

Making Autonomous Cars Safer – One chip at a time

Apurva Kalia: Vice President R&D Ann Keffer: Product Management Director

cādence[®]

Automotive Market
Complex Challenges
ISO 26262 and Basic Safety
Functional Safety Methodology

cadence"

((()))

Automotive Semiconductor Growth

Automotive semiconductor revenue by application

CONFERENCE AND EXHIBITION OFCES Shaping the Automotive Industry

"Automotive Revolution – Perspective towards 2030" – a 2016 McKinsey Report identified 4 areas that deemed particularly important in shaping the auto industry thru 2030

Vehicle electrification	Increased Connectivity	Growth of Autonomous Driving	Shared Mobility Services
 Advances to solve High battery costs Proliferation of charging infrastructure 	Advances to • 5G deployment • Telematics services • V2I; V2V	ADAS deployment • Cost effective Level 3 and Level 4 by 2020~2025	 Proliferation of Ride sharing services Car sharing services

Autonomous Driving

- Amount of electronics is growing fast
- (ADAS) based on complex SoCs to enable high-performance computing
- Safety critical ADAS applications have stringent requirements on
 - Functional Safety
 - Security
 - Reliability

Complex Challenges

Source: BMW

Need low-power, small footprint, high-performance SoCs

© Accellera Systems Initiative

Making a Car Autonomous

Passive Vision Rear View Camera Vision Enhancement Auto Dimming Headlights **Blind Spot Detection** 360 View **Parking Assist** Lane Detection and Following Sign Recognition **Traffic Signal Recognition** Rain, Snow, /Fog Removal Pedestrian Tracking /Avoidance **Eve Focus Detection Driver Monitoring** Vehicle Detection/Avoidance

Complicated Convolutional Neural Networks

Automated and Reliable Object Recognition using Convolutional Neural Networks

Need a high-performance, low-power hardware platform to combine and analyze point clouds and accurately identify objects

Automotive SoC Verification Challenges

Systematic Failure Verification

Concurrent SW Development

Requirements Traceability

Use Case Verification

Performance Verification

Security Verification

Automotive Protocol Verification

Mixed Signal Verification

Functional Safety Verification

Random Failure Verification

ADAS SoC

Multiple verification and validation platforms

ISO 26262 and Failure Mode Effects and Diagnostic Analysis

Example tional Safety standards

UNITED STATES

ISO 26262 defines

- Processes to follow
- Hardware/software performance to achieve
- Safety documentation to produce
- Software tools compliance process

CONFERENCE AND EXHIBITION

"Absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical and/or electronic systems" (ISO 26262)

ASIA Determination Example—ISO 26262

ED STATE

For illustration purposes only

FIT gets distributed from the item to each of the elements © Accellera Systems

Initiative

ASIL Hardware Metrics

ASIL	Failure Rate	SPFM	LFM
А	< 1000 FIT	Not relevant	Not Relevant
В	< 100 FIT	> 90%	> 60%
С	< 100 FIT	> 97%	> 80%
D	< 10 FIT	> 99%	> 90%

- FIT Failure In Time (1 Failure / 10⁹ hours)
 - PMHF Probalbilistic Metric for Random HW failures
- SPFM Single Point Fault Metric
- LFM Latent Fault Metric

Functional Safety Life Cycle Main Tasks

• Silicon provider is asked to execute five main activates to implement a Functional Safety life cycle in light of the hardware random capability.

Life Cycle	Selection of ISO26262 Process Requirements and tailoring of the development process for the specific SoC (Safety Manger).
Safety Concept	Assumed Safety Requirements definition for the HW component for the Development of the SoC (Safety Architect)
Safety Analysis	Safety Analysis: FMEA/FMEDA/DFA (Safety Engineer)
Metrics Computation	Compute Hardware Architecture Metrics (SPFM, LFM), PMHF based on the defined Safety Concept (Safety Engineer)
Reviews/Confirmations	Perform applicable Verification Reviews, Confirmation Reviews, Safety Audit and Assessment (Auditor)

• Safety Manager is the person in charge to define and track the Functional Safety process, define the work products, define the template documentation and execute internal reviews

ISO26262—Functional Safety Principles

Systematic Failures

(e.g., software bug)

- Addressed by processes (planning, traceability, documentation, specs, ...)
- Strictness of processes are dependent on the ASIL level

Random Failures

(e.g., component malfunction, noise injection)

