1.0, 1.0), 
 (1.0, 7.0, 2.0, 1.0), 
 (1.0, 3.0, 4.0, 1.0), 
 (1.0, 1.0, 1.0, 1.0)); 

 
There are special versions of BuildMatrix overloaded for vectors: 
BuildMatrix (arg, result, row, column) – where “arg” is a vector 
InsertColumn (arg, result, row, column) 
Where: arg – real_vector 
 Result – final matrix (inout) 
 row – “x” or row location to start from 
 column – “y” or column location to start from 
 
Example: 

variable A : real_matrix (0 to 3, 0 to 3); 
variable BV, CV : real_vector (0 to 3) 
BV := (5.0, 6.0, 7.0, 8.0); 
CV := (10.0. 11.0, 12.0, 13.0); 
A := ones (A’length(1), A’length(2)); 
-- Put Vector BV in Matrix A at 2,0 along the “X” (row) axis 
BuildMatrix (BV, A, 2, 0); 
-- Put Vector CV in Matrix A at 0,2 along the “Y” (column) axis 
InsertColumn (CV, A, 0, 2); 

 
Will result in: 

((1.0, 1.0, 10.0, 1.0), 
 (1.0, 1.0, 11.0, 1.0), 
 (5.0, 6.0, 12.0, 8.0), 
 (1.0, 1.0, 13.0, 1.0)); 

 
A vector and a matrix with 1 row are considered to be equivalent.  Thus: 

constant A : real_matrix (0 to 0, 0 to 5) := (others => 1.0); 
constant C : real_vector (0 to 5) := (others => 1.0); 



A = C would be True (Assuming C to be a row). 
 
The “reshape” function can be use to convert a vector or a matrix to one of any shape desired.   For instance: 

variable M : integer_matrix (0 to 2, 0 to 2); 
variable N : integer_vector (0 to 8); 
… 
begin 
  N := (1, 2, 3, 4, 5, 6, 7, 8, 9); 
  M := reshape (N, M’length(1), M’length(2)); 

 
This will result in the following integer matrix: 

M := ((1, 2, 3), 
      (4, 5, 6), 
      (7, 8, 9)); 

 
 

VII.   LIST OF FUNCITONS 
 
The functions listed are broken up into 5 sections.   Operators are built in functions which are overloaded for the 
matrix types.  Math functions are functions which perform some sort of calculation (and are called by the operators). 
Matrix manipulation functions allow you to manipulate a matrix.  Conversion functions allow you to convert one 
data type to another.   Textio functions allow you to read in or write out data. 

Operators: 

“*”  - Matrix multiply, overloaded for the following: 
 real_matrix * real_matrix return real_matrix – Number of Columns in left matrix must match number of 
rows in right matrix. Returns a matrix which is (left row length by right column length) 
 real_matrix * real_vector return real_matrix – Matrix must have 1 column, number of rows must match 
length of vector.  Returns a matrix which is square (vector length by vector length) 
 real_vector * real_matrix return real_vector - Matrix must have same number of rows as length of vector.  
Returned vector will be number of columns in Matrix. 
  real_matrix * real return real_matrix 
  real * real_matrix return real_matrix 
 real_vector * real return real_vector 
 real * real_vector return real_vector 
 “+” – Matrix addition, overloaded for the following: 
 real_matrix + real_matrix return real_matrix – Dimensions must match 
 real_vector + real_vector return real_vector – Dimensions must match 
“-” – Matrix subtraction, overloaded as follows: 
 real_matrix - real_matrix return real_matrix – Dimensions must match 
 real_vector - real_vector return real_vector – Dimensions must match 
 unary minus (real_matrix) 
“/” – Matrix division 
 real_matrix / real_matrix return real_matrix  (= real_matrix * inv(real_matrix)), Matrix must be square for 
this function to work. 
 real_matrix / real return real_matrix 
 real_vector / real return real_vector 
“**” 
 real_matrix ** integer return real_matrix – This function is recursive.   Arg**-1 = inv(arg).   Matrix must 
be square for this function to work. 
“=” 
 real_vector = real_matrix – True if the matrix has one row and equal to the vector 
 real_matrix = real_vector 
 real_vector /= real_matrix 
 real_matrix /= real_vector 
“abs” – return the absolute value (real_matrix or real_vector) 



 

Math Functions: 

 
Times – Similar to matlab “.*” function (element by element multiply, same as real_matrix * real) 
Rdivide – Similar to matlab ./ function (element by element divide) 
Mrdivide – Similar to matlab mrdivide function (l * inv(r)) 
Mldivide – Similar to matlab mldivide function (inv(l)* r) 
Pow – Similar to matlab “.^” function, (element by element l**r) 
Sqrt – element by element square root function 
Exp – element by element  exp function 
Log – element by element natural log function 
 
