
Machine Learning-Guided Stimulus
Generation for Functional Verification

S. Gogri, J. Hu, A. Tyagi, M. Quinn
S. Ramachandran, F. Batool, A. Jagadeesh

Texas A&M University

Outline

• Challenge of functional verification

• Background

• Previous work

• Machine learning guided stimulus generation
• Coarse-grained test-level pruning and results
• Fine-grained transaction-level optimization and results

• Conclusions

2

Simulation-Based Functional Verification

• Functional verification
mostly via simulations

• Exercise stimulus and
observe response

• Huge space

• Verification time and
manpower > design

Push the curve toward left

Volume Regressions

3

UVM – Universal Verification Methodology

4

Stimulus

Random or
Directed-Random

Test Suite

Test

Sequence

Transaction

Constraints applied at test-level are called test-knobs

5

Coverage

Coverage Metrics

Code Coverage

Line/Block Toggle Condition

Functional Coverage
Primary Target

Cover-
Groups

Cover-
Points

Bins
(0/1)

6

Machine Learning for Fast Coverage

• A machine learning
model

• Tells if a stimulus 𝜓𝜓 will
cover an unverified
point

• Simulate 𝜓𝜓 only if the
answer is yes

7

Prior Art

• ML for functional verification was started 16 years ago

• Earlier than the recent booming of deep learning

• Mostly tried a model and then showed verification time reduction

8

Some Previous Works

• Fine and Ziv, DAC 03, Bayesian network

• Guzeya, et al, TCAD 10, SVM

• Ioannides and Eder, TODAES 12, “Coverage-directed test
generation automated by machine learning”

• Chen, Wang, Bhadra and Abadir, DAC 13, knowledge reuse

• Sokorac, DVCON17, genetic algorithm for toggle coverage

• Wang, et al, Great Lake Symp. VLSI 18, neural network

9

Are Existing Techniques Adequate?

• Mostly based on old ML engines

• No study on the granularity of ML application
• Coarse-grained test level stimulus optimization
• Fine-grained transaction level stimulus optimization

• Stimulus pruning? or constructive stimulus generation?

• No differentiation between Finite State Machine (FSM) and
non-FSM design

Test

Sequence

Transaction

10

Test-Level Stimulus Pruning

Phase I:
• Random test generation
• ML model is trained

Phase II:
• ML model is applied

for test pruning
• ML model continues

to be trained

Transition decided
by online validation

11

ML Model Setup

• One ML model for each cover point

• For each model
• One binary output for each cover bin
• 1: the bin will be hit by a test
• 0: the bin will not be hit by a test

• A test is simulated if it will hit any uncover
bin

Cover-
Groups

Cover-
Points

Bins
(0/1)

12

ML Model Features

Features
• Seed

• #transactions

• Core selection

• $type

• Request type

• …

Cover points
• Address X req type in bins

• Snoop request

• $protocol transitions

• $hit on each address

• …

13

Ternary Classification

• Will a test improve verification coverage?

• Conventionally: binary classification – yes or no

• Our approach:
• Probability p of improving coverage by test 𝝍𝝍
• If p is high, simulate 𝝍𝝍
• If p is low, do not simulate 𝝍𝝍
• If p is in middle, simulate 𝝍𝝍 and use the result to train ML model

Yes

No

Yes

No
?

14

Decision Tree Classification

15

Random Forest Classifier

16

Test-Level Results: Group A
Covergroup A: coverage metrics correlate with test knobs

0

100

200

300

400

500

600

Ternary Binary

simulated tests

No ML
SVM
Deep Neural Network
Random Forest

17

Test-Level Results: Group B
Covergroup B: coverage metrics do not correlate with test knobs

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Fu
nc

tio
na

l C
ov

er
ag

e
(%

)

No. of Tests

Covergroup B

No Learning DNN Random Forest SVM

100% Coverage

Prediction starts here

18

Transaction-Level Stimulus Optimization

Finer-grained control than test-level pruning

Finite State Machine Non-FSM

Online
transaction

pruning

Offline
sequence

generation

19

Offline Sequence Generation for FSM

• Coverage metric: state transitions

• ML model: given current state and transaction attribute,
predict the next state

• Phase 1: random simulation while ML model is trained

• Phase 2: generate transaction sequences leading to new
transitions

20

Sequence Generation by Graph

I_I_I_I

1

0

0

Initial
state

I_I_I_M M_I_I_I

I_E_I_I

I_S_S_I

I_I_M_I

S_I_S_I

S_S_S_I

0

0

1

1

1
Path-1

Path-2

Visited edge

Unvisited and predicted edge

Unvisited and illegal prediction

State

Transition

Sequence = longest path

Terminate at illegal state

21

Online Pruning vs. Offline Sequence
Generation

• Online transaction pruning
• Myopic scope at each pruning

• Offline sequence generation
• Much longer horizon in scope

22

FSM Transaction Optimization Results
Coverage Metric: MESI state transitions – 143 bins

Deep Neural Network (DNN)48% reduction in simulation cycles
23

FSM Transaction Optimization Results
Coverage Metric: MESI state transitions – 143 bins

Random Forest Classifier (RF) 55% reduction in simulation cycles
24

FSM Verification Time

ML engine: random forest

Verification time reduction

25

Non-FSM Event Coverage

• Events: buffer full, cache hit, etc.

• Almost impossible to deterministically cover events through
test-level optimization

• Event coverage depends on transaction history

26

Recurrent Neural Network (RNN)

Input

Output

Unrolling over time, accounting for history

27

Long Short-Term Memory (LSTM)

𝜎𝜎: gate function, allowing a signal to pass or not
LSTM applications: time series, natural language processing 28

History Effect

29

Non-FSM Event Coverage Results

Long Short-Term Memory (LSTM) 61% reduction in simulation cycles

Coverage Metric: cache hit on every address – 768 bins

30

Non-FSM Verification Time

Verification time reduction

31

Conclusions

• Machine learning-based stimulus optimization for functional
verification

• Fine-grained transaction level optimization outperforms
coarse-grained test level pruning

• Offline sequence generation is superior to online stimulus
pruning

• Random forest and LSTM are helpful
• Around 70% simulation time reduction

32

Future Research

• Small testcases
• Will work on big cases
• Colleagues with decades of

industrial verification
experience

• Seek industrial
collaboration

Aakash Tyagi Mike Quinn

33

	Machine Learning-Guided Stimulus Generation for Functional Verification
	Outline
	Simulation-Based Functional Verification
	UVM – Universal Verification Methodology
	Stimulus
	Coverage
	Machine Learning for Fast Coverage
	Prior Art
	Some Previous Works
	Are Existing Techniques Adequate?
	Test-Level Stimulus Pruning
	ML Model Setup
	ML Model Features
	Ternary Classification
	Decision Tree Classification
	Random Forest Classifier
	Test-Level Results: Group A
	Test-Level Results: Group B
	Transaction-Level Stimulus Optimization
	Offline Sequence Generation for FSM
	Sequence Generation by Graph
	Online Pruning vs. Offline Sequence Generation
	FSM Transaction Optimization Results
	FSM Transaction Optimization Results
	FSM Verification Time
	Non-FSM Event Coverage
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	History Effect
	Non-FSM Event Coverage Results
	Non-FSM Verification Time
	Conclusions
	Future Research
	Slide Number 34

