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Abstract-Significant challenges face highly configurable design and its verification.  First, it may be difficult tailor for 

verification superset RTL to meet a specific customer's requirements.  As a result, often a superset test bench is employed 

leading to delivery of RTL that has not been specifically verified.  Second, reporting verification progress in a constrained 

random verification environment may be cumbersome.  We present our approach tackling both these into a cohesive set 

of reports that accurately shows the current status of verification progress. 

 

I.   Introduction 

Let’s be honest, managing highly configurable intellectual property (IP) hardware and verification is fraught with 

complication.  No longer do we create a team of hardware and verification engineers to implement an ASIC.  

Today’s market demands hardware to be designed with usage flexibility—often customers’ use models are not 

known at the outset.  Flexible hardware demands equally flexible verification architecture.   The verification 

architecture is not limited to the test bench.  It affects all processes from hardware design for verification through to 

sign-off for customer release.  What metric qualifies the design under test (DUT)?  In this paper we present our 

verification architecture and prevailing guidelines and lessons learned. 

 

Overall guideline for verification: 

 

Verification architecture must allow organic growth.  Hardcoding any value or approach will eventually be 

detrimental to some project schedule. 

 

Guidelines: 

 

1) Do not simulate hardware not delivered to the customer. 

2) Identify top-level use cases, but do not be limited to them. 

 

Note that we approach this presentation from a verification perspective.  We are not hardware engineers, we are 

verification engineers.  We are not providing novel hardware algorithms, just guidelines to aid in the possibility for 

success in a multiple-customer environment.  Nonetheless, some or all our methods presented here have been 

employed in multiple IP and subsystem level projects over multiple, often simultaneous, customer projects.  

In section II we approach hardware design configurations.  Being upfront and vocal about configurable hardware 

decisions will enable configuration verification flows within the architecture.  Section III focuses on verification 

planning and reporting.  These two sections make the backbone of our verification architecture.  The remainder of 

the paper delves into deeper detail into each part of the verification architecture. 

 

 

II.   DESIGN CONFIGURATION CONSIDERATIONS 

To meet flexible usage demands, often an RTL superset is developed by the hardware design team that will 

support multiple target configurations.  This approach has a clear advantage over dedicated RTL per customer in 

both design and maintenance resources.  The RTL superset may be transformed into a specific customer 

configuration, often, in one of the following (or a combination of both) ways: 

  

1) Compile-time macros, and/or 

2) Pseudo- or constant-static run-time activation. 

 

Consider, in Figure 1, some Capability X that is optionally available for the hardware design.  For example, the 

PCI-Express (PCIe) standard allows an end point an optional dynamic power allocation (DPA) capability [1].   If the 

PCIe design also optionally supports DPA capability then DPA is a hardware configuration.  Inclusion of the 



capability is dependent on customer requirements.  That is, Capability X is selected when the customer demands the 

capability.  Otherwise, Capability X is excluded from the overall customer use-model.  Conversely, Capability X 

may be selected but never activated in the customer configuration.  That is, Capability X is selected for inclusion 

into the design but (2), above, may be always on (constant-static activation) or off (constant-static deactivation).  For 

DUT configurations, we assume the capability may only switch from on to off, and vice versa, through a drastic 

event, such as reset (pseudo-static activation). 

 

 
Figure 1: Functional test bench impact of some Capability X. 

Depending on the logic size impact to the overall design, the hardware design team may opt solely for (2) and tie 

an input (or register field value) to constant-static value to ensure Capability X is always or never activated.  

Alternatively, compile-time `ifdef macro, (1), may fully include/exclude all logic associated with Capability X.
1
 

The configurable hardware must be transformed to the customers’ requirements.  It may be possible to deliver 

superfluous hardware to the customer but at no point should unknown hardware be delivered.  The size of the 

combined logic in a single System-on-a-chip (SOC) and the overall project schedule are the drivers for determining 

superfluous hardware acceptability.  For example, if Capability X is not selected but its overall logic size is within 

limits for the IP then schedule may determine this superfluous configuration can be included, selected but never 

activated. 

No verification of highly configurable hardware design shall target a superset, Figure 2.  Consider Capability X 

selected by `ifdef macro, option (1).  If the customer does not select Capability X then its logic shall not be part of 

the verification for that customer.  This does imply that simulation for that customer must also not include 

Capability X.  This implication holds if there exists no other way to show verification complete for that customer.  

As an alternative, functional coverage may be employed, in a constrained-random test bench, to support verification 

complete. 

 

 
Figure 2: A configuration object (in perl) transforms the DUT superset to customer-specific. 