- Considers permanent failure and transient effects
- Includes safety mechanisms design and integration to handle faults
- Demonstrated by calculations of Reliability/verification of failure rates
- Failure rates and diagnostic coverage requirement depend on ASIL

© Accellera Systems Initiative

2018 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES

Functional Safety Metrics

- Target metrics values according to ASIL (Automotive Safety Integrity Level)
- Architectural Matrices (measured in %)
 - **SPFM**: Single Point Fault Metrics

The single point fault metric reveals whether or not the coverage by the safety mechanisms (i.e. the **DC**), to prevent risk from single point faults in the hardware architecture, is sufficient. Single point faults are faults in an element that leads directly to the violation of a safety goal \rightarrow SPFM high means that the set of Safety Mechanisms have high capacity to cover dangerous faults, resulting in high DC.

- LFM: Latent Fault Metrics

The latent fault metric reveals whether or not the coverage by the safety mechanisms, to prevent risk from latent faults in the hardware architecture, is sufficient. Latent faults are multiple-point faults whose presence are not detected by a safety mechanism. Latent faults become dangerous when a second faults appears and it will be not detected due to the latent fault previously occurred \rightarrow LFM high means that the set of Safety Mechanism have high capability to cover multiple faults (multiple = 2) scenario.

Functional Safety Metrics

- Absolute Metrics
 - **PMHF**: Probabilistic Metric for (Random) Hardware Failures

Is the sum of the single point, residual and multipoint fault metrics. Is expressed in $FITs \rightarrow PMHF$ low means a low probability that the SoC, including its safety mechanisms, fails without any detection. It is measured in FIT: 1FIT = probability that one failure occur in 10^9 hours. It represents the probability to violate the safety goal

2018 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES

Work Products and Documentations

 List of the most relevant documents to be produced during a Functional Safety Development and to be used during an assessment

Work Products	Content	ISO26262 References
	Company realted process quality standards, product life cyle, product responsibilities, tools qualificaiton, project	
Safety Plan	activities plan,	ISO 26262-2:2018, 6.4.3.9
	Process to control that work products can be uniquely identified and reproduced in a controlled manner at any time,	
Configuration Management Plan	e.g. bugs tracking and documentation	ISO 26262-8:2018
Change Management Plan	Process to changes to safety-related work products throughout the safety lifecycle, impact analysis, revisioning,	ISO 26262-8:2018
	Design and safety mechanisms requirements compliant with technical safety report and system requirements	
Safety Requirements	(traceable)	ISO 26262-5:2018, Clause 6
Requirements traceability report	Show the traceability backward ans forward of the requirements.	ISO 26262-5:2018 - 7.4.2.5
HW Design Verification Plan	Descripition of the techniques and masures to avoid systematic capability: the pass and fail criteria for the	ISO 26262-11:2018, 5.1.9 - table
	verification, the metrics; the verification environment; the tools used for verification; the regression strategy.	30
		ISO 26262-8:2018, Clause 9
		ISO 26262-5:2018, 7.4.4 table3
HW Design Verification Report	Results of the verification measures (typcally metrics driven verification), derogation,	ISO 26262-8:2018, Clause 9
Safety Analysis Report	FMEA, FMEDA. Safety scope description, Base failure rate calculation, Fault models applied, Analysis assumptions,	
	Analysis results , Fault injection strategy (how to execute the measures, which WL, sampling,, expert Judgment	ISO 26262-9:2018, Clause 8
	evidences ,	ISO 26262-11, 4.6
Analysis of Dependent Failure report	DFA analysis, assumption, adopted measures and results	ISO 26262-9:2018, Clause 7
	Confirmation reviews of: saftey plan, safety analysis, software tool criteria evaluation report, completeness of the	
Confirmations Measure Reports	safety case,	ISO 26262-2:2018, Table 1
	Applied Safety Life Cycle, safety goal, safety scope, AoU description, fault models, Safety Mech. Description, Safety	ISO 26262-11, 4.5.4.9
Safety Manual	results summary,	

