NN
p 1\0 Machine Learning-Guided Stimulus

Generation for Functional Verification

—0
HO /(}

O

S. Gogri, J. Hu, A. Tyagi, M. Quinn
Q S. Ramachandran, F. Batool, A. Jagadeesh
Texas A&M University

//}/ A




Outline

* Challenge of functional verification
* Background
* Previous work

* Machine learning guided stimulus generation

* Coarse-grained test-level pruning and results

* Fine-grained transaction-level optimization and results

® Conclusions




O

N
\

* Functional verification
mostly via simulations

* Exercise stimulus and
observe response

* Huge space

* \Verification time and
manpower > design

%

% Coverage

100 -

90
80
70
60
50
40
30
20

10

0

Simulation-Based Functional Verification

Volume Regressions

Push the curve toward left

(7%
=]

"
O %
// AN 25
/ Coverage Profile
/ \ 20
g
[+
[ \ :
15 &
/ \ 2
2
/ \.{— Bug Rate 10
_; \ +5
T / T T T T T T 7 X ﬂ
1 2 3 45 6 7 8 91011121314151617 1819 2021 22 2324 25 26 27 28 29 30
Weeks
/




O

Q\ UVM — Universal Verification M
N

CPUO Agent

ethodology

’J:

Sequencer ‘4: e

\/ﬂ

Scoreboard

. . CPU1 CPU2 CPU3
Monitor Driver
Agent Agent Agent
Cache | | Cache | | Cache | | Cache
Lvl Lvl Lvl Lvl

-------- >

Cache Reference

Model

Arbiter

Cache Lv2

1

Main Memory

L Checkers W

iy

i System Bus |

Monitor

/




N
\

O

Sequence

Stimulus

TEST
‘Sequence 1
SLTXIN | S1-Tx4 $1-Tx3 $1-Tx2 $1-Tx1
sp.TaN | ccduenceZ o, o4 $2-Tx3 $2-Tx2 $2-Tx1
Random or

Directed-Random
S3-TxN S3-Tx4 S3-Tx3 53-Tx2
Sequence M
SM-TxN e SM-Tx3 SM-Tx2

‘ SM-Tx4

SM-Tx1

Constraints applied at test-level are called test-knobs




Coverage

Coverage Metrics

Code Coverage Functional Coverage

| .
Line /Block
@) A

%

Toggle Condition ‘
-

Cover-
Points




O

N
\

%

Machine Learning for Fast Coverage

* A machine learning

100 -

— |

model

* Tells if a stimulus v will

=1]
o

cover an unverified

o
&

\— Bug Rate

point g

S

* Simulate y only if the

T T T T T T T

123 456 7 8 9101112131415 161718192021 22 23 24 25 26 27 28 29 30

answer IS yes Weeks




1%\ Prior Art o?

* ML for functional verification was started 16 years ago

O
* Earlier than the recent booming of deep learning

* Mostly tried a model and then showed verification time reduction

Test Generation for Functional

Coverder Do sing Bayesian Networks

T Verification u

' vi Ziv
Shai Fine | Af
IBM Research Laboratory in Harta

Haifa, 31905, _lsrael
{fshali, aziv} @il.ibm.com

j/o T




Some Previous Works

* Fine and Ziv, DAC 03, Bayesian network
®* Guzeya, et al, TCAD 10, SVM

* J]oannides and Eder, TODAES 12, “Coverage-directed test
generation automated by machine learning”

* Chen, Wang, Bhadra and Abadir, DAC 13, knowledge reuse
* Sokorac, DVCON17, genetic algorithm for toggle coverage
* \Wang, et al, Great Lake Symp. VLSI 18, neural network




O

N
\

;

%

Are Existing Technigues Adequate?

* Mostly based on old ML engines -
Test
* No study on the granularity of ML application
* Coarse-grained test level stimulus optimization
* Fine-grained transaction level stimulus optimization \

* Stimulus pruning? or constructive stimulus generation?