 

A. Configuration Matrix 

The configuration matrix clearly identifies all configurations within the hardware design.  This configuration 

matrix is reviewed directly with the customer to select configurations.  Configurations may be Boolean in nature 
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(lending itself to `ifdef testing) or may be value oriented (lending itself to `macro instantiation).  TABLE 1 is 

presented as a simplistic example.  In our experience, the configuration matrix can include many rows.  Project 

management and the customer identify the customer selection for all configurations in the matrix.  Once agreed 

upon, this matrix becomes the Plan of Record for the customer’s project.  These configurations and values selected 

are used by the hardware design team to transform the DUT RTL superset to the customer design.  The same 

configurations are used by verification to transform the test plan, functional coverage, test bench, regression, and 

reporting mechanisms to the customer design. 

 
TABLE 1: EXAMPLE CONFIGURATION MATRIX. 

Configuration Customer Selection 

Capability X Supported 

Reference clock frequencies (MHz) 100, 200 

 

 

B. Configuration Object 

Within the verification architecture, all configurations for the customer start with a single configuration object.  

Automation is imperative for project success.  Any other approach to hardware and verification management in a 

multi-customer situation will eventually prove untenable.
2
  Therefore, it is most desirable for this configuration 

object to be coded in some scripting language.  Note that it is always possible to transform the script configuration 

object into (System)Verilog.  We have opted for Perl5 object-oriented scripting [2]. 

 

Code 1: Example customer configuration object written in Perl. 

Configuration object members that transform the RTL superset should be coded as RTL for the DUT.   These are 

limited to `ifdef testing or `macro instantiations, as in line 5, above.  From Figure 2, scripting translates the DUT-

specific DEFINES from the customer configuration object into an include.v file and, later, used to preprocess the 

DUT RTL superset.  Always prefix all macros for release to the customer with a company name or abbreviation.  

This will help avoid compile-time macro name collision at the customer site.  In contrast to the `defines, line 3 

shows an example of an object members may require more complex structure.  Here, the reference clock may be 

emitted as `define macro influencing the test bench, but it may also be used other ways, only limited by the 

capabilities of the Perl language.   

The hardware design team is responsible for the hardware and its delivery.  As such, the hardware design team 

shall own the content of the configuration object on a per customer basis. The verification team is responsible for 

testing the hardware design as well as the verification architecture.  As such, the verification team shall own the 

structure of the configuration object.  Every configuration listed in the matrix shall have representation in the 

configuration object.  The hardware design team will set that configuration object member as appropriate. 

 

C. DUT Transformation 

Figure 2 also indicates the DUT RTL superset is preprocessed with the include.v file and transformed into the 

DUT.    We have used several methods to implement this step.  The simplest method is to include the include.v file, 

with appropriate `define macros, along with the customer IP release, as in Code 2.  The preprocess step will 

naturally occur during compilation for simulation or synthesis and unselected code removed from the hardware 

design.   
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 We have no scientific data to support this claim, only our own observations.  
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package CUSTOMER_A; 

our $config = { 

  REFCLK_SEL => [100, 200], # Mhz, input to DUT or DUT register 

  DEFINES => {  

    DUT => [ “`define COMPANY_CAP_X”, “`define COMPANY_INSTMACRO 4” ], 

    TB => [ “`define TESTMACRO_SUPPORT” ], 

  }, 

}; 

1; 



 

Code 2: Generated include.v file used to implement the preprocessing set. 

Two guidelines should be considered when providing a definitions file when part of the customer IP release.   

 

a) Ensure the include.v file is listed within IP release compile-time file lists. 

b) Consider encrypting the include.v file. 

 

Even when using this simple approach never instruct the customer to specify the compile-time macros on their 

compilation command-line (+define+MACRO).  We have found that the customer’s compilation command-line 

does not always update in between IP releases.  As such, it may be easy to debug the customer’s failing simulation 

only to find they had not specified the compile command-line correctly.  With all the definitions in a file and part of 

the compile-time file lists provided to the customer this situation can likely be avoided.   An additional security step 

of encrypting the include.v file would likely ensure the situation is avoided. 

A second approach to implement the preprocessing step from Figure 2 is to SystemVerilog preprocess the DUT 

RTL superset stripping out unselected RTL.  Some simulation vendor tools may provide a path for preprocessing 

only.  Similar to a gcc -E command (preprocess C code dumping output to the screen), the vendor’s compilation 

program may preprocess files according to the compiler directives listed in the SystemVerilog standard [3].   

Two potential issues with preprocessing: 

 

a) Comments are usually removed, including synthesis or simulation hints, such as: // synopsys translate on 

b) Sometimes a few macros should remain as macros in the code, such as: myreg <= `COMPANY_DELAY val. 

 

To address these issues we have implemented a light SystemVerilog preprocessor to handle the two types of 

macros listed in the configuration object.
3
  We identify directly in the `define itself if this macro should pass-

through the preprocessor.  For example, the delay value from (b): 

 

 DEFINES => { DUT => [ …, “PASS_THRU `define COMPANY_DELAY 1” ] }.  

