ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Making Security Verification
“SECURE”

NAGESH RANGANATH
SUBIN THYKKOOTTATHIL

Analog Devices Confidential Information.
©2017 Analog Devices, Inc. All rights reserved.

Security Requirements

» Lets consider a simple SOC diagram

Secure-aware
A processor that can switch
between secure and non-
secure software

tlipherali
= Threat: IP theft

= Master 1 should not have access the secure memory if “secure_mode” is 0
= Master 2 should not have access to the secure memory.

= Threat: Config Tampering

= Once the peripheral is configured as secure, its configuration registers should not be
overwritten.

ANALOG
DEVICES
ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Security Verification Challenges

» Presence of “Security-Aware” Masters
* Requires “security-aware” software development flow for verification.

» Exhaustive Scenarios

= Complex Designs with lots of configurations
" memory regions, each capable of being configured as either secure or non-secure.
= Granularity of memory regions can also be programmable
= Peripherals and Interrupts could be either secure or non-secure

= Security cannot be verified in block level as we need the complete system for
many of the scenarios

= -> |ead to exhaustive test scenarios

» Verification Closure
= Difficult to conclude that the design is indeed secure, as there are no metrics
= Scope for hidden paths

ANALOG
DEVICES

ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Simulation Environment

Secure aware

C tests compiled
and loaded in
flash

Secure code is compiled and
loaded to secure location in
flash. Separate stack, vector
table etc.

System Sec.
Controller

AHB agent driving
the master
interfaces

e

AHBS Interconnect

Infrastructure for switching
between secure and non-

CortexM0

1 I RADIO SUBSYS |
wic | wie | 5 ! ‘ secure. Non secure callable API
[— ppC BTLE / ANT LinkLayer | . .
| i functions. Loaded to NSC region
‘[777777?@@@:@7777;:7 }77777 risiEciuRTTviiw‘ ************* !
| mux | I | [T T TmErsT T T 1 1 MultiProc |
| o CryptoAcc o
|] cecks || aas sha, | Pimae | or| e || | e I
| | Lo HMAC) | || (x4) er | meox | |
| ‘ | L | AHB- (il B e |
‘ ‘ t ‘ ‘ t PPC APB e ——— ——APB———————
UART SPI QsPl 12¢ | pmu_ ||| CRC | || wall Flex ULP ADC
L] (][] L] (=) bl][], [[[
| | | Clits | | ! } Ultra Low Power Features |

ANALOG
DEVICES

4 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Verification using directed tests

» Possible Scenarios

= Access(read/write) all secure location from non-secure masters.
= Access(read/write) all secure location from non-secure software(secure master is in

non-secure mode)

= When a secure master is accessing secure data, ensure that there isn’t any data

leakage.

» Challenges

Number of scenarios grow exponentially with each configuration option.
= Configuring memory, master, peripherals, interrupt as either secure or non-secure

Data can split (ex: 32 bit from secure memory is read as 8 bits at a time by a spi
master)

Data can mutate (ex: secure data inverted and is available for non secure slave)

ANALOG
DEVICES

ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Verification using Random tests

» One approach to address the scenario discussed

= RAL based random test to access all location randomly(preload a known key to
all secure locations)

= Assertions made sure that the key is not observed in non-secure master interface.

» Challenges
= Developing checkers is difficult, especially if the data mutates or splits

ANALOG
DEVICES

6 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Drawbacks of Simulation

» Slow bring-up of simulation setup for verifying security-aware masters

= Security bugs need to be caught as early as possible as it can lead to major
architecture changes.

» Depends on hacking ability of the verification engineer
= Expertize and experience matter

» Data mutation problem

= |f the secure data splits and diverges into the design, it is not possible to find it
from simulation.

ANALOG
DEVICES

! ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Formal approach

» Requirements are not easily expressible by regular SVA assertions

= SVA and PSL does not have a way to track data propagating throughout the
design

» Run time issues

» JasperGold Security Path Verification(SPV)
= Advantages
= Translating security requirement to assertions is fairly easy
» Find paths between source and destination signals even if data mutates or splits
= Checks against

= Data Leak
= Secure data cannot be read illegally
= Data Overwrite
= Secure data cannot be overwritten illegally

ANALOG
DEVICES
8 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

Why Jasper Security Path Verification App?

