Making Autonomous Cars Safe

Joern Stohmann, Frederico Ferlini

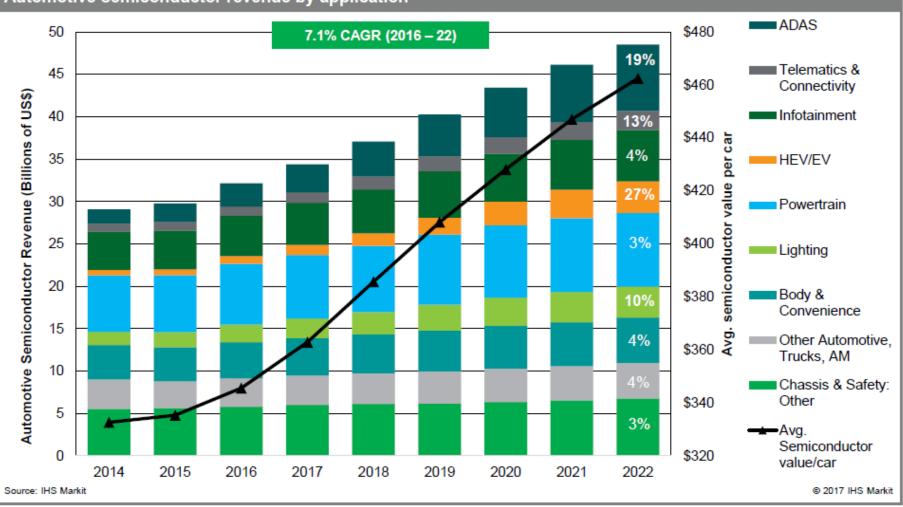
cādence[®]

Agenda

器 ((())) Automotive Market **Complex Challenges** ISO 26262 and Basic Safety cadence' Functional Safety Methodology

© Accellera Systems Initiative

The Automotive Market



Automotive Semiconductor Growth

Automotive semiconductor revenue by application

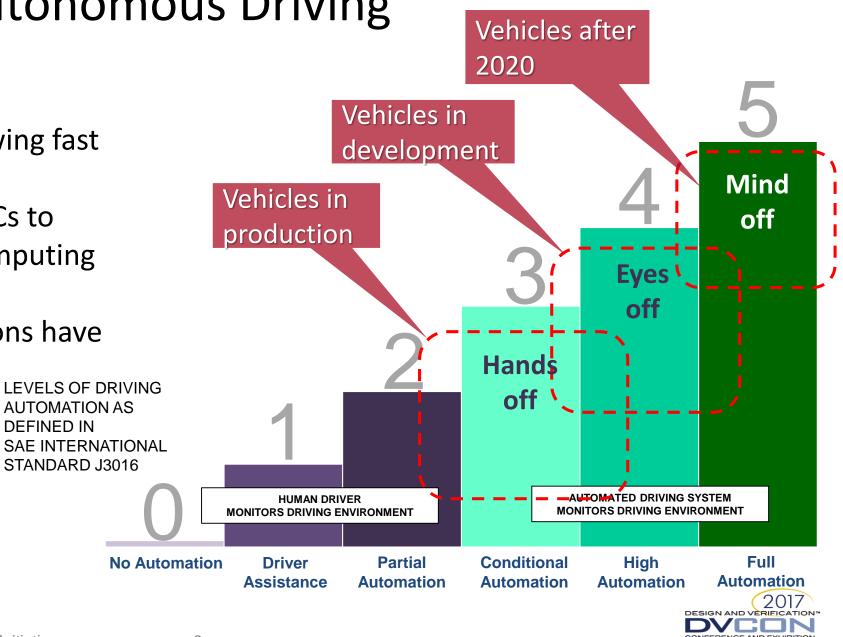
2017

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

EUROPE

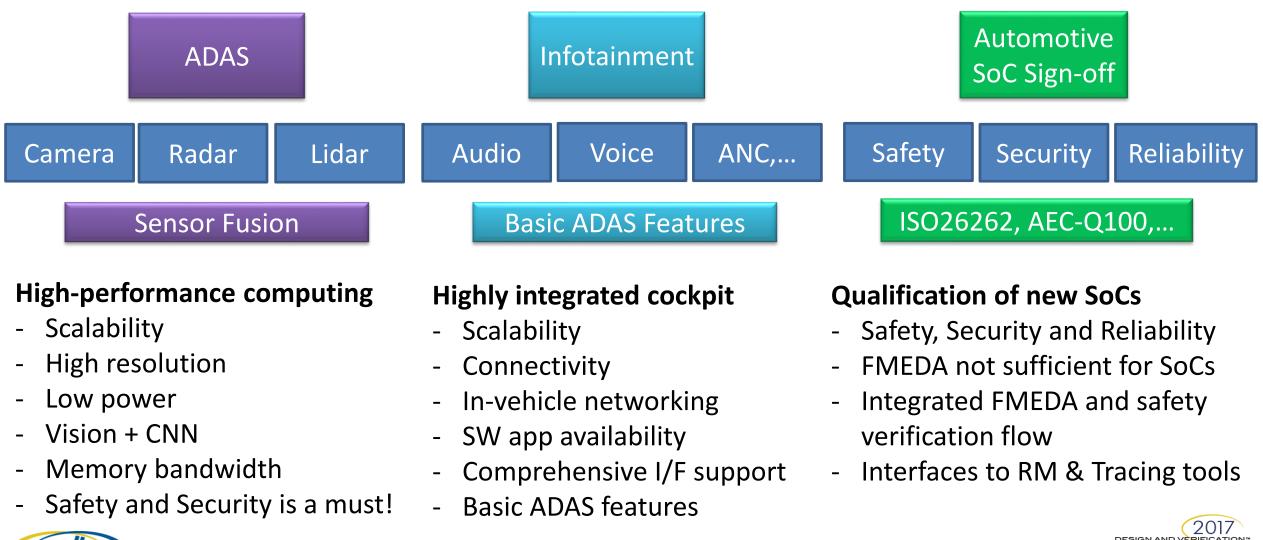
Forces Shaping the Automotive Industry


"Automotive Revolution – Perspective towards 2030" – a 2016 McKinsey Report identified 4 areas that deemed particularly important in shaping the auto industry thru 2030

Vehicle electrification	Increased Connectivity	Growth of Autonomous Driving	Shared Mobility Services
 Advances to solve High battery costs Proliferation of charging infrastructure 	Advances to • 5G deployment • Telematics services • V2I; V2V	ADAS deployment • Cost effective Level 3 and Level 4 by 2020~2025	 Proliferation of Ride sharing services Car sharing services

Autonomous Driving

- Amount of electronics is growing fast
- (ADAS) based on complex SoCs to enable high-performance computing
- Safety critical ADAS applications have stringent requirements on LEVELS OF DRIVING
 - Functional Safety
 - Security
 - Reliability