 

This macro does transform the DUT RTL superset but the customer should have control over its value.  Macros 

such as a delay used for simulation but not synthesis are the exception.  After preprocessing, all other `define macros 

have been consumed (no longer exist in the hardware design) and logic replaced (`macro instantiation) or removed 

(`ifdef/`ifndef) or remains (`else).  Importantly, all comments still exist in the RTL.  Unlike the first approach, this 

approach requires the include.v file to not be listed in the compile-time file lists.  The only macros that remain in the 

include_out.v file are those the customer should directly control for simulation or synthesis.  Now it is impossible to 

encounter the debug situation mentioned previously: there are no macros in the hardware to define incorrectly. 

 

 
Figure 3: In-house light SystemVerilog preprocessor removes `define macros as required. 
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 For obvious reasons we are not able to release this script, but we have seen other in-house flavors of this same 

script in other teams within Broadcom.  The SystemVerilog Compiler directives chapter 22 is not very long [3]. 
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III.   TEST PLAN AND ITS REPORTING 

The first step for managing highly configurable verification is to define how the hardware design will be 

managed.  In section II we presented hardware configurations selected by `ifdef or other pseudo-static or constant-

static methods.  In this section we focus on the test plan. 

 

A. Scenarios for Testing 

From the DUT RTL superset technical manual and/or the industry standard, the verification team identifies and 

enumerates all testing scenarios that must be covered.  The items listed in the test plan are focused on the specific 

scenario to be tested and not a full testing sequence.  That is, a single scenario in the test plan does not precisely 

indicate the order of events of simulation (reset, initialize and select clock A, then do this other thing).  Instead, the 

scenario describes, when the stimulus generation description is encountered, what behavior is expected from the 

DUT.  A functionally passing scenario correctly takes the actions specified.  For example, in TABLE 2, scenario ID 

DATA.CAP_X.1 describes a situation where the DUT is enabled to silently drop received data that has errors but 

then all data received is OK.  This is a “good” test, no errors are encountered.  For scenarios DATA.ERR.CAP_X1.1 

and DATA.ERR.CAP_X1.2 the DUT receives error data and either drops it or interrupts firmware.  These are a 

“good with errors” test intermixing good data with error scenarios.  These scenarios could both occur in a single 

simulation or in different simulations. 

  
TABLE 2: EXAMPLE BASIC TEST PLAN COMMON SECTION. 

Scenario ID Feature Subfeature What to generate What to expect 

CLK.SEL.1 Clocks 
Main clock 

selection 

Randomize external clock 

generation to customer range. 

No adverse situation in 

any simulation. 

REG.CAP_X.1 REG Capability X Read default values 
Values match register 

definition. 

REG.CAP_X.2 REG Capability X Bit-bash fields 
Access types match 

register definition. 

DATA.CAP_X.1 Datapath Capability X 

Set control to DROP_AT_ERR 

then generate random good data 

scenarios. 

All data received and 

correct. 

DATA.ERR.CAP_X.1 
Datapath 

Errors 
Capability X 

Set control to DROP_AT_ERR, 

then generate error scenario. 

Data with error should 

be dropped by the DUT. 

DATA.ERR.CAP_X.2 
Datapath 

Errors 
Capability X 

Set control to INT_AT_ERR, 

then generate error scenario. 

Data with error should 

cause DUT to interrupt. 

 

The test plan, itself, allows for both directed and constrained random testing.  Of course, there will be exceptions.  

For example, scenarios REG.CAP_X.1-2 are defined as directed tests.  There is no need to construct these scenarios 

within the bounds of a “good” or “good with errors” random test as this is not the normal behavior of firmware.  

Conversely, scenario CLK.SEL.1 affects every single test – it is an overriding mode of operation of the DUT.  We 

should be able to show register tests working properly in all selected clock modes.  Finally, while the Capability X 

scenarios may be fully defined in the test plan, the CLK.SEL.1 scenario has no implementation until directed by a 

customer configuration. 

When enumerated in a single common test plan, the scenario IDs become standardized across all customer 

projects regardless their implementation.
4
  An example we have encountered is the register bus interface.  When 

Capability X is selected in a customer configuration then REG.CAP_X.1-2 scenarios must be verified.  However it 

is possible to perform that verification with an AHB register bus or an AXI register bus [4, 5].  The register bus 

selected is an `ifdef-style configuration of the DUT and will not change for that customer.  Nonetheless, 

REG.CAP_X1-2 is a valid test for all projects that select Capability X and we can quickly determine pass or failure 

without knowing the underlying register bus technology.  By abstracting the executed simulation from the testing 

scenario we can analyze scenarios more specifically and without requiring a specific run test. 
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B. Scenarios for Reporting 

The valid testing scenarios for that customer configuration are mapped to run simulation (what test must be 

executed) and functional coverage.  First, the valid test scenarios are directly affected by the customer `ifdef-style 

compile-time and constant-static run-time configurations.  In either approach the testing scenario is either valid or 

invalid.  Suppose, in TABLE 3, Customer B did not support Capability X.  Then all testing scenarios associated with 

Capability X are not valid and are indicated as such in the test plan.  For testing scenarios that are valid in the 

customer configuration, once they are available for regression they are also indicated as such.  Considering only the 

scenarios listed in TABLE 3, verification for Customer A has implemented 3 of 4 tests; the err_capx test is not yet 

available.  However, 4 of 6 scenarios are implemented.  Therefore we would say that even if all tests passed in 

regression the verification for Customer A cannot exceed 66% coverage of the test plan from simulation perspective. 