* No differentiation between Finite State Machine (FSM) and
non-FSM design




1\] Phase I

* Random test generation
* ML model is trained

Test-Level Stimulus Pruning

(

Transition decided Phase |l
by online validation ® ML model is applied

for test pruning
e ML model continues
to be trained

100 e 300
90 .
// \ - 25
Coverage Profile

\ 120
& \ :
= (14
@ 15 ¢
\ :
* \{— Bug Rate o

\ 5

,\ 0

|||||

12 3 456 7 8 91011121314151617 1819202122 23242526 27 2829 30
Weeks ?




K\)
ML Model Setup
N

* One ML model for each cover point

O
* For each model
Cover-
* One binary output for each cover bin Points
* 1: the bin will be hit by a test
l ® 0O: the bin will not be hit by a test
O * Atest is simulated if it will hit any uncover

/D bin
\

%




ML Model Features
I\ {

Features CPUG | GRUT ) CPUZ | CPUS Cover points
* Seed * Address X req type in bins
* #transactions = D{%he G%he C%he G%he * Snoop request

l * Core selection * $protocol transitions

* $type Arbiter | I I I I * $hit on each address
System Bus
O * Request type f e
I Cache L2 ‘

e
)/ S




\!;\) Ternary Classification
!

/ * Will a test improve verification coverage? y
O esS
* Conventionally: binary classification — yes or no
No
® Qur approach:
l * Probabillity p of improving coverage by test Yes
* If p is high, simulate ¥ 2
? * |If pis low, do not simulate v No
/ * |If pis in middle, simulate ¥ and use the result to train ML model
\

%




Decision Tree Classification

Temperature Prediction
- —
Decision Tree False

Temp Today
A

False

Historical <
/ average > 60 [k PR

False

False ~
Temp )
Today > 65 <

True

Season =
Winter False

Temp Today
- <True
AN False [

Historical <
average < 50
g a -
rue
| Temp
Today > 25 <

15




Random Forest Classifier

Instance

Random Fan / —

-

Tree-2

Tree-1

Class-A Class-B Class-B

] .
‘ Majority-Voting 1 I

Final-Class |

16




Covergroup A: coverage metrics correlate with test knobs

O 120 Simulating selected tests Covergroup A

\ ,\ .

\ Simulating all the tests

Prediction starts here

[
=]
=]

3

&

8

@ 100% Coverage

Functional Coverage(%)

[
[}

0 50 100 150 200 250 300 350 400 450 500 550 600 650
No. of Tests

—No Learning —DNN ——Random Forest —SVM

%

K\O Test-Level Results: Group A
)

600

500

400

300

200

10

o

o

# simulated tests

Ternary Binary

B No ML
B SVM
B Deep Neural Network

B Random Forest

17




N
\

O

Functional Coverage (%)

Test-Level Results: Group B

Covergroup B: coverage metrics do not correlate with test knobs

Covergroup B

120
100
-9 0 0 o
=
80
60 \
Prediction starts here
40

® 100% Coverage

20

o

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
No. of Tests

No Learning ——DNN Random Forest ——SVM




O

N
\

52-TxN

SM-TxN

Transaction-Level Stimulus Optimization

Finer-grained control than test-level pruning

R s1Txd [ s1Ta [ st [ s1Td

Sequence 2

Online

transaction

S2-Tx4 52-T3 S2-Tx2 S2-Tx1

pruning

Offline
sequence
generation

Sequence M

SM-Tx4 SM-Tx3 SM-Tx2 SM-Tx1

Finite State Machine

Non-FSM

19




O

N
\

;

%

Offline Sequence Generation for FSM

Coverage metric: state transitions

ML model: given current state and transaction attribute,
oredict the next state

Phase 1: random simulation while ML model is trained

Phase 2: generate transaction sequences leading to new

transitions j




Sequence = longest path

Visited edge

Unvisited and predicted edge
\

Unvisited and illegal prediction




N
\

O

Online Pruning vs. Offline Sequence
Generation

* Online transaction pruning

* Myopic scope at each pruning

* Offline sequence generation

* Much longer horizon in scope




FSM Transaction Optimization Results

Coverage Metric: MESI state transitions — 143 bins

120

[y
]
=]

2]
=]

State Transition Coverage (%)

=]
[==]

