
Making RAL Jump, an Introspection

Conclusions We presented an approach for UVM RAL model back door access to DUT primary inputs and outputs. Several challenges to this approach lead us to
back door path mapping, driving reset to IOs, and active monitoring as solutions. Our implementation was simple enough to integrate within the existing RAL model flow with
some extensions. The base test was aware of these extensions and required some special care to build the model and drive the reset values, but test code was oblivious.
 The sheer volume of registers requires automation. There is a trade-off here between custom automation and third-party tool. Unless it is a company requirement to distribute
one of the popular register formats, then translation into RALF, CSRSpec or SystemRDL is a schedule burden. Furthermore, if field level randomization and back door path mapping
is not supported by the tool vendor for these formats, then customization should be considered. Nonetheless, it may be simpler for a one-off or short-lifespan project to
randomize at the register and build components to interact with a generated RAL model. This was not the case for our project.

Jeremy Ridgeway
LSI Corporation, Inc.

San Jose, CA

Karishma Dhruv
LSI Corporation, Inc.

San Jose, CA

Manmohan Singh
LSI Corporation, Inc.

Bangalore, India

Jump!

Abstract
The register abstraction layer (RAL) in the
universal verification methodology (UVM)
library provides a valuable code base for
easy re-use throughout the environment.
In a recent PCI-Express translation and link
layer verification project, the RAL model
was connected to the data path via back
door access to primary DUT inputs and
outputs. With field-level constraints,
scoreboarding, and special back door
access handling, our RAL model served as a
full verification component. We present
details on how to make RAL jump as well as
some pros and cons to consider.

DUT Registers with IO access

DUT
A
H
B

VIP

IO associated with register fields

Register
Abstraction

Layer

RAL front door access

IO Agent

Some registers fields may be directly
accessible on DUT ports. General approach
is to build RAL model for the register and
another agent to control the IO.

Fetch RAL value for
DUT input

Store DUT output
value change in RAL

Name Address Bit field MSB LSB Access IO Path IO Read Path Description

ID 0x00

device_id 31 16 RW dev_id_i Our device ID

rmt_device_id 15 0 RO rmt_dev_id_o
Partner’s device

ID

RAL Automation
RAL base class changes are transparent and monitors algorithmic,
thus the whole register model generation may be automated.

device_id

range : [31:16]
IO_W : dev_id_i

rmt_device_id

range : [15:0]
IO_R : rmt_dev_id_o

ID

Offset : 0x00

Register Block

REG

Offset : 0x04

FLD

range : [31:16]
FLD

range : [31:16]
FLD

range : [31:20]

REG

Offset : 0x08

FLD

range : [31:16]
FLD

range : [31:16]
FLD

range : [31:31]

RAL Model

Interface
Monitors

UVM RAL SystemVerilog
model instantiated with
global access.

RAL IO signals instantiated
in SystemVerilog interface
with known hierarchy.

RAL Model
(.sv)

Interface
Monitors

(.sv)

a

b
Parse

spreadsheet

Generate

Combine RAL and IOs with Backdoor Access

DUT
A
H
B

VIP

Register
Abstraction

Layer

RAL front door access

RAL backdoor read
from output

RAL backdoor write
to input

Output change triggers
backdoor read from output

Access to DUT IOs are transparent to the test bench. No SystemVerilog interface!
However, a few points must be taken care of: resets, access, and output changes.

Reset values must be driven to DUT inputs
RAL_model.reset();

RAL_model.drive_reset();

1

class project_reg_field extends uvm_reg_field;

 string m_def_access;

 bit m_drive_reset;

 function void drive_reset();

 m_def_access = get_access();

 m_drive_reset = 1;

 endfunction

 function bit needs_update();

 return m_drive_reset || super.needs_update();

 endfunction

endclass

Reset values must propagate to inputs

Register field volatility and access type require special handling in a base class.

2

Monitors need to trigger backdoor read from outputs
interface my_ral_interface_monitors;

 bit my_reg_request_updatep = 0;

 always @(posedge my_reg_request_updatep) begin

 RAL_model.my_reg.read(.path(UVM_BACKDOOR));

 my_req_request_updatep = 0;

 end

 always @(my_reg_field_A_output)

 my_reg_request_updatep <= 1;

 always @(my_reg_field_B_output)

 my_reg_request_updatep <= 1;

endinterface

3

1 2

3