  
TABLE 3: EXAMPLE BASIC TEST PLAN CUSTOMER SECTION; SELECTION OF SCENARIOS FOR DATA COLLECTION AND REPORTING. 

Scenario ID Test name 
Customer A Customer B 

Valid Regress Valid Regress 

CLK.SEL.1 All Y Y Y Y 

REG.CAP_X.1 reg_default_test Y Y N  

REG.CAP_X.2 reg_bitbash_test Y Y N  

DATA.CAP_X.1 base_test Y Y N  

DATA.ERR.CAP_X.1 base_err_test, err_capx Y  N  

DATA.ERR.CAP_X.2 base_err_test, err_capx Y  N  

 

At the beginning of the overall project likely only the scenario details are known, as in TABLE 2.  Once the 

verification environment implementation has begun then test names will start to be known.  As customer 

configurations are added then scenario validity will be known.  The point here is that the test plan is a live 

document.  Its structure will remain the same but its contents will grow over time. 

 

C. Verification Approach 

While verification approach is well known, we highlight how the test plan correlates in this section.  Selection of 

the overall verification approach for a highly configurable design is dependent on the (initial) test plan.  We identify 

three approaches to verification: 

 

1) Directed, 

2) Directed-random, and 

3) Random. 

 

In TABLE 3, the test name to be simulated in order to cover the scenario ID is listed.  For example, REG.CAP_X.1 

is covered when reg_default_test is simulated and passes.  This is a directed test that always performs the exact same 

sequence of actions and checks.  If it is possible to identify one or more directed tests for each scenario in the test 

plan, including their interrelationship, then the directed verification approach is sufficient.  For Customer A, from 

TABLE 1, the REG.CAP_X.1 scenario requires two individual instances, one for when clock selection is 100MHz 

and one for 200MHz.  Increasing the number of unique scenarios has a negative impact on directed verification 

efficacy.  Furthermore, based on the presentation in TABLE 3, there is no obvious way to correlate the test name in 

the test plan and the test written.  The test plan test name becomes a one-to-many relationship.  While the regression 

snapshot (i.e., one regression) can give a clear picture of pass or failure of scenarios tested, it hinders deeper analysis 

(e.g., how many scenarios remain). 

 Directed-random verification expands the directed test by incorporating random variables in order to achieve 

more scenario coverage with fewer written tests.  For scenario REG.CAP_X.1, randomizing the clock selection prior 

to executing the main body of the test would achieve the desired results over one or more regressions.  Functional 

coverage may be implemented to prove this result but also may not be necessary as, in this case, both scenarios will, 

statistically, be covered.
5
  With directed-random verification the test itself is still in direct control over the 

environment.  Furthermore, now there is a one-to-one relationship between test name and written test.  Scripting can 

quickly ascertain which tests have been simulated, their pass or failure rate, and which tests have not been simulated, 
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 Keeping the number of random variables low in the directed-random test enables statistics to work in our favor: the 

probability of not covering all cases is proportionately low.  



and adjust the regression score accordingly.  For TABLE 3, as mentioned in section III-B, scripting can limit the 

regression score to 66%, even if all simulated tests passed, because not all expected tests exist in the regression. 

Random verification, by contrast, moves control of the verification environment from the simulated test to the 

random constraints in the environment itself.  Scenario DATA.CAP_X1.1 is indicated only as a random test – the 

“good” base random test.  Scenarios DATA.ERR.CAP_X1.1-2 show two tests, one is the “good with errors” base 

error random test, while the other is a directed tests.  Simulating the “directed” test (presumably with the correct 

command-line options) ensures the generated scenario will be covered.  The “directed” test in a random verification 

environment is not a true directed test.  Instead of ensuring the same sequence of events during simulation, the 

“directed” test constrains only as many variables as necessary to achieve the generated scenario.  Then, checkers 

verify the response. 

Even fewer tests, than the directed-random approach, are required in order to cover the test plan scenarios in a 

constrained random verification environment.  Additionally, constrained random verification will likely simulate 

scenarios within the legal bounds of the DUT but outside the bounds of the test plan.  In this manner the test plan 

becomes a base level of testing for the IP.  Those unplanned legal scenarios, especially when error injection is off or 

extremely limited, are where the power of the constrained random verification environment comes to the fore.  

However, there is a cost to the automation, especially in reporting.  As unique scenarios are added to the test plan 

more and more of them will be covered only by the “good” or “good with errors” random test.  Now we have a 

many-to-one relationship from scenario IDs to test names.  Again automation may be hindered for deeper analysis 

unless accurate functional coverage is also incorporated into the test plan.  