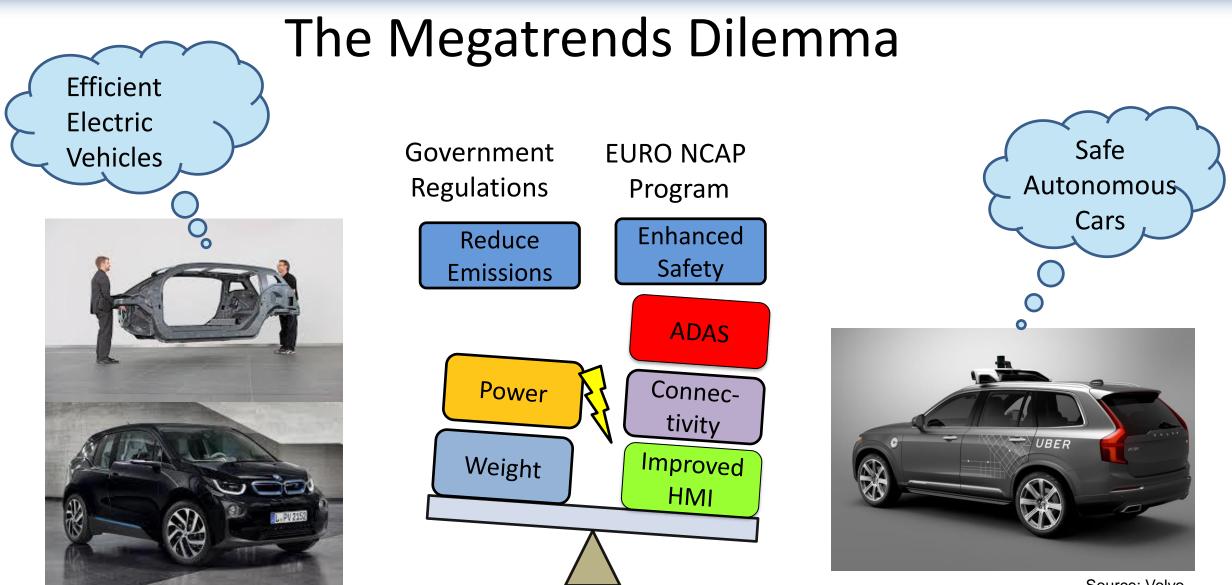


AUTOMATION AS

STANDARD J3016

DEFINED IN

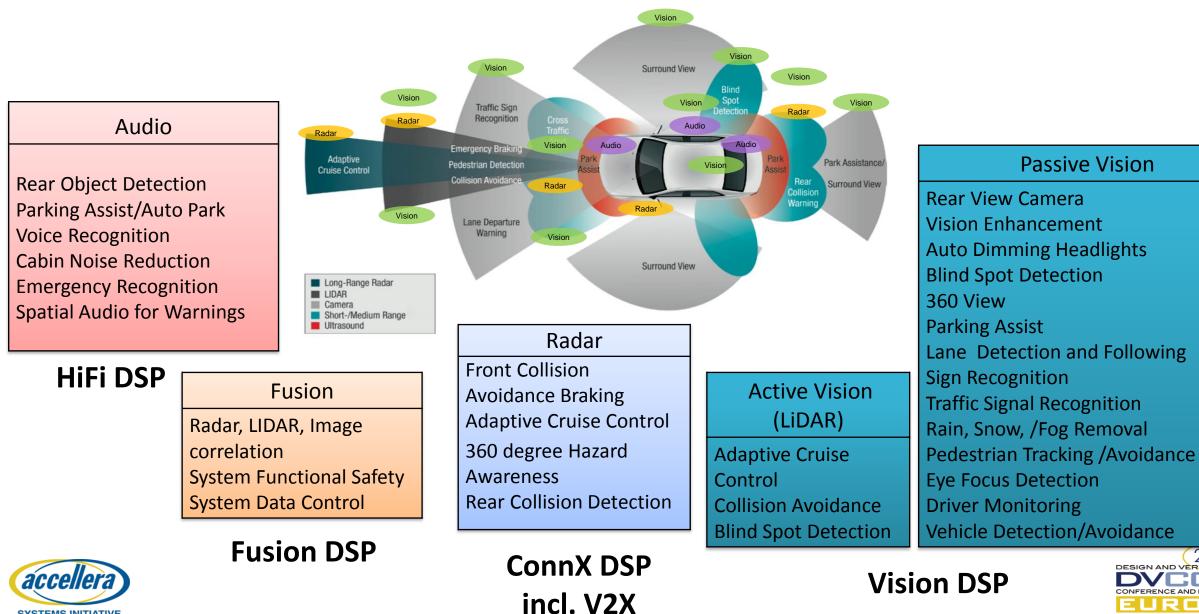
Automotive Opportunities and Focus Areas


© Accellera Systems Initiative

Complex Challenges

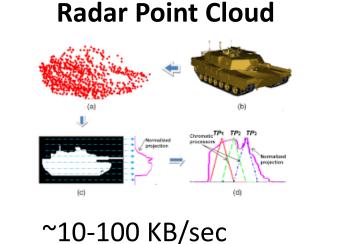
Source: Volvo

2017 DESIGN AND VERIFICATION DVCONFERENCE AND EXHIBITION EUROPE


Source: BMW

Need low-power, small footprint, high-performance SoCs

© Accellera Systems Initiative


Making a Car Autonomous

SYSTEMS INITIATIVE

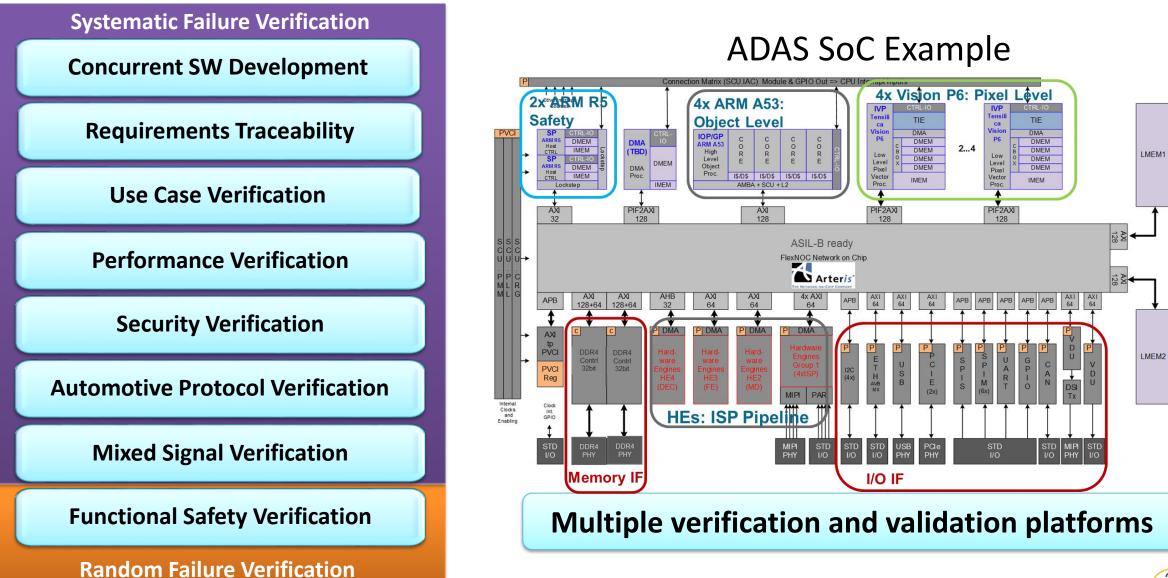
Complicated Convolutional Neural Networks