	C Rar	Failure	Mode	e	Safe	e Fra	ction			Diag	g. Co	ov.	HW S	Safety	у Ме `\	echanisn	n	
	/ IP	Subpart	Failu	ıre Ra ∖	ite	Fa	ilure	Mode	e Dist	tributi	on							
		SETTINGS			SPFMp		59,9	97%		SPFMt		52,7	6%					
FIT/gates	1,20E-05	NAND2	1		LFM		not cal	oulated										
FI//gates	1,64E-03	FLIP FLOP	8															
						F	PERMANEN					TRANSIEN		2.1.4				
PART	SUBPAFT	Fall are Mode	#Gates	#Flops	Λp ,	Sp %	λpd	λps	Apd %	٨t	St %	λtd	ts	Atd %	DCp	SMp	DCt	SMit
	BUS_ITF	a fault in the AHB interface	836	23	0,010	0,26	0,007447	0,00262	100,00%	0,039099	40%	0,023459	0,015639	100,00%	30%	E2E	30%	E2E
	DECODEF	Incorrect instruction Flow caused by	326	9	0,004	0,01	0,003885	0,00004	100,00%	0,015298	15%	0,013003	0,002295	100,00%	60%	CTRL FLOW, WD	60%	CTRL FLOW, WD
	VIC	Un-intended execution/not executed	1/1	4	0.002	0.26	0.001256	0.00044	100.00%	0.006793	40%	0.004076	0.002717	100.00%	60%		60%	
	VIQ	interrupt request	141	4	0,002	0,20	0,001230	0,00044	100,0078	0,000793	40 /8	0,004070	0,002717	100,00 %	0078		00 /8	
		fault in the register bank shadow			0,010	0,01	0,017041	0,00010	20,13%	0,000700	15%	0,050252	0,010156	10,010(60%	PARITY	60%	PARITY
		ncorrect Instruction Result caused			0,009	0,01	0,008998	0,00009	10,15%	0,035685	15%	0,030332	0,005353	10,14%	90%		90%	1
	Λ /	ncorrect Instruction Result caused			0.002	0.01	0.002220	0.00002	2 51%	0.008508	15%	0.007232	0.001276	2 12%	90%	HW REDUNDANT	90%	HW REDUNDANT
CPU	ALJ	by a fault in the adder	7465	206	0,002	0,01	0,002223	0,00002	2,5170	0,000300	1570	0,007232	0,001270	2,4270	3078	RANGE CHK	3078	RANGE CHK
		by a fault in the divider			0,002	0,01	0,001256	0,00035	1,42%	0,006779	15%	0,005763	0,001017	1,93%	90%		90%	1
		Corrupt data or value caused by a fault in the register bank			0,030	0,01	0,029329	0,00030	33,09%	0,115579	15%	0,098242	0,017337	32,85%	95%	STL	0%	- 1
	\sim	Incorrect Instruction Flow caused by			0.020	0.01	0.028084	0.00020	32 70%	0 115570	15%	0.008242	0.017337	32 85%	40%		40%	
		a fault the pipeline controller			0,023	0,01	0,020304	0,00029	32,7078	0,113379	1070	0,030242	0,017557	02,0070	4070	OTAL LEOW, WD	4070	
		a fault the branch logic (Wrong			0,001	0,01	0,001025	0,00001	5,35%	0,003422	15%	0,002908	0,015639	0,04574	25%	STL, WD	15%	WD
	FETCH	Branch Prediction)	1606	44														
		a fault the fetch logic			0,018	0,01	0,018115	0,00018	94,65%	0,071387	15%	0,060679	0,015639	0,95426	19%	STL	0%	-
\mathbf{X}																		
$\mathbf{\nabla}$		_																
BUS																		
			10374	286			0.120364	0.00452				0.403188	0.104706					

A SM can cover more the one FMs

One FM can be covered by multiple SMs

© Accellera Systems Initiative

FMEDA Analysis

- User defines the FMEDA Hierarchy starting from design requirements
- Part and Subpart are not one by one with the physical implementation

FMEDA Hierarchy

Design Hierarchy: from requirements

CO	re	_		
	bus_if	dec_hi	dec_lo	vic_int vic_ctrl
	alu			fsm pipe
				fatah unit
	branch_fsr	n	branch_buffer	

FMEDA Analysis

 User provides textual description of the FMs (for every subpart) figured-out during the failure functional analysis
 FM definition: comes from a cause-effect user