Trace – Sum the diagonal of a matrix 
Sum (vector) – returns the arithmetic sum of the input vector 
Sum (matrix, dim) – returns the sum of a matrix along a given dimension 
 Dim = 1, sum along the Y axis, 
 Dim = 2, sum along the X axis 
Prod(vector) – returns the arithmetic multiplication of the input vector 
Prod (matrix,dim) - returns the arithmetic multiplication of the input along a given dimension 
 Dim = 1, multiply along the Y axis, 
 Dim = 2, multiply along the X axis 
Dot – returns the dot product of two vectors 
Cross – returns the cross product of two vectors (or matrices) 
Kron – returns the Kronecker product of two matrices 
Det – returns the determinant of a matrix 
Inv – Inverts a matrix 
Linsolve (matrix, vector) – Solves a linear equation 
Normalize (matrix, rval) – Normalizes a matrix to the value “rval” (which defaults to 1.0) 
Polyval – Evaluates a polynomial 
 

Matrix manipulation Functions: 

 
Isempty – returns true if the matrix or vector is null 
Transpose – Transposes a matrix 
Repmat (val, rows, columns) – Creates a matrix by replicating a single value 
Zeros (rows, columns) – returns a matrix of zeros 
Ones (rows, columns) – returns a matrix of ones. 
eye (rows, columns) – returns an identity matrix 
Rand (rows, columns) – returns a matrix of random numbers 
Cat (dim, l, r) – Concatenates two matrices along dimension “dim” 
Horzcat (l, r) – Concatenates two matrices horizontally 
Vertcat (l, r) – Concatenates two matrices vertically 
Flipdim (arg, dim) – Flips a matrix along a given dimension 
Fliplr – Flip a matrix left to right 
Flipup – flip a matrix top to bottom 
Rot90 (arg, dim) – rotates a matrix 90 degrees (or more depending on “dim”) 
Reshape (arg, rows, columns) – reads a matrix and creates a new one of a different dimensions, can read in a 
matrix or a vector and return a matrix or a vector. 
Size – returns the size of a matrix 
Isvector – returns true if the matrix has only one dimension 
Isscalar – returns true if there is only one element in this matrix 
Numel – returns the number of elements in a matrix 
Diag (arg: real_matrix) – returns a vector which is the diagonal of a matrix 
Diag (arg: real_vector) – returns a matrix which as the argument as its diagonal. 



Blkdiag (arg: real_vector) – returns the block diagonal of a vector. 
Blockdiag(arg: real_matrix, rep : positive) – Replicates matrix “arg” along the diagonal of the resultant matrix 
“rep” times. 
Repmat (arg, rows, columns) – replicates the “arg” matrix rows*columns times 
Tril – returns the lower triangle of a matrix 
Triu – returns the upper triangle of a matrix 
 
submatrix (arg, row, column, rows, columns) return real_matrix – Please see above for details 
submatrix (arg, row, column, rows, columns) return real_vector 
buildmatrix (arg, result, row, column) – Returns a submatrix from the input matrix, starting at location x,y. 
buildmatrix (arg, result, row, column) – where “arg” is assumed to be a vector 
InsertColumn (arg, result, row, column) – where “arg” is assumed to be a vector 
Exclude (arg, row, column) – Return a matrix with the designated row and column removed. 
 

All of the above functions are replicated for types “integer_matrix” and “integer_vector” with the exception of 
“rdivide”, “/”, “mldivide”, “sqrt”, “log”, “exp”, “inv”, “linsolve”, “normalize”, and “rand”.   For these exceptions, 
overloads which return “real_matrix” have been created. 
 

Conversion Functions: 

 
Functions which mix real and integer (vector and matrices) are also defined in these packages.   The output of 

these functions is always a real matrix or vector.   Thus you can divide a real_matrix by an integer_matrix, with the 
result being a real_matrix.  The following conversion functions are defined: 
 
To_integer (real_matrix) – converts a real_matrix into an integer_matrix with the same dimensions. 
To_integer (real_vector) – converts a real_vector into an integer_vector with the same dimensions 
To_real (integer_matrix) – converts an integer_matrix into a real_matrix with the same dimensions. 
To_real (integer_vector) – converts an integer_vector into a real_vector with the same dimensions.. 
 