Lidar Point Cloud

~10-70 MB/sec

Digital Camera

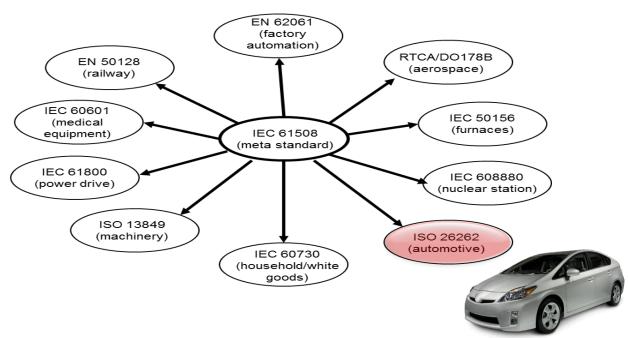
~20-40 MB/sec

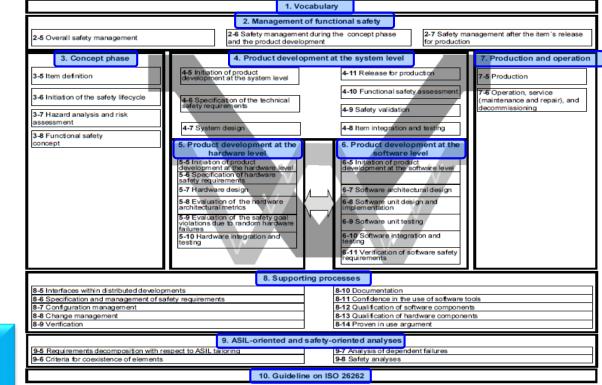

Automated and Reliable Object Recognition using CNN

Need a high-performance, low-power hardware platform to combine and analyze point clouds and accurately identify objects

Automotive SoC Verification Challenges

ESIGN AND VERIFIC


ISO 26262 and Safety Basics



Functional Safety standards

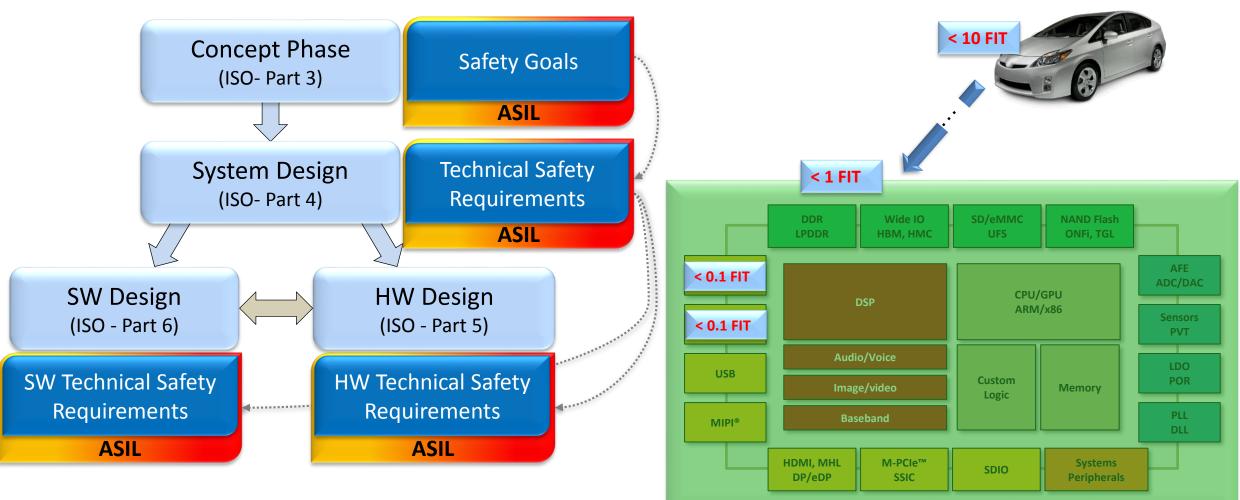
ISO 26262 defines

- Processes to follow
- Hardware/software performance to achieve
- Safety documentation to produce
- Software tools compliance process



Functional Safety definition—ISO 26262

"Absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical and/or electronic systems" (ISO 26262)

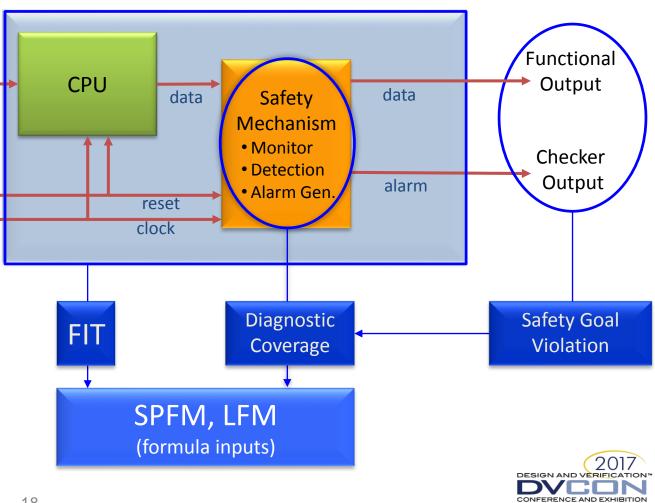


ASIL determination example—ISO 26262

For illustration purposes only

ISO 26262—Design and safety flow

FIT gets distributed from the item to each of the elements



© Accellera Systems Initiative

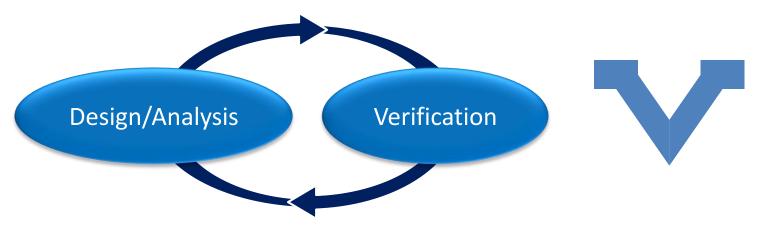
ASIL Hardware Metrics

ASIL	Failure Rate	SPFM	LFM
А	< 1000 FIT	Not relevant	Not Relevant
В	< 100 FIT	> 90%	> 60%
С	< 100 FIT	> 97%	> 80%
D	< 10 FIT	> 99%	> 90%