 

 

IV.   FUNCTIONAL COVERAGE 

The functional coverage model for verification of highly configurable IP must, itself, be highly configurable.  We 

employ the moldable and hierarchical superset functional coverage model as presented in [4].  In section II we 

presented hardware configurations selected by `ifdef or other constant-static methods.  These configurations are 

represented as configuration variables in our superset functional coverage as they do not change over the course of 

the customer program.  Similar to the hardware logic, functional coverage covergroups, or cross bins within, are 

optionally selected based configurations.  Also in section II we presented hardware configurations selected by 

pseudo-static methods at run-time.  These configurations are represented both as configuration variables and mode 

of operation variables, or simply mode variables, in our superset functional coverage.  For example, referring to the 

customer requirement matrix in TABLE 1, Capability X support is modeled only as a configuration variable.  Either 

the covergroup, or collection of cross bins, exist in the functional coverage model for reporting scenarios hit, or they 

do not.  However, reference clock selection may be modeled as a combination of configuration and mode variables. 

 
TABLE 4: FUNCTIONAL COVERAGE MODEL CONFIGURATION AND MODE VARIABLES. 

Name Range Signal Description 

C_CAP_X 0,1  Capability X support. 

C_REFCLK_SEL 100, 125, 200, 250, 500  Supported clock frequencies 

M_REFCLK_SEL $C_REFCLK_SEL CFG::REFCLK_SEL Runtime clock selection 

CAP_X_CTRL 
DROP_AT_ERR, 

INT_AT_ERR 
 Capability X control activation 

CAP_X_ERR_IND 0,1  Capability X logic has seen an error 

 

The moldable functional coverage model does not directly define cover points and their bins.  Instead, it declares 

coverage variables with their full potential range of values.  These cover variables are then instantiated within a 

cover group and SystemVerilog code generated as coverpoints.  Furthermore, configuration variables are consumed 

by the coverage compiler script, much like `macros are consumed by the SystemVerilog preprocessor.  That is, the 

configuration variables are used internal to the superset functional coverage model specification to mold the 

covergroup and its cross bins such that the generated SystemVerilog contains only those bins valid in the 

configuration.  Figure 4 shows the general use model for the functional coverage compiler employed in our 

verification architecture.  The superset functional coverage model is defined as a collection of Microsoft Excel 

XLSX workbooks [5].  An input configuration file for the coverage compiler, coverc.pl, defines configuration 

variable overrides such that the resultant SystemVerilog code has been molded to the customer configuration. 



 
Figure 4: General use model for molding the superset functional coverage model. 

By definition from [4], configuration variables are defined in the MS Excel workbook “config” spreadsheet and 

have names beginning with “C_” (e.g., C_REFCLK_SEL).  Mode variables are defined in a “mode” spreadsheet and 

have corresponding names beginning with “M_” (e.g., M_REFCLK_SEL). Then, when the script identifies a mode 

variable with corresponding configuration variable it rectifies the range of the mode to the configuration variable.  

For example, the default expansion of M_REFLCK_SEL from TABLE 1 is shown in Code 3. 
 

Code 3: M_REFCLK_SEL default SystemVerilog coverpoint implementation. 

However, refer to the configuration object for Customer A in Code 1.  REFCLK_SEL configuration only supports 

100MHz and 200MHz clock frequencies.  As shown in Figure 4, the automation generates a configuration file for 

input into coverc.pl.  For Customer A, the Config.txt file would indicate C_REFCLK_SEL := 100, 200.  Based on 

this command-line override, the coverage compiler generates the expansion of M_REFCLK_SEL coverpoint as 

shown in Code 4.  

 

Code 4: M_REFCLK_SEL SystemVerilog coverpoint implementation for Customer A. 

Referring to the test plan in TABLE 2, scenario DATA.ERR.CAP_X.1 indicates the situation where the activated 

Capability X control register is set to DROP_AT_ERR and error has been seen by the DUT.  This covergroup 

should be sampled at the monitor step because it is reporting that situation has arisen where the DUT was configured 

for errors and an error was indicated.  The verification of data actually dropped must be performed by some 

environment checker and not the functional cover group.  TABLE 5 shows an example covergroup implementation 

while TABLE 6 shows the covergroup correlation back to the testing scenario.  The full instance path must be 

provided in the correlation to properly collect functional coverage data.   Just as the more than one test name may 

correlate to the scenario ID, so too can more than one coverage metric.  Furthermore, while we are presenting only 

one type of coverage metric, the cover group instance, we may correlate into the covergroup as necessary (cover 

point or cross bin).  These instance paths are taken as-is for generated verification plan back-annotation. 
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// M_REFCLK_SEL := $C_REFCLK_SEL := 100, 125, 200, 250, 500; default 

coverpoint M_REFCLK_SEL { 

  bins M_REFCLK_SEL_0 = { 100; } 

  bins M_REFCLK_SEL_1 = { 125; } 

  bins M_REFCLK_SEL_2 = { 200; } 

  bins M_REFCLK_SEL_3 = { 250; } 

  bins M_REFCLK_SEL_4 = { 500; } 

} 
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// M_REFCLK_SEL := cmd-line override:= 100, 200; Customer A configuration 

coverpoint M_REFCLK_SEL { 

  bins M_REFCLK_SEL_0 = { 100; } 

  bins M_REFCLK_SEL_1 = { 200; } 

} 

CONFIG.pm Config.txt

CFG1 := val
CFG2 := { val }

script.pl

coverc.pl

Cover.xlsx

Cover.xlsx

Cover.xlsx

cg0.svh

cg1.svh

cg2.svh



TABLE 5: EXAMPLE COVERGROUP FOR DATA.ERR.CAP_X.1 TESTING SCENARIO. 