ID	PART	SUBPART	Failure Mode
1		BUS_ITF	Wrong Data Transaction caused by a fault in the AHB interface
2		DECODER	Incorrect Instruction Flow caused by a fault the decode logic
3	ſ	VIC	Un-intended execution/not executed interrupt
4			Corrupt data or value caused by a fault in the register bank shadow
5			Incorrect Instruction Result caused by a fault in the multiplier
6	CPU	ΔΗΗ	Incorrect Instruction Result caused by a fault in the adder
7			Incorrect Instruction Result caused by a fault in the divider
8			Corrupt data or value caused by a fault in the register bank
9			Incorrect Instruction Flow caused by a fault the pipeline controller
10	L	FETCH	Heterrect Instruction Flow caused by a fault the branch logic (Wrong Branch Prediction)
11			Incorrect Instruction Flow caused by a fault the fetch logic

FM definition: comes from a cause-effect user analysis starting from specs or RTL

FM4: "Corrupt data or value caused by a fault in the register bank shadow"

e.g. The ALU function has six different way to fail

FMEDA Validation

• **FM mapping** is performed by the user associating FMs (defined into the FMEDA) to Design Instances (hierarchical full path name)

CPU core bus if vic int vic ctrl dec hi dec lo alu reg_banks _FM10 add reg_bank fsm_pipe reg shadow mul fetch_unit branch buffer branch fsm

MODULES **DES INFO** #flops Not Stuctural #gates bus if 810 21 295 dec 12 vic int 70 2 vic ctrl 50 6 20 reg shadow 1650 add 1100 40 mul 1200 60 div 1500 80 60 reg bank 2240 fsm pipe 2320 73 branch fsm 98 4 branch buffer 1420 35 tot 12753 413

Design Hierarchy: instances full path names

FMEDA Validation

- Before executing the fault injection campaigns an FMEDA Plan shall be finalized
- The FMEDA validation is executed on a FM basis, meaning that a specific fault campaign is executed for every FM.
- The user supplies, still on a FM basis, observation points and detection points according to the verification requirements supplied by the safety engineer

- When the SoC complexity grows a modular approach is required to initiate an FMEDA and execute its validation
- An FMEDA team based approach should be also supported to allow splitting the job among different teams, enabling an IP-based methodology
- IP could be provided from 3rd party IP provider and will come with it's own FMEDA

Functional Safety Methodology

Requirements Traceability
Verification and Safety Planning

Build a Holistic Solution

- Integrate Safety Mechanisms to reduce the FIT
- Positive testing (functional verification)
 - Verify proper functionality prior to safety verification
- Negative testing (assess diagnostic capability):
 - Targeted tests to confirm failure mode assumptions
 - -Statistical tests to ensure design function integrity
 - Transient faults testing to provide evidence safety mechanisms integrity

Build Chips for Safe Autonomous Automobiles

Current Need	 A dedicated functional safety verification methodology and process for these safety-critical IPs and SoCs Safety analysis in semiconductor such as fault injection, fault metrics, base failure rate estimation, interfaces within distributed developments, handling of Hardware Intellectual Property (IP)
Methodology	 Holistic methodology which combines analytical methodologies such as FMEDA with dynamic fault simulation and formal analysis based methodologies to significantly reduce the safety verification effort and achieve faster product certification
Metrics	 ISO26262 recommends single point fault metric (SPFM) and Latent Fault Metric (LFM) for the component (IP and SoCs) Will be measured for each of the identified Safety Goals associated with the safety critical modules within the IPs and/or SoCs.

Safety Verification Challenges and More

Failure Mode Definition

CONFERENCE /

Safety Mechanism Design

Fault Campaign Planning

Safety Requirement Traceability

Fault Set (+Optimization) Execution

Verification Environment Re-use

Multiple Engines Support

Link to FMEDA (Metrics Calculation)

Tool Confidence Level (TCL)

© Accellera Systems Initiative

ADAS SoC Example

Safety Verification Methodology

2018 DESIGN AND VERIFICATION

Safety Verification Solution

2018

DESIGN AND VERIFICA

- Unified functional + safety verification flow and engines
- Integrated fault campaign management across formal, simulation, and emulation
- Common fault results database unifies diagnostic coverage
- Proven requirements traceability, enabling FMEDA integration