- FIT Failure In Time (1 Failure / 10⁹ hours)
- SPFM Single Point Fault Metric
- LFM Latent Fault Metric

ISO26262—Functional Safety principles

Systematic Failures


(e.g., software bug)

- Addressed by processes (planning, traceability, documentation, specs, ...)
- Strictness of processes are dependent on the ASIL level

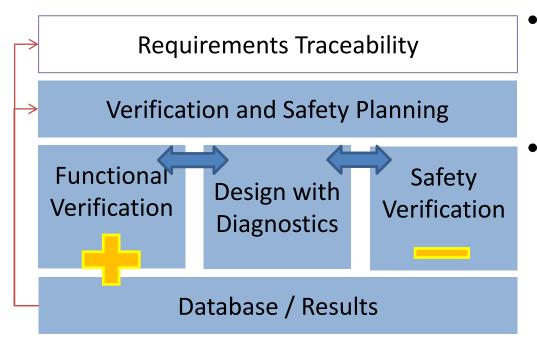
Random Failures

(e.g., component malfunction, noise injection)

- Considers permanent failure and transient effects
- Includes safety mechanisms design and integration to handle faults
- Demonstrated by calculations of Reliability/verification of failure rates
- Failure rates and diagnostic coverage requirement depend on ASIL

ISO 26262 covers random and systematic errors

Functional Safety Methodology



Build a Holistic Solution

- Integrate Safety Mechanisms to reduce the FIT
 - Positive testing (functional verification)
 - Verify proper functionality prior to safety verification
 - Negative testing (assess diagnostic capability):
 - Targeted tests to confirm failure mode assumptions
 - Statistical tests to ensure design function integrity
 - Transient faults testing to provide evidence safety mechanisms integrity

Build Chips for Safe Autonomous Automobiles

Current Need	 A dedicated functional safety verification methodology and process for these safety-critical IPs and SoCs Safety analysis in semiconductor such as fault injection, fault metrics, base failure rate estimation, interfaces within distributed developments, handling of Hardware Intellectual Property (IP)
Methodology	•Holistic methodology which combines analytical methodologies such as FMEDA with dynamic fault simulation and formal analysis based methodologies to significantly reduce the safety verification effort and achieve faster product certification
Metrics	 ISO26262 recommends single point fault metric (SPFM) and Latent Fault Metric (LFM) for the component (IP and SoCs) Will be measured for each of the identified Safety Goals associated with the safety critical modules within the IPs and/or SoCs.

DESIGN AND VERIF

Safety Verification Challenges and More

Failure Mode Definition

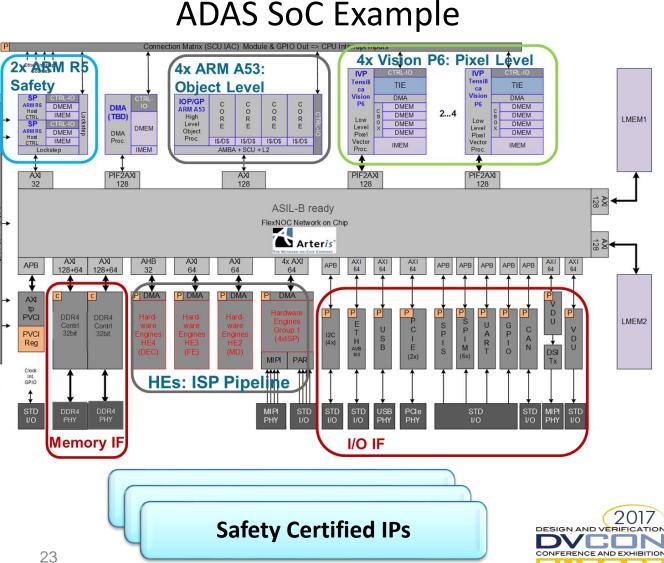
Safety Mechanism Design

Fault Campaign Planning

Safety Requirement Traceability

Fault Set (+Optimization) Execution

Verification Environment Re-use


Multiple Engines Support

Link to FMEDA (Metrics Calculation)

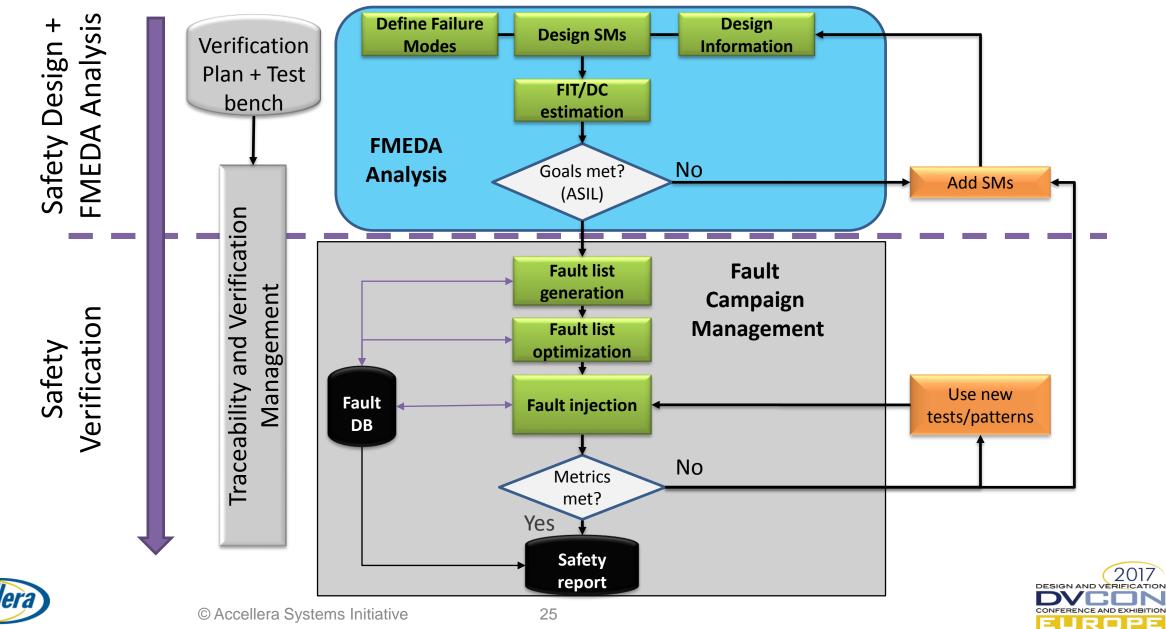
© Accellera Systems Initiative

Tool Confidence Level (TCL)