Name DATA_ERR_CAP_X_1_cg 

Instance path top::cap_x_agent_fcov::DATA_ERR_CAP_X1_cg 

Points CAP_X_CTRL CAP_X_ERR_IND M_REFCLK_SEL 

drop_err_indicated DROP_AT_ERR 1 * 

 

As functional coverage becomes available, the test plan may be updated, as in TABLE 6, to indicate function 

coverage correlation with testing scenarios.  A passing scenario is one where all instances of its test name pass in 

regression and all its functional coverage metrics are completely covered.  For example, suppose the base_err_test 

was regressed over 100 simulation instances and 80 of them passed.  Also suppose that the covergroup for 

DATA.ERR.CAP_X.1 hit in the 100 MHz clock cross scenario only for Customer A.  Because there exists two 

cover points for M_REFCLK_SEL for Customer A, this represents a 50% coverage rate, or 1 of 2 cross scenarios 

have been covered.  The scenario DATA.ERR.CAP_X.1 failed with a score of: 

 

DATA.ERR.CAP_X.1 = (passing rate) * (coverage rate) = (80%) * (50%) = 40% regression score. 

 

TABLE 6 indicates for Customer A one scenario has yet to be ready for regression.  Assuming (a) all other tests 

passed, and (b) all other covergroups achieved full coverage (both clock modes were hit in other implemented 

covergroups), then the regression score can be calculated as: 

 

 Regression score = 

= 

 

= 

= 

= 

AVERAGE(scenario_score) * (implementation ratio) 

AVERAGE(CLK.SEL.1_score, REG.CAP_X.1_score, REG.CAP_X.2_score, 

                    DATA.CAP_X.1_score, DATA.ERR.CAP_X.1_score) * (5/6) 

AVERAGE(85%, 100%, 100%, 100%, 40%) * (5/6) 

85% * (5/6) 

70.83%. 

 

Because the regression score is less than 100% there exists a verification failure (regression test failed) and/or a 

testing gap (implemented ratio and reported coverage).  For this regression there’s all three:  

a) 20% of the base_err_test simulation instances failed, 

b) Functional cover group for DATA.ERR.CAP_X.2, if implemented reports 0% coverage in simulation, and 

c) DATA.ERR.CAP_X.2 testing scenario is not yet available. 

As these issues are rectified, over time, the regression score should trend towards 100%. 

 
TABLE 6: EXAMPLE TEST PLAN WITH FUNCTIONAL COVERAGE CORRELATED PER SCENARIO. 

   Customer A Customer B 

Scenario ID Test name Coverage Metrics Valid Regr Valid Regr 

CLK.SEL.1 All group: top::clk_cg Y Y Y Y 

REG.CAP_X.1 reg_default_test group: top::clk_cg Y Y N  

REG.CAP_X.2 reg_bitbash_test group: top::clk_cg Y Y N  

DATA.CAP_X.1 
base_test group: top::cap_x_agent_fcov:: 

DATA_CAP_X1_cg 
Y Y N  

DATA.ERR.CAP_X.1 
base_err_test, 

err_capx 

group: top::cap_x_agent_fcov:: 

DATA_ERR_CAP_X1_cg 
Y Y N  

DATA.ERR.CAP_X.2 
base_err_test, 

err_capx 

group: top::cap_x_agent_fcov:: 

DATA_ERR_CAP_X2_cg 
Y  N  

 

Just as the DUT is implemented as RTL superset, and the test plan is implemented as scenario superset, the 

functional coverage model is also implemented as covergroup superset.  The single configuration object, written in 

Perl for our projects, transforms the functional coverage to customer configuration.  Additionally, the test bench 

itself may conform to the customer configuration to ensure proper verification. 

 

 



 

V.   CONSTRAINED RANDOM TEST BENCH 

The constrained random verification environment should transform in the same manner as the DUT to verify the 

customer configuration.  In section II we presented customer configurations, specified through the single 

configuration object, in Perl, selecting static configurations via `ifdef compile-time or constant-static run-time 

selection.  The test bench itself should transform in the same manner at compile-time or constant-static run-time 

selection to verify the customer configuration DUT.  Whereas for the DUT we presented multiple approaches to 

handling, and possibly stripping, compile-time macros, for the test bench this is not necessary.
6
  Additionally, we 

presented pseudo-static run-time activations as mode of operation configurations. A top environment configuration 

object should contain and randomize activation values at the beginning of simulation to cover mode of operation 

configurations.  In this section we cover some higher level topics specific to managing the testing and reporting for 

the highly configurable IP. 