Example Design and FMEDA

Safety Mechanisms in Ethernet IP

GEM Block – FMEDA Analysis

Block or Subblock	λ [FIT]	Failure Mode	FM Distribution	Effect Description of FM	SM Implemented
TSU	0.0719	Fault in TSU compare pulse	0.9%	TSU compare interrupt is incorrect	Compare logic is duplicated
TSU	0.0719	Fault in TSU seconds increment pulse	0.9%	The TSU seconds interrupt is incorrect	Interrupt logic is duplicated
TSU	0.0719	Fault in generation of the TSU strobe pulse to the registers	0.9%	The timer value may not be captured or captured incorrectly	Strobe Pulse Logic is duplicated
TSU	0.0719	Fault in TSU timer output value	97.3%	TX/RX timestamp is corrupted, output TSU timer value to local system will be invalid, Timer value read back in registers is also invalid.	Timer logic is duplicated
Registers	0.3013	Fault in static configuration outputs from the registers	95%	Unpredictable behavior of IP	Parity generation and detection

Ethernet IP – GEM Block

© Accellera Systems Initiative

2018

DESIGN AND VERIFICATION"

CONFERENCE AND EXHIBITION

Block or Subblock	λ [FIT]	Failure Mode	FM Distribution	DC Number Estimated	DC Number Achieved
TSU	0.0719	Fault in TSU compare pulse	0.9%	95%	96%
TSU	0.0719	Fault in TSU seconds increment pulse	0.9%	95%	98%
TSU	0.0719	Fault in generation of the TSU strobe pulse to the registers	0.9%	95%	78%
TSU	0.0719	Fault in TSU timer output value	97.3%	95%	100%
Registers	0.3013	Fault in static configuration outputs from the registers	95%	90%	92.5%

GEM Block Diagram – SM View

EXAMPLE EM Block Diagram – Fault Campaign view

FO and CO Strobe List

ISO26262 Compliant Fault Classification

2018 DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

formal analysis to justify the expert judgment

Demo Setup and Run the VNC

PRE

RUN

Live Run

Description 5 Failure modes for the demo showcasing the solution and automation capabilities

- fm_tsu_comp_pulse Fault in TSU comp pulse show cases the ranking capability and undetected faults as SM is not implemented
- fm_tsu_tmr_op_val Fault in TSU timer Output value show cases the ranking capability and detected faults as SM is implemented
- fm_tsu_sec_incr Fault in TSU seconds increment pulse run campaign for the module TSU

2018

RENCE AND EXHIBITION

DESIGN AND VERIFIC

- fm_tsu_tmr_op_val Fault in generation of the TSU strobe pulse to the registers run campaign for the module TSU
- fm_tsu_tmr_op_val_samp Fault in generation of the TSU strobe pulse to the registers run campaign for the module TSU

Block or Subblock	λ [FIT]	Failure Mode	FM Distribution	Effect Description of FM	SM Implemented
TSU	0.0719	Fault in TSU compare pulse	0.9%	TSU compare interrupt is incorrect	Incomplete
TSU	0.0719	Fault in TSU seconds increment pulse	0.9%	The TSU seconds interrupt is incorrect	Incomplete
TSU	0.0719	Fault in generation of the TSU strobe pulse to the registers	0.9%	The timer value may not be captured or captured incorrectly	Incomplete
TSU	0.0719	Fault in TSU timer output value	97.3%	TX/RX timestamp is corrupted, output TSU timer value to local system will be invalid, Timer value read back in registers is also invalid.	Timer is duplicated
Registers	0.3013	Fault in static configuration outputs from the registers	95%	Unpredictable behavior of IP	Parity generation and detection

Fault Campaign Executor - Interface

Inputs: FMEDA info

- Fault List
 - Definition of the faults to be injected
- Strobe List
 - Definition of the observation points

Inputs: FS Verification Engineer

- Test List
 - Tests to be used during the campaign
- Campaign Configuration:
 - Define the campaign parameters

Outputs:

- Annotated Fault List
 - Fault classification is back annotated
- Reports
 - Various kind according to the use case

Fault Campaign Executor - Interface

- Test selection
 - Execute the user defined list of tests

Good Simulation

- Fault instrumentation
- Generate strobe data for each selected test

Fault Simulation Setup

 Prepare fault simulation including static and dynamic (formal) fault set optimization

Fault Simulation Execution

- Simulate each fault with the selected tests

Campaign Execution: Statist		aign Rer	orts - Abstract
Report Generation Date: Tool Version FAULT_CAMPAIGN_NAME FAULT_CAMPAIGN_TYPE	: 2018/02/06 12:49:11 : XFS : fs_gem_demo_tmr_op : permanent.	val	Safe Faults by Formal
FS_TC_CALC	: pessimistic (PD fat	ults considered U faults)	
Fault analyzed	faults	prime faults	
nr faults nr faults untestable nr faults testable	[F]: 964 [100.03 [UT]: 336 [34.93 [T]: 628 [65.13	\$] 964 [100.0%] \$] 336 [34.9%] \$] 628 [65.1%]	
Faultsim Execution Statisti	cs		
sampling factor (100% means no sampling)	: 100%		
nr faults selected for <u>faultsi</u>	m: 628	21	
nr faults tono nr faults processed nr faultsim runs	: 628 [100.0] : 1661	o] }]	
nr faultsim runs / fault	: 2.64		
Sampling options			Possibly need to improve work load
Sampled Fault Type Sampling Seed	: SA0+SA1 :		
Sampling Percentage	: 100		
Sampled Number Sampling Scope	: : testable		
Fault Classification (dual	strobe)		Detected Faults
nr faults UNKNOWN nr faults UNDETECTED	[UK]: 36 [3.7 [U]: 0 [0.0	\$] 36 [3.7%] \$] 0 [0.0%]	
nr faults DETECTED	[D]: 592 [61.4	\$] 592 [01.48]	Test Coverage = (D/(D+U))
 Toggle Coverage %	: 41.53012642255185		
Test Coverage			
Coverage	: 1.0		Fault Coverage = (D/(D+U+UT))
Fault Coverage	: 0.63793105		

2040	Campa	lian Rep	orts - Abstract
Campaign Execution: Sta	tistics and Data	· 3 · · · · · · · · · · · · · · · · · · ·	
Report Generation Date:	: 2018/02/07 05:50:09		
Tool Version	: XFS		
FAULT_CAMPAIGN_NAME	: fs_gem_demo_tmr_op_v	al_ser_net	
FAULT CAMPAIGN TYPE	: permanent		
FS_TC_CALC	: pessimistic (PD faul	ts considered U faults)	
Fault analyzed	faults	prime faults	
ng faults	[F] : 16170 [100.0%]	9499 [100.0%]	
ng faults untestable	[UT] : 1049 [6.5%]	551 [5.8%]	Sampled Fault Processed
ng faults testable	[T] : 15121 [93.5%]	8948 [94.2%]	
Faultzim Execution Stat	istics		
sampling factor	: 5%		
(100% means no sampling)			
nr faults selected for faul	tsim : 8948		
nr faults todo	: 8501 [95.0%]		
nr faults processed	: 447 [4.0%]		
nr faultsim runs	: 1062		
ng faultsim runs / fault	: 2.38		
Sampling options			
Sampled Fault Type	: sa0+sa1		
Sampling Seed	:		
Sampling Percentage	: 5		
Sampled Number	:		
Sampling Scope	: testable_prime		
Fault Classification (d	ual strobe)		
ng faults UNKNOWN	[UK]: 197 [1.2%]	197 [2.1 8]	
nr faults UNDETECTED	[U]: 0 [0.0%]	0 [0.0%]	
RE faults DETECTED	[D]: 250 [1.5%]	250 [2.6%]	
Work Load Qualification			Test Coverage = (D/(D+U))
Toggle Coverage %	: 15.051711726986445		
Test Coverage			
Test Coverage	: 1.0		
Fault Coverage	: 0.19245574		Fault Coverage = (D/(D+U+UT))

- Autonomous cars are coming and 'Mind-Off' driving is expected to be real by the mid 2020s
- ISO 26262 is the automotive standard that defines the processes to follow, the performance level for hardware and software performance and the compliance process
- A systematic analysis technique such as the FMEDA is essential for meeting ISO 26262 metrics
- The complexity of ADAS SoCs requires a new holistic approach to functional verification and functional safety
 - Functional safety and functional verification are complementary problems
- A multi-engine automated solution is required to meet ASIL certification goals in a timely manner.

Questions

cādence®

www.cadence.com/automotive

DVCon Slide Guidelines

- Use Arial or Helvetica font for slide text
- Use Courier-new or Courier font for code
- First-order bullets should be 24 to 28 point
 - Second-order bullets should be 24 to 26 point
 - Third-order bullets should be 22 to 24 point
 - Code should be at least 18 point
- Your presentation will be shown in a very large room
 - These font guidelines will help ensure everyone can read you slides!

Code and Notes

Informational boxes should be 18pt Arial-bold, or larger (using a background color is optional)