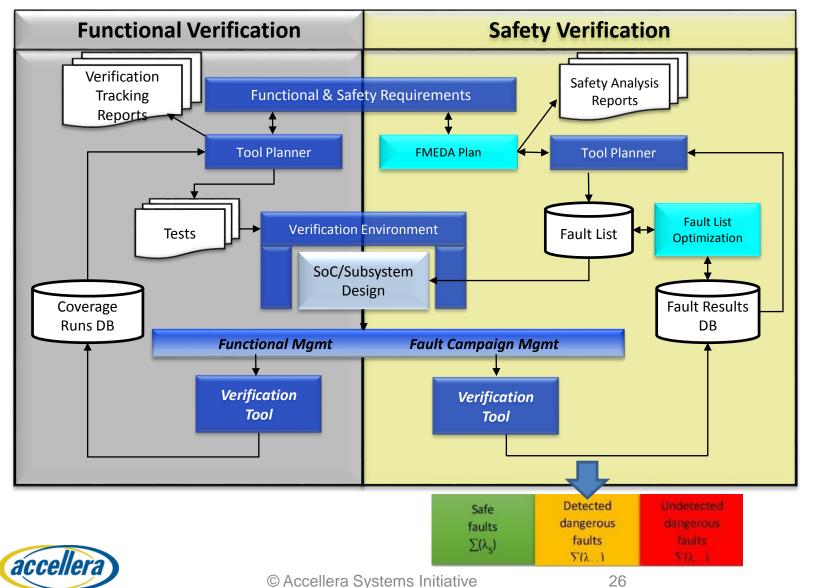
Internal Clocks and Enabling

FMEDA – capture and analyse safety goals

	Sc		Failure	Mod	е	Safe	e Fra	ction			Diag	g. Cc ∖	ov. HW S	Safet	y Me	echanisn	n		
		/ IP	Subpart	Failu	ure Ra	te	Fa	ilure	Mode	e Dist	tributi	on							
			SETTINGS		1 \	SPFMp		59,9	7%		SPFMt		52,76%						
		1,20E-05	NAND2			LFM		not cal	oulated										
TF	T/gates	1,64E-03	FLIP FLOP	8					_						\rightarrow				
D	PART	SUBPAFT	Failure Mode	#Gates	#Flops	λρ	Р Sp %	ERMANEN λpd	λρς	λpd %	λt	St %	TRANSIENT λtd λts	λtd %	DCp	SMp	DCt	SMt	
	TANT	BUS ITF	Wrong Data Transaction caused by	#Gates	23	0,010	0,26	0,007447				40%	0,023459 0,015639		30%	E2E	30%	E2E	
1			a fault in the AHB interface Incorrect instruction Flow caused by											,					
2		DECODER	a fault the decode logic	326	9	0,004	0,01	0,003885	0,00004	100,00%	0,015298	15%	0,013003 0,002295	100,00%	60%	CTRL FLOW, WD	60%	CTRL FLOW, WD	
	LINK	VIC	Un-intended execution/not executed interrupt request	141	4	0,002	0,26	0,001256	0,00044	100,00%	0,006793	40%	0,004076 0,002717			INT MONITOR	60%	INT MONITOR	
	٩			forrupt data or value caused by a fault in the register bank shadow			0,010	0,01	0,017041	0,00018	20,13%	0,009709	15%	0,059252 0,010450		60%	PARITY	60%	PARITY
			ncorrect Instruction Result caused			0,009	0,01	0,008998	0,00009	10,15%	0,035685	15%	0,030332 0,005353				90%		
ľ			ncorrect Instruction Result caused			0,002	0,01	0,002229	0,00002	2,51%	0,008508	15%	0,007232 0,001276		90%	HW REDUNDANT	90%	HW REDUNDANT	
6	CPU	ALU	by a fault in the adder	7465	206		,									RANGE CHK		RANGE CHK	
7	\		y a fault in the divider			0,002	0,01	0,001256	0,00035	1,42%	0,006779	15%	0,005763 0,001017	7 1,93%	90%		90%		
8		k /	fault in the register bank			0,030	0,01	0,029329	0,00030	33,09%	0,115579	15%	0,098242 0,017337	32,85%	95%	STL	0%	-	
		\sim	Incorrect Instruction Flow caused by a fault the pipeline controller			0,029	0,01	0,028984	0,00029	32,70%	0,115579	15%	0,098242 0,017337	32,85%	40%	CTRL FLOW, WD	40%	CTRL FLOW, WD	
			Incorrect Instruction Flow caused by a fault the branch logic (Wrong			0.001	0.01	0.001005	0.00004	5.050/	0.000400	450/	0.000000 0.045000	0.04574	25%		450/	WD	
10		FETCH	Branch Prediction)	1606	44	0,001	0,01	0,001025	0,00001	5,35%	0,003422	15%	0,002908 0,015639	0,04574	25%	STL, WD	15%	WD	
11	I		Incorrect Instruction Flow caused by a fault the fetch logic			0,018	0,01	0,018115	0,00018	94,65%	0,071387	15%	0,060679 0,015639	0,95426	19%	STL	0%	-	
12																			
13 14																			
14	$\mathbf{\nabla}$		-																
16																			
17	BUS			40274	286			0.420204	0.00450				0 402189 0 40470		l				
				10374	200			0,120364	0,00452				0,403188 0,104706					0017	


A SM can cover more the one FMs

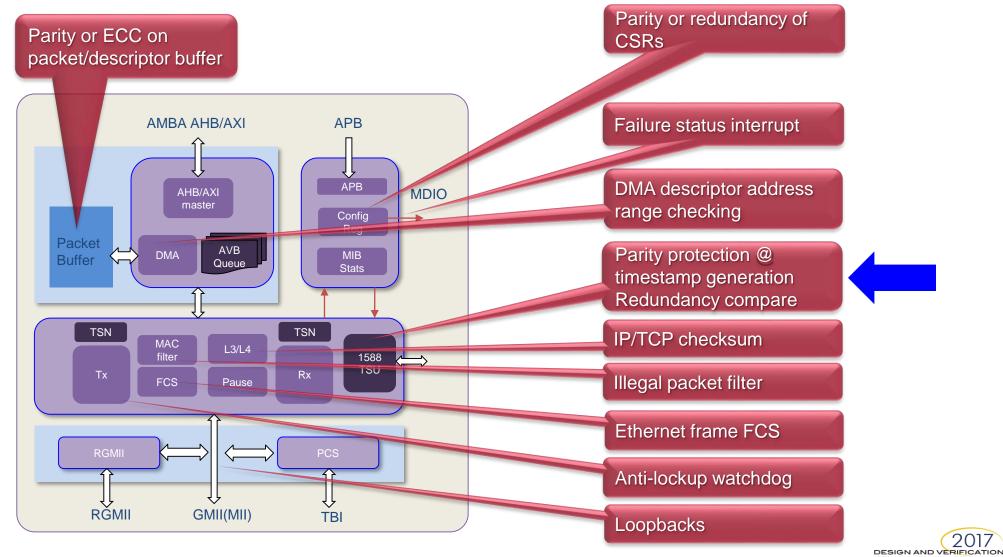
One FM can be covered by multiple SMs


© Accellera Systems Initiative

Typical Functional Safety Workflow

accellera SYSTEMS INITIATIVE

Safety Verification Solution Vision



SYSTEMS INITIATIVE

- Unified functional + safety verification flow and engines
- Integrated fault campaign management across formal, simulation, and emulation
- Common fault results database unifies diagnostic coverage
- Proven requirements traceability, enabling FMEDA integration