The test bench for highly configurable IP should focus only on constrained random verification, as described in 

section III-C, with some directed testing via confining constraints.  Given the scope of a multi-customer situation 

and their corresponding mutually exclusive configurations it should be obvious that selecting and activating UVCs 

and agents is far easier than porting directed or directed-random testing from one customer project to the next.  

When an issue is found affecting a commonly-selected UVC then the fix may be applied in one code location rather 

than each projects’ directed-random test.   

In this vein, we have structured our project code vault in the following manner. 

 

 common/tb 

common/tests 

common/scripts 

common/coverage 

common/docs/testplan.xlsx 

customer_a/tb 

customer_a/tests 

customer_a/scripts 

customer_a/docs 

Common test bench components: UVCs and/or agents. 

Common test base classes for both “good” and good with errors” testing. 

Project wide scripts. 

Superset functional coverage model. 

Superset test plan. 

Customer A test bench class extensions and instantiations thereof. 

Customer A test class extensions and instantiations thereof. 

Customer A specific scripts, including CONFIG.pm configuration object. 

Customer A internal and releasable documents. 

 

Each customer project starts with a configuration object, written in Perl and residing at 

customer/scripts/CONFIG.pm.  We assume that in addition to simply instantiating common UVCs and tests some of 

those classes will require extension for that customer.  For example, if Customer A project not only includes agents 

for Capability X but also must instrument some of its options, then Customer A/tb/uvc_cap_x directory would 

extend the necessary classes from common/tb/uvc_cap_x directory.  In this manner the bulk of development during 

the course of the project occurs in the common directories.  The goal is for the customer specific directories to 

require an initial setup at project start then very little development as the customer project progresses. 

 

 
Figure 5: Top global configuration object structure defined in common directory, extended to customer project. 

                                                           
6
 If the test bench is released to the customer, then preprocessing the test bench may be desired but we have not had 

that requirement from any customer. 

uvm_object

top_global_config

constraint refclk_sel {

M_REFCLK_SEL inside {100,200};

}

uvm_object

top_global_config

function new( );

  M_REFCLK_SEL.push( inside {100,200} );

endfunction

top_global_config_base

+ rand static int M_REFCLK_SEL

(A) (B)

common/tb/config

customer_a/tb/config

top_global_config_base

+ static lvm_rand#(int) M_REFCLK_SEL



Regarding mode of operation configurations, refer to Figure 5 (A), the top environment configuration object is 

also be defined in some common/tb/config directory.  This class provides the structure for the simulation-specific 

configuration object, containing all configuration members: compile-time specified or run-time specified.  The 

constraints on those members are defined a customer_a/tb/config directory as class extension.  For example, TABLE 

4 shows the M_REFCLK_SEL functional coverage mode variable bound to the specified signal path 

CFG::REFCLK_SEL.  The config object in the common/tb/config directory may contain both instance-specific 

(allowing for multiple top environment instantiations)
7
 and static members.  REFCLK_SEL, presumably, affects all 

DUT and test bench components and, thus, is represented as static random variable, unconstrained.  However, the 

customer_a/tb/config directory configuration object class extension will apply the constraint valid for that customer. 

 

Code 5: Top global config classes defining the structure and default constraints on mode of operation configurations. 

As shown in Figure 5 (B), our test benches employ the lvm_rand random object container class for mode of 

operation configurations [6, 7].  The advantage here is the container class automatically enables command-line 

modification of the constraint.  For example, given the instantiation of the lvm_rand class, in Code 5, the following 

simulations commands may be used to choose a different constraint or confine the constraint. 

 
> runsim +M_REFCLK_SEL=’dist { 100:=10, 200:=1}’ . . . 

> runsim +M_REFCLK_SEL=100 

 

When not supplied, the M_REFCLK_SEL random variable has uniform probability on the customer valid values. 

Finally, tying it all together into single compilation, Figure 6 shows our flow from the superset to the customer 

configuration compilation and simulation.  As indicated, we are targeting Synopsys VCS toolset [8]. 

 

VI.   VERIFICATION PROGRESS 

Verification reporting may be the most import component of the verification management architecture.  This step 

capitalizes on the previous sections’ work to collect the data and produce reports.  Figure 7 presents the data input to 

the reporting script and the reports generated and TABLE 7 indicates the reports’ dependencies and tools involved. 

 
TABLE 7: VERIFICATION REPORTS AND THEIR DEPENDENCIES. 

Report Dependencies Tools 

Testplan.html Testplan.xlsx In house script only 

RegressionResults.html All simulation reports (sim_rpt) In house script only 

FCovResults.html All functional coverage (cg_rpt) Synopsys URG, HVP [8], and in house program 

TestplanResults.html All reports All the above 

 

                                                           
7
 Consider an IP that, for some customer, is actually instantiated twice, bundled together and delivered as a new IP.  

The test bench for one instance may be duplicated when architected with this kind of portability in mind.  We have 

had this exact requirement for our DUT and in our test bench. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

class top_global_config_base extends uvm_object; 

  static lvm_rand#(int) M_REFCLK_SEL; 

  function new(string name = “top_global_config_base”); 

    super.new(name); 

    M_REFCLK_SEL = new(“M_REFCLK_SEL”, this); 

  endfunction 

endclass 

 

class top_global_config extends top_global_config_base; 

  function new(string name = “top_global_config”); 

    super.new(name); 

    M_REFCLK_SEL.push(“inside {100,200}”); 

  endfunction 

endclass 



 

 

 
Figure 6: From customer configuration to simulation. 

 

 

 

 

 
Figure 7: Post-regression reporting mechanisms. 
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The TestplanResults.html report is the primary report to indicate current verification status.  An example summary 

table for the testplan results is shown in Figure 8 (test scenario == testcase).  The first section, “Testplan Results”, 

shows brief accounting of the number of testing scenarios collected while parsing the Testplan.xlsx file for this 

customer configuration.  The overall functional coverage score was a respectable 97% (although functional coverage 

metrics continue to be added daily).  The “Regression Results” section showed a passing rate of 93%, but there are 

some issues still to be resolved.  First one test was “missed.”  This test was marked in the Testplan.xlsx as in 

regression but was not seen by the inspection script to have simulated.  Additionally, four tests are still to be 

implemented to cover an additional 10 test scenarios.  Therefore the relative number test scenarios covered is: 

 

128 test scenarios in regression * 93.161% regression passing = 119.246 relative test scenarios 

 

Combining the relative number of test scenarios covered with the cover score results score of 83%.   Also note the 

Testplan.html, functional coverage model and coverage results links available. 

 

 
Figure 8: TestplanResults.html summary table. 

In Figure 9, the results for a single test scenario are indicated.  This scenario is similar to the scenario in TABLE 2 

of the same name.  The functional coverage here was met at 100% but the test passing rate is inadequate.  As such, 

the scenario is not covered in our verification architecture.  Note that because this scenario affects all tests the 

number of instances and passing rate match the regression results themselves. 

 

 
Figure 9: Once testplan scenario showing failure due to inadequate simulation result even though functional coverage was met. 

The results indicated in these diagrams are charted over the course of the project utilizing the regression database.  

Whereas the regression results can only provide a current snapshot we also chart the number of relative test cases 

covered.  In Figure 10 (A), the regression percent-passing snapshot over time is charted.  This only provides 

information about how well regression passing, not the verification status.  However, Figure 10 (B) charts the 

relative test cases covered versus the total number of tests cases.  This should always increase over time until the 



relative number matches the total number.  In this we have all tests and functional coverage in place and they are all 

passing. 

 
Figure 10: Progress: (A) regression results snapshots over time; (B) progress towards relative test cases == total test cases. 

 

 

 

VII.   EXPERIENCE 

We have incorporated this full verification architecture in our current PCIe subsystem project.  Each customer 

selects the configurations from the master configuration matrix maintained by management and hardware designers.  

The configuration object is coded directly from the matrix selections.  We employ a script architecture, in Perl5, to 

allow for more reuse between each of the script.pl’s in the diagrams.  This same script enables some parallelism 

within a single step in the flow and between steps in the flow.  For example, when executing the RegrInspect.pl 

script from Figure 7, each of the simulation directories must be entered to determine the self-check test status.  We 

parallelize this within the step.  Also, generating functional coverage, Figure 4, may occur in parallel with DUT 

preprocessing or other steps.  The script framework handles forking each of these scripts. 

We have encountered challenges along the way, predominately refocusing our work from a customer design 

specific to a superset specific development process.  This takes some realignment on thinking for the verification 

environment (although this is probably the easiest to picture), functional coverage and test plan.  However, the 

dividends paid are from management having a clear understanding where each project resides in the schedule. 

The Synopsys verification planner back-annotation becomes difficult to work with in this architecture.  After 

back-annotation the hvp tool writes back to and XML file rather than an XLSX file.  Publicly available Perl tools to 

convert back to XLSX are hard to come by (i.e., we haven’t found any reliable tools).  As such, we have replace 

Synopsys hvp with an in-house program to connect to the unified coverage API (UCAPI) library.  This becomes 

more difficult to work with but since this program has been in place we have had little trouble. 

 

 

VII.   CONCLUSIONS 

Again, let’s be honest, managing a highly configurable design IP and corresponding verification project is 

difficult.  Our verification architecture has evolved over several years and customer project generations.  We are at a 

point to take full advantage of this architecture and provide accurate reporting on the overall progress of the project.   

Importantly, we can combine a test plan, coverage, and individual simulations from a full constrained random 

verification environment and report intelligently. 
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