20000 40000 60000 80000 100000 120000

Simulation Cycles

No Learning ——Test-Level Optimization Transaction Pruning Directed Sequence

Deep Neural Network (DNN)48% reduction in simulation cycles




FSM Transaction Optimization Results

Coverage Metric: MESI state transitions — 143 bins

[y
P
o

[y
=)
=}

0
Qo

B
o

State Transition Coverage (%)

o
=]

20000 40000 60000 80000 100000 120000

Simulation Cycles

—— No Learning

Test-Level Optimization

Transaction Pruning Directed Sequence

24

Random Forest Classifier (RF) 55% reduction in simulation cycles




e
O//

/
60
O
50
Z 40
£
£ 30
@
£
= 20

o—

O

%

FSM Verification Time

ML engine: random forest
54.96 sl

23.75
Verification time reduction
--— - -—

Total Test Total ML Total ML Total Time
Simulation time Training Time Prediction Time

m No Learning m Test-level Opt

M Transaction Pruning B Directed Sequence




O

N
\

y

%

Non-FSM Event Coverage

® Events: buffer full, cache hit, etc.

* AImost impossible to deterministically cover events through
test-level optimization

* Event coverage depends on transaction history




\l\) Recurrent Neural Network (RNN)
\

Output

7 ® ® ® ®

—= L 1 1
l A = A H— A — A » A
; & s & 4

"




N
\

@)

Long Short-Term Memory (LSTM)

N\ N N

—»—(f g — A —»>
A r_>

NEEE A UIR N

i

)
©

o: gate function, allowing a signal to pass or not
LSTM applications: time series, natural language processing




o4 -

/
038 -

O
03 -
D25
E a
l o5
0.1

@)
008 -
a

History Effect

10D E2BIAMNIOSEITEDN
Trensscton Window Size fw)

——Handom Forest ——LS5TH Medal




Non-FSM Event Coverage Results

Coverage Metric: cache hit on every address — 768 bins

120

100

o.s]
=]

60

40

Functional Coverage (%)

20

0 500 1000 1500 2000 2500 3000 3500
Simulation Cycles (x103)

——No Learning ——Test-level Optimization ——Transaction Pruning ——Directed Sequence

Long Short-Term Memory (LSTM) 61% reduction in simulation cycles

30




80

N
\

70

O ~— 60

50

Time (mins
T
o=

Non-FSM Verification Time

70.8 70.8 68.2
58.2
25
20.5 19.9
15.4
6
3 3 4
0 0 1.5 1.5 I

Total Test Total ML Training Total ML Total Time
Simulation time Time Prediction Time

Verification time reduction

B No Learning B Test-level Optimization

M Transaction Pruning M Directed Sequence




Conclusions

(

* Machine learning-based stimulus optimization for functional
verification

* Fine-grained transaction level optimization outperforms
coarse-grained test level pruning

* Offline sequence generation is superior to online stimulus
pruning

e Random forest and LSTM are helpful j

* Around 70% simulation time reduction




Future Research

e Small testcases

Aakash Tyagi Mike Quinn

* Will work on big cases

* Colleagues with decades of
Industrial verification
experience

®* Seek industrial
collaboration

LI




Thamnk Youl
Quesfions?

AlM




	Machine Learning-Guided Stimulus Generation for Functional Verification
	Outline
	Simulation-Based Functional Verification
	UVM – Universal Verification Methodology
	Stimulus
	Coverage
	Machine Learning for Fast Coverage
	Prior Art
	Some Previous Works
	Are Existing Techniques Adequate?
	Test-Level Stimulus Pruning
	ML Model Setup
	ML Model Features
	Ternary Classification
	Decision Tree Classification
	Random Forest Classifier
	Test-Level Results: Group A
	Test-Level Results: Group B
	Transaction-Level Stimulus Optimization
	Offline Sequence Generation for FSM
	Sequence Generation by Graph
	Online Pruning vs. Offline Sequence Generation
	FSM Transaction Optimization Results
	FSM Transaction Optimization Results
	FSM Verification Time
	Non-FSM Event Coverage
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	History Effect
	Non-FSM Event Coverage Results
	Non-FSM Verification Time
	Conclusions
	Future Research
	Slide Number 34