Safety Mechanisms in Ethernet IP

2017

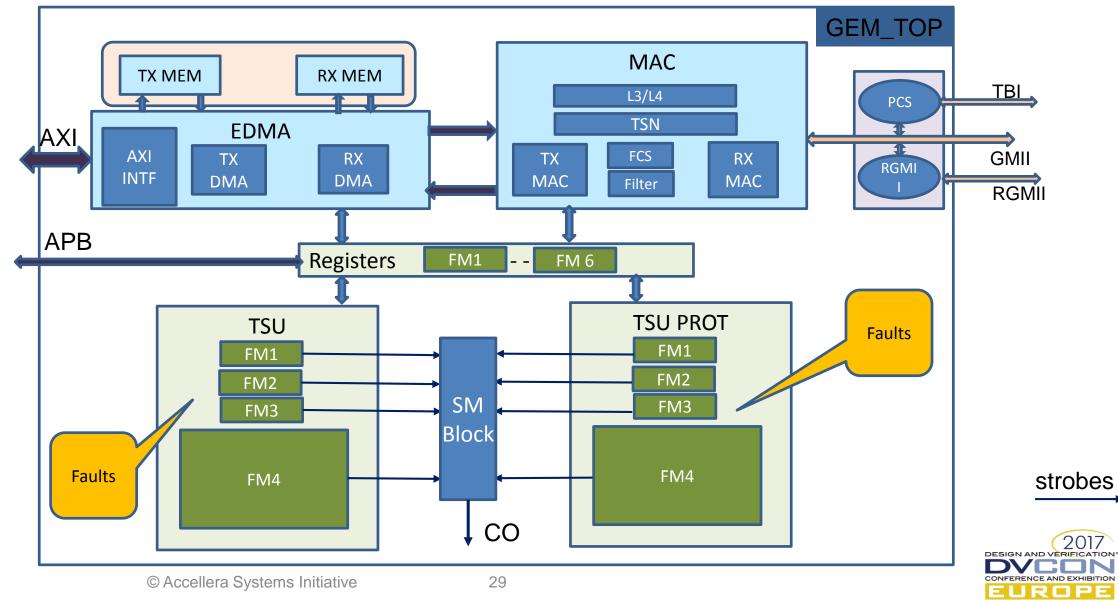
CONFERENCE AND EXHIBITION

EUROPE

GEM Block – FMEDA Analysis

Block or Subblock	λ [FIT]	Failure Mode	FM Distribution	Effect Description of FM	SM Implemented
TSU	0.0719	Fault in TSU compare pulse	0.9%	TSU compare interrupt is incorrect	Compare logic is duplicated
TSU	0.0719	Fault in TSU seconds increment pulse	0.9%	The TSU seconds interrupt is incorrect	Interrupt logic is duplicated
TSU	0.0719	Fault in generation of the TSU strobe pulse to the registers	0.9%	The timer value may not be captured or captured incorrectly	Strobe Pulse Logic is duplicated
TSU	0.0719	Fault in TSU timer output value	97.3%	TX/RX timestamp is corrupted, output TSU timer value to local system will be invalid, Timer value read back in registers is also invalid.	Timer logic is duplicated
Registers	0.3013	Fault in static configuration outputs from the registers	95%	Unpredictable behavior of IP	Parity generation and detection

20


DESIGN AND VERIFICATION

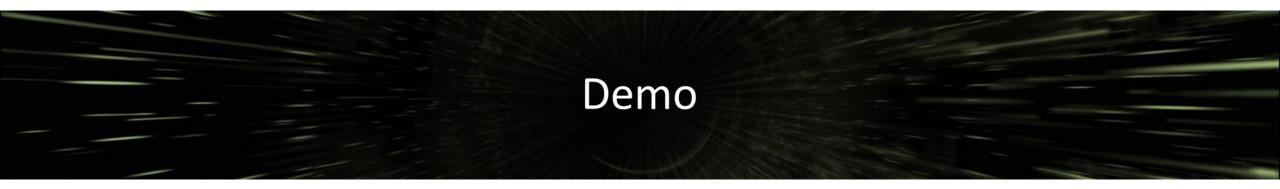
CONFERENCE AND EXHIBITION

Ethernet IP – GEM Block

accellera

SYSTEMS INITIATIVE

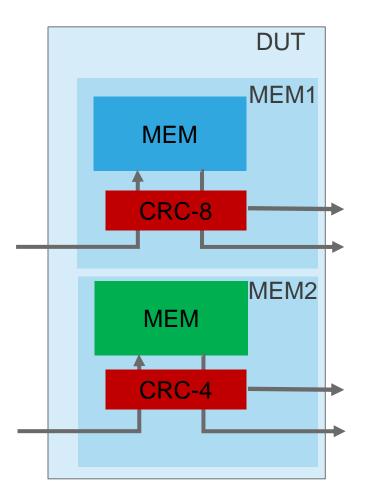
GEM Block – FMEDA Verification


Block or Subblock	λ [FIT]	Failure Mode	FM Distribution	DC Number Estimated	DC Number Achieved
TSU	0.0719	Fault in TSU compare pulse	0.9%	95%	96%
TSU	0.0719	Fault in TSU seconds increment pulse	0.9%	95%	98%
TSU	0.0719	Fault in generation of the TSU strobe pulse to the registers	0.9%	95%	78%
TSU	0.0719	Fault in TSU timer output value	97.3%	95%	100%
Registers	0.3013	Fault in static configuration outputs from the registers	95%	90%	92.5%

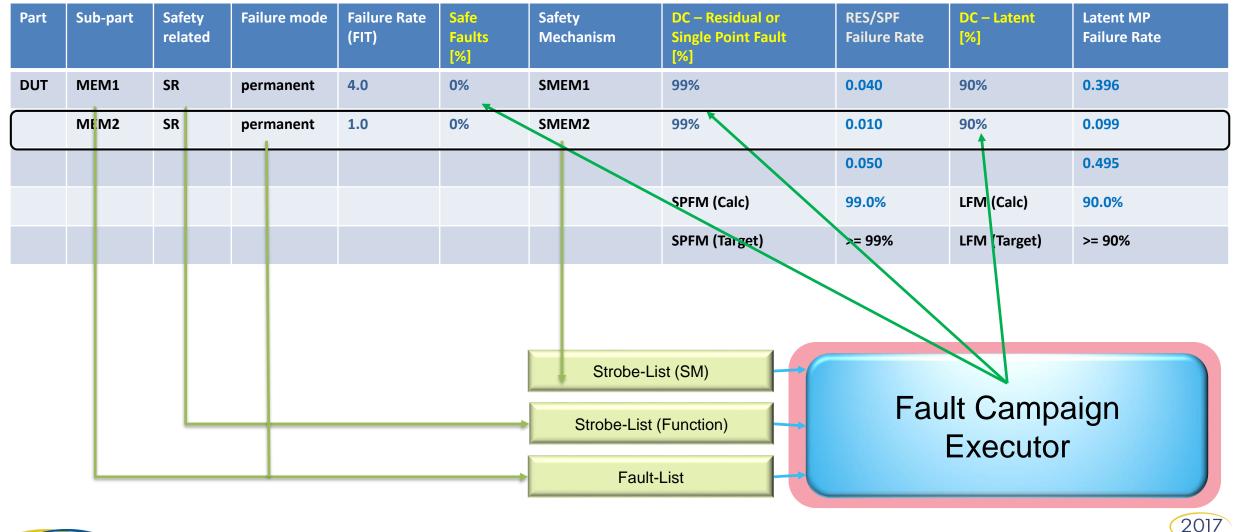
20

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION



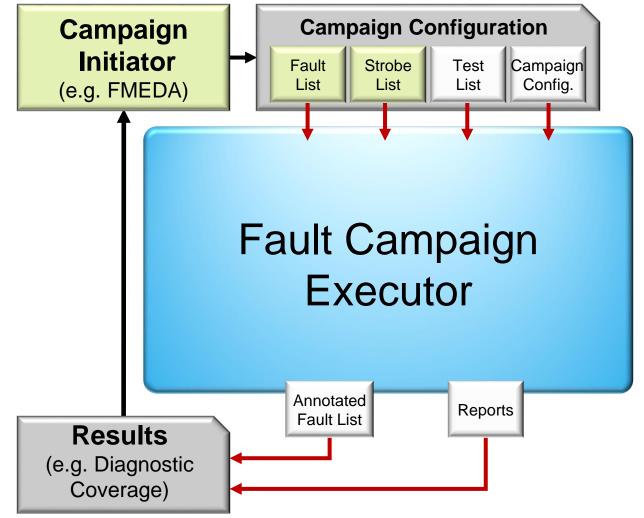
Fault Injection Campaign – Example


- DUT: 2 memories
 - FS Requirement: ASIL-D
 - E.g. HW arch. metrics: SPFM >= 99%, LFM >= 90%
- MEM1
 - Bit-Width: 32 bit
 - FS Analysis: use 8 bit CRC (CRC-8)
- MEM2
 - Bit-Width: 8 bit
 - FS Analysis: use 4 bit CRC (CRC-4)
- Reuse functional verification environment
 - Contains multiple tests
- Goal:

"Calculate DC values for MEM1, MEM2 required for HW architectural metrics calculation."

© Accellera Systems Initiative

Mapping FMEDA to Fault Injection Campaign



DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

EUROPE

Fault Campaign Executor - Interface

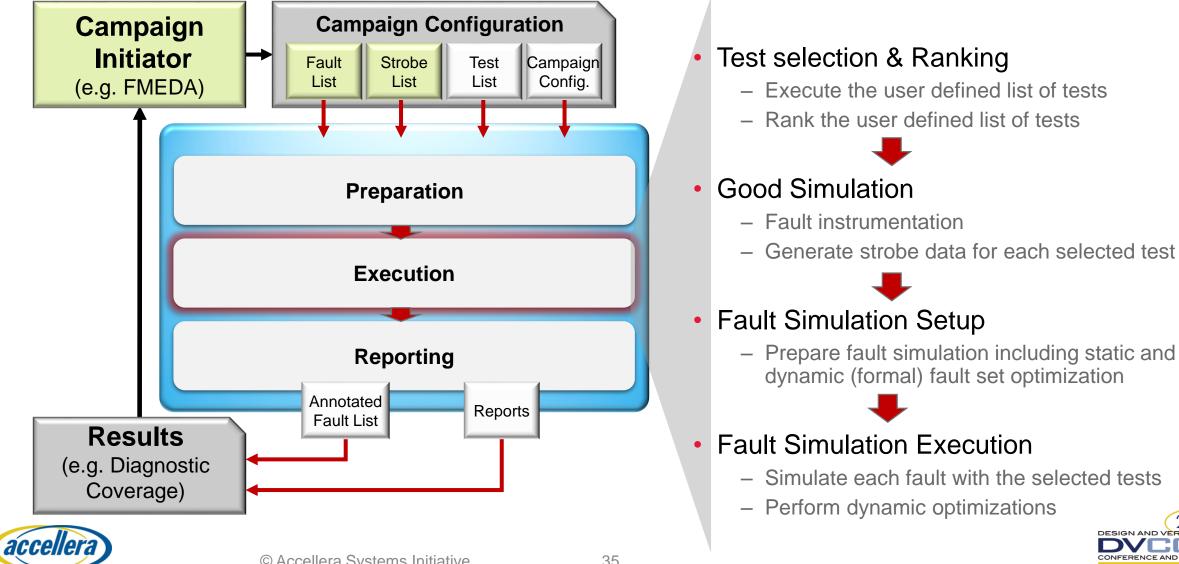
Inputs: FMEDA

- Fault List
 - Definition of the faults to be injected
- Strobe List
 - Definition of the observation points

Inputs: Safety Verification Engineer

- Test List
 - Tests to be used during the campaign
- Campaign Configuration
 - Define the campaign parameters

Outputs: Safety Client


- Annotated Fault List
 - Fault classification is back annotated
- Reports
 - Various kind according to the use case