Textio Functions: 
To_string (arg: real_matrix) – returns a string (with LF at the end of every row) delimited by spaces. 
Read (L: line; VALUE: real_matrix) – Reads a string which may contain several lines and reads them into matrix 

“VALUE”.   Punctuation and LF are ignored. 
Read (L: line; VALUE: real_matrix; GOOD: boolean) – Reads a string which may contain several lines and 

reads them into matrix “VALUE”.   Punctuation and LF are ignored.  A Boolean “good” is returned to tell you 
if the matrix is valid. 

Write (L: line, VALUE: real_matrix) – Writes matrix “VALUE” into line “L”.  The matrix is punctuated with “(“, 
“,”, “)” and “LF” to delimite columns and rows. 

Print_Matrix (arg : real_matrix; index : Boolean := false) - If index is “false” then the size of the matrix is 
printed out on the first line, followed by the values of the matrix (one row/line). 
If index is “true” then the index of every element is printed before that element, and the matrix size is not 
printer. 

Print_Vector (arg : real_vector; index : Boolean := false) - If index is “true” then the index of every element is 
printed before that element. 

 
 

The following functions are also defined in this area (and should be removed when VHDL-2008 supports these) 
To_string (arg : real_vector)  - returns a string, delimited by spaces 
Read (L: line; VALUE: real_vector) – Reads a string into vector “VALUE”.   Punctuation is ignored. 
Read (L: line; VALUE: real_vector; GOOD: boolean) – Reads a string into vector “VALUE”.   Punctuation is 

ignored.  A Boolean “good” is returned to tell you if the matrix is valid. 
Print_Vector (arg : real_vector; index : Boolean := false) - If index is “true” then the index of every element is 

printed before that element. 



Write (L: line, VALUE: real_vector) – Writes vector “VALUE” into line “L”.  The matrix is punctuated with “(“, 
“,”, “)” to delimit elements in the array. 

 
These functions are also replicated for “integer_vector” and “integer_matrix”. 
 

VIII.   COMPLEX_MATRIX_PKG PACKAGE 

 

This package depends on the IEEE “math_complex” package, as well as “complex_matrix_pkg” (and 
“math_real”).  In the “complex_matrix_pkg” package you will find the following types: 

 
type complex_vector is array (NATURAL range <>) of complex; 
type complex_matrix is array (NATURAL range <>, NATURAL range <>) of 

complex; 
type complex_polar_vector is array (NATURAL range <>) of complex_polar; 
type complex_polar_matrix is array (NATURAL range <>, NATURAL range <>) of 

complex_polar; 
 

 
CMPLX(arg) – Converts a real_matrix (or vector) to a complex_matrix (or vector) with a 0 complex portion 
CMPLX(X,Y) – Converts the real_matrix (or vector) X into the real portion of the complex_matrix result, and the 
real_matrix “Y” into the complex part. 
COMPLEX_TO_POLAR – Converts a complex_matrix (or vector) to a complex_polar result 
POLAR_TO_COMPLEX – converts a complex_polar_matrix (or vector) to a complex_matrix (or vector) 
CONJ – returns the complex conjugate of the input 
 

Operators 
All of the functions defined for “real_matrix” are defined for “complex_matrix” and “complex_polar_matrix” 

with the exception of “pow” and “poly” (because there is no generic “**” function in math_complex), and “rand”.   
These operators are also overloaded for mixing any combination of complex or complex_polar with real. 
 
Exceptions: 
Abs(complex_matrix) – returns a real_matrix (complex_vector, complex_polar_matrix, and complex_polar_vector 
are also valid input types).   By definition, the absolute value of a complex number is a real number. 
Ctranspose(complex_matrix) – returns the complex conjugate of the input matrix. (complex_polar_matrix is also a 
valid input type). 
 

Textio Functions: 
There are no textio functions in “math_complex”, so “to_string”, “read” and “write” are defined in 

complex_matrix_pkg for the types “complex”, “complex_polar”, “complex_vector”, “complex_polar_vector”, 
“complex_matrix” and “complex_polar_matrix”. 
 
 

ACKNOWLEDGMENT 
This package was created at the request of the 1076.1 (analog VHDL) subcommittee.   It has been reviewed by the 

1076-20XX working group. 
CONCLUSION 

The basic idea of this package is to raise the level of abstraction.   If you have to completely restructure your 
algorithm in order to represent it in another language you are doing something wrong.  VHDL is flexible enough to 
allow for this type of abstraction.   These algorithms can also be implemented for synthesizable types, as all of them 
were implemented with synthesis in mind. 



 
REFERENCES 

[1] IEEE-1076-2008 
[2] Matlab user’s manual 
 


	Textio Functions:
	Operators
	Textio Functions:

