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Security Requirements

» Lets consider a simple SOC diagram

Secure-aware
A processor that can switch
between secure and non-
secure software

tlipherali
= Threat: IP theft

= Master 1 should not have access the secure memory if “secure_mode” is 0
= Master 2 should not have access to the secure memory.

= Threat: Config Tampering

= Once the peripheral is configured as secure, its configuration registers should not be
overwritten.
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Security Verification Challenges

» Presence of “Security-Aware” Masters
* Requires “security-aware” software development flow for verification.

» Exhaustive Scenarios

= Complex Designs with lots of configurations
" memory regions, each capable of being configured as either secure or non-secure.
= Granularity of memory regions can also be programmable
= Peripherals and Interrupts could be either secure or non-secure

= Security cannot be verified in block level as we need the complete system for
many of the scenarios

= -> |ead to exhaustive test scenarios

» Verification Closure
= Difficult to conclude that the design is indeed secure, as there are no metrics
= Scope for hidden paths
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Simulation Environment

Secure aware

C tests compiled
and loaded in
flash

Secure code is compiled and
loaded to secure location in
flash. Separate stack, vector
table etc.
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Verification using directed tests

» Possible Scenarios

= Access(read/write) all secure location from non-secure masters.
= Access(read/write) all secure location from non-secure software(secure master is in

non-secure mode)

= When a secure master is accessing secure data, ensure that there isn’t any data

leakage.

» Challenges

Number of scenarios grow exponentially with each configuration option.
= Configuring memory, master, peripherals, interrupt as either secure or non-secure

Data can split (ex: 32 bit from secure memory is read as 8 bits at a time by a spi
master)

Data can mutate (ex: secure data inverted and is available for non secure slave)
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Verification using Random tests

» One approach to address the scenario discussed

= RAL based random test to access all location randomly(preload a known key to
all secure locations)

= Assertions made sure that the key is not observed in non-secure master interface.

» Challenges
= Developing checkers is difficult, especially if the data mutates or splits
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Drawbacks of Simulation

» Slow bring-up of simulation setup for verifying security-aware masters

= Security bugs need to be caught as early as possible as it can lead to major
architecture changes.

» Depends on hacking ability of the verification engineer
= Expertize and experience matter

» Data mutation problem

= |f the secure data splits and diverges into the design, it is not possible to find it
from simulation.
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Formal approach

» Requirements are not easily expressible by regular SVA assertions

= SVA and PSL does not have a way to track data propagating throughout the
design

» Run time issues

» JasperGold Security Path Verification(SPV)
= Advantages
= Translating security requirement to assertions is fairly easy
» Find paths between source and destination signals even if data mutates or splits
= Checks against

= Data Leak
= Secure data cannot be read illegally
= Data Overwrite
= Secure data cannot be overwritten illegally

ANALOG
DEVICES
8 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™



Why Jasper Security Path Verification App?

= Checks if there is a functional path from source to destination by injecting
unigue tag, called “taint”, at the source and checking if it can appear at the

destination
= This does not a miss a path even if data mutates or splits
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Employing SPV for Security Verification

» Steps involved
= |dentify illegal source (any slave “Crypto”) and
destination (any master “Teal”) combinations.

= Set preconditions on source and destinations
= Master issuing a Non-secure transfer( HNONSEC == 1)
= Write SPV assertions

= Introduces new type of assertion which checks if data can go from source to
destination

check _spv —create —from Crypto.prdata —to Teal.hrdata -from_precond
{ Tea HNONSEC == 1}

= Analyze the paths identified by the tool
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SPV waveforms for debugging
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Bugs

» Leakage check from Secure memory to Non-secure master
= Data leak observed when a non-secure read follows a secure read
= Data on secured memory was not cleared after a secure transaction
= This bug is extremely difficult to find out using simulations.

Data leak

HADDR_S { secureAddr ) 0

DOUT_S ( Secure Data ) 0

HRDATA S { secure Data

HADDR_NS 0 { secure Addr

HRDATA_NS Secure Data ) 0

DOUT_S(Expected) ( Secure Data 0

)

» Leakage check from a secure peripheral to secure master in non-secure mode
= Secure master is in non-secure state can access a secure peripheral

= Upon debugging found that PSEL of secure peripheral was not masked by the
“secure_mode” control signal.
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