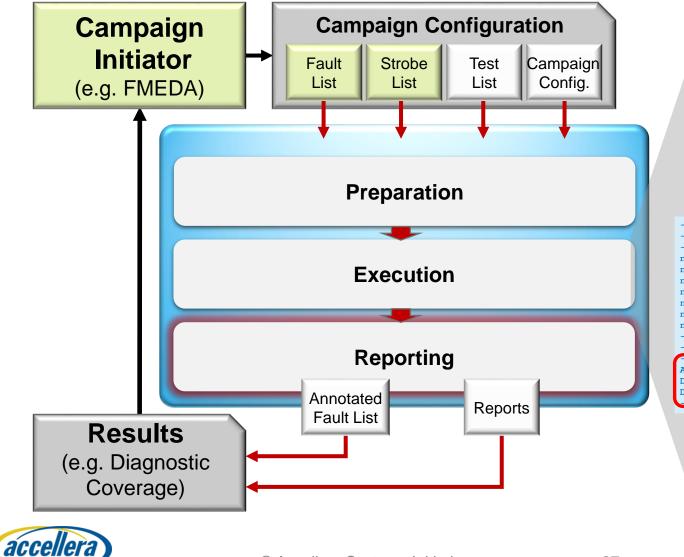
accelle

SYSTEMS INITIATIVE

Fault Campaign Executor – Execution Flow

SYSTEMS INITIATIVE

ESIGN AND VERIFIC


Fault Campaign Executor – GUI Example

View Regression Help										cāden	ce
된 🙆 📕	El cos	R.	r⊾ vManag	er euvclo42:8	3888 (64) [<i>4</i>			r o euvclo10)	×	A m	
	ew Analys	is Help									cadence
bal Operations S Sessions Metrics ession Start Til Caster	Tests vPla	an Scripts New Manager VPlai	Edit Reloz vPlan vPla	d Context Sour	rce Ip	-	a All Runs	Formal Prop. Analyze		Lit all at Edit each S	Rep Analyze Failures Analyze All Runs Analyze Formal Properties
tatus	and the second second		Flainer	Settings	VIC			Analyze		Runs	Correlate Runs
(no filter) (no 🖉 🗗	Marria	sts Hierarchy			Overall Avera	ne Grade	0	verall Covered	Te	est Status	Rank Runs
ompleted 2/24/17						ge ordae					🔊 Edit all at once
ompleted 2/24/17 2		t-Case Model			95.74	4%		6 / 47 (95.74%)		95.74%	🛃 Edit each
ompleted 2/24/17 🕞	▲ ⊗ ⊆				95.74			6 / 47 (95.74%)		95.74%	• Attribute change history
	A 10	training_default			95.74			6 / 47 (95.74%)	-	95.74%	🗢 Rerun
		= training_defa	ult_test		95.74	4%	45	6 / 47 (95.74%)	-	95.74%	+ Create Context
Showing 3 out of 40 i											Create uncompacted context
Showing 3 out of 40 i	Showin	g 4 items									Stop Run
ion 🗸	O Ru	ns Test-Cas	e Model								Den run directory
311	69 -		(E)								Compact Selected Runs
	Index	AZDuration (sec.	Status		Fault Classif.	▲ Fault F	ault Node				Show Waveform
, Ei						Туре					Clear Filters
Tracking	(no filte			filter)	(no filter)	(no filter)			(no filter)		v Clear Filters
	6	107	3 failed		DU		1.7765	mem1_i.crc_chk_i.			
	43	106	😮 failed		DU			mem1_i.crc_chk_i			Copy Cell Copy Row
	1	113	🔮 passed		SD		st.dut_inst.r	neml_i.crc_chk_i.	.crc_gen_i.gl	.112.Y	Соруком
	4	107 107	O passed		SD SD		TROBES Waveform 1 ⊻iew Explore Forma				
	7	107	🕜 passed 🙆 passed		SD				nd To: 🔖 🚝 🚉 🔐	: 🕅 🔲 🔲 🖬 👘	Èu By 🖉 🔊 🔌 K D û X 🕽 🔅 🕷 📶
	,	104	😡 passed		SD	JAI	nes: Value -	I 🔍 🥼 🚬 TimeA 🗸			
	9	104	😡 passed		SD	Design Bro	vser	× 0	Baseline ▼= 0 r-Baseline ▼ = 0	Baseline = 0	
	10	104	passed		SD	SAO Scope:	All Available Data stroke	▼ 300 (Q) 194 Name	o. ⊂ Cursor o		
	11	104	passed		SD) test 		<pre>4ta_out[31:0] 'h xxxxxxx 4err_detected x</pre>		
	12	100	O nassed		SD	SAL	aut_inst		<pre>4data_out[7:0] 'h xx 4err_detected x</pre>	00 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4 }) [B3]]]] 32]] 30]]))] (]] [R9]]] []] []] []] []] []] []] []] []] []

ONFERENCE AND EXHIBITION

Fault Campaign Executor – Reporting

Comprehensive report generation

- Campaign Execution Statistics
- Fault Classification Hierarchical View
- Test execution order
- Fault annotation list

	UNKNOWN	[UK] :		0	[0.0%]	0	[0.0%]
r faults	UNTESTABLE	[UT] :	2	58	[9.8%]	258	[11.6%]
r faults	SAFE UNDETECTED	[SU] :	1	60	[6.1%]	121	[5.4%]
r faults	SAFE DETECTED	[SD] :	13	88	[52.9%]	1090	[48.9%]
r faults	DANGEROUS DETECTED	[DD] :	5	20	[19.8%]	458	[20.6%]
r faults	DANGEROUS UNDETECTED	[DU] :	3	00	[11.4%]	300	[13.5%]
r faults	total		26	~ ~		2227	

Computed metrics to be back-annotate to FMEDA

SYSTEMS INITIATIVE

FMEDA – estimated and simulated values

Part	Sub-part	Safety related	Failure mode	Failure Rate (FIT)	Safe Faults [%]	Safety Mechanism	DC – Residual or Single Point Fault [%]	RES/SPF Failure Rate	DC – Latent [%]	Latent MP Failure Rate
DUT	MEM1	SR	permanent	4.0	0%	SMEM1	99%	0.040	90%	0.396
	MEM2	SR	permanent	1.0	0%	SMEM2	99%	0.010	90%	0.099
								0.050		0.495
						SPFM (Calc)	99.0%	LFM (Calc)	90.0%	
		Estimate	d Values				SPFM (Target)	>= 99%	LFM (Target)	>= 90%
Part	Sub-part	Safety related	Failure mode	Failure Rate (FIT)	Safe Faults [%]	Safety Mechanism	DC – Residual or Single Point Fault [%]	RES/SPF Failure Rate	DC – Latent [%]	Latent MP Failure Rate
DUT	MEM1	SR	permanent	4.0	10.0%	SMEM1	88.3%	0.421	94.1%	0.188
	MEM2	SR	permanent	1.0	8.7%	SMEM2	100.0%	0.000	93.2%	0.062
								0.421		0.250
			d Values nulation)				SPFM (Calc)	91.6%	LFM (Calc)	94.5%
			indiacion)				SPFM (Target)	>= 99%	LFM (Target)	>= 90%

20

DESIGN AND VERIFICATION

© Accellera Systems Initiative

Summary

- Autonomous cars are coming and 'Mind-Off' driving is expected to be real by the mid 2020s
- ADAS SoCs are very large, complicated designs
- ISO 26262 is the automotive standard that defines the processes to follow, the performance level for hardware and software performance and the compliance process
- A systematic analysis technique such as the FMEDA is essential for meeting ISO 26262 metrics
- Safety verification provides quantitative data useful in verifying ASIL metrics have been met

Questions