= Checks if there is a functional path from source to destination by injecting
unigue tag, called “taint”, at the source and checking if it can appear at the

destination
= This does not a miss a path even if data mutates or splits

File Edit View Window Help cadence
H G v| Search the GraphView
A ax
Annotation list: ~ Select all Clear all & -
i Cycle base 4».
= Event base mem_wdat g_ao
¥ Forward —

Destination
is
reachable!

e "..) \
Proof end. //7\ A N— [These nodes are
You can “o— | unreachable.
waltkhback f Reacha -
gtne Se proo le nodes _\‘p
PS- are red . -
jj Play ll— IV Loop
[Eng dy [Tool ready
ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

° ADI Confidential

Employing SPV for Security Verification

» Steps involved
= |dentify illegal source (any slave “Crypto”) and
destination (any master “Teal”) combinations.

= Set preconditions on source and destinations
= Master issuing a Non-secure transfer(HNONSEC == 1)
= Write SPV assertions

= Introduces new type of assertion which checks if data can go from source to
destination

check _spv —create —from Crypto.prdata —to Teal.hrdata -from_precond
{ Tea HNONSEC == 1}

= Analyze the paths identified by the tool

ANALOG
DEVICES

10 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

SPV waveforms for debugging

File Edit Miew Misualize Tools Window Help . cadence’
& o | 2 Ak oall e BEBE] LS wl 15 o @ ~ 5 | o B[] E ~MecetAnanes = @ = | 8 2 @ |
t to find [an e 1) 2| 3] a| 5] 5| 71 a| 9| 10| 11 | Signal Browser &
-1 top (top)
" <embedded=::leakage_: | I
= = master_data [5 s ENLF ab
master_ctrl_data |50 | EH —) 22
bridge_data [518 | EHEE —
inf_data [5180 | EHEEES I Why (find out reason for signal value) I Ctri+W '
slave_data [5 oo | EHETE Relevant Loads Ctrl+Shift+W
secure data [6750 C | EHTE Add Why Signals Ctrl+4 >
e rom_data [21m8 | e | | = | | o i
. From Precond |} — — Highlight Relevant Logic Ctrl+5
Add Relevant Input/Undriven Signals Ctri+6
B | u e h | g h | | g h tl n g b Add Relevant Module Instance Port Signals ~ Ctrl+7
St t H t f Modify Value... Ctri+M
ar I n g p O I n O I Extract Constraint... =
= .
- Add Justify
Source Pane O a[a + 5 X e 0 4
- .
| e Source Code ... || <8 | 4 - | & & | E2] why at iteration 10 for master_data (1 of & [] = Copy Signal Value Ctri+C
61 master_data <= 0; | : Zoom 4
62 state <= state+l; = master_data a
63 end ia
64 begin = reset HE
65 master_data == 0; o rom_data 8
66 state == state+l; n secure_data a
67 end -+ secure_enable 1
(1] —t :-gil‘l n slave_data =]
69 x> Qter_clata == master_ctrD = state =
§'hoz2
78 state <= o,
. 71 end J
2| | L4 72 endcase
Hierarch 73 end = [Fic =sion

r

['Why [top.v

[top.v

Visualize Configuration |

Indexed Behaviors

Signal Browser |

11

ADI Confidential

~ [Wisualize trace [

[Proof ready

[Tool ready

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Bugs

» Leakage check from Secure memory to Non-secure master
= Data leak observed when a non-secure read follows a secure read
= Data on secured memory was not cleared after a secure transaction
= This bug is extremely difficult to find out using simulations.

Data leak

HADDR_S { secureAddr) 0

DOUT_S (Secure Data) 0

HRDATA S { secure Data

HADDR_NS 0 { secure Addr

HRDATA_NS Secure Data) 0

DOUT_S(Expected) (Secure Data 0

)

» Leakage check from a secure peripheral to secure master in non-secure mode
= Secure master is in non-secure state can access a secure peripheral

= Upon debugging found that PSEL of secure peripheral was not masked by the
“secure_mode” control signal.

ANALOG
DEVICES

12 ADI Conﬁdential AHEAD OF WHAT'S POSSIBLE™

	Making Security Verification “SECURE”
	Security Requirements
	Security Verification Challenges
	Simulation Environment
	Verification using directed tests
	Verification using Random tests
	Drawbacks of Simulation
	Formal approach
	Why Jasper Security Path Verification App?
	Employing SPV for Security Verification
	SPV waveforms for debugging
	Bugs

