Machine Learning-Guided Stimulus Generation for Functional Verification

S. Gogri, J. Hu, A. Tyagi, M. Quinn S. Ramachandran, F. Batool, A. Jagadeesh **Texas A&M University**

Outline

- Challenge of functional verification
- Background

Q

- Previous work
- Machine learning guided stimulus generation
 - Coarse-grained test-level pruning and results
 - Fine-grained transaction-level optimization and results
- Conclusions

Simulation-Based Functional Verification

- Functional verification mostly via simulations
- Exercise stimulus and observe response
- Huge space

0

Q

 Verification time and manpower > design

UVM – Universal Verification Methodology

0

Ο

Ó

Ċ

Q

С

4

Ø

Constraints applied at test-level are called test-knobs

Machine Learning for Fast Coverage

A machine learning model

О

Q

- Tells if a stimulus \u03c6 will cover an unverified point
- Simulate ψ only if the answer is yes

Prior Art

- ML for functional verification was started 16 years ago
- Earlier than the recent booming of deep learning

Q

Mostly tried a model and then showed verification time reduction

Coverage Directed Test Generation for Functional Verification using Bayesian Networks

Shai Fine Avi Ziv IBM Research Laboratory in Haifa Haifa, 31905, Israel {fshai, aziv}@il.ibm.com

Some Previous Works

- Fine and Ziv, DAC 03, Bayesian network
- Guzeya, et al, TCAD 10, SVM

- Ioannides and Eder, TODAES 12, "Coverage-directed test generation automated by machine learning"
- Chen, Wang, Bhadra and Abadir, DAC 13, knowledge reuse
- Sokorac, DVCON17, genetic algorithm for toggle coverage
- Wang, et al, Great Lake Symp. VLSI 18, neural network

Are Existing Techniques Adequate?

Mostly based on old ML engines

Q

- No study on the granularity of ML application
 - Coarse-grained test level stimulus optimization
 - Fine-grained transaction level stimulus optimization
- Stimulus pruning? or constructive stimulus generation?
- No differentiation between Finite State Machine (FSM) and non-FSM design

Test

Sequence

Transaction

Test-Level Stimulus Pruning

Phase I:

Ó

 \cap

- Random test generation
- ML model is trained

Phase II:

- ML model is applied for test pruning
- ML model continues to be trained

ML Model Setup

- One ML model for each cover point
- For each model

n

Q

- One binary output for each cover bin
- 1: the bin will be hit by a test
- 0: the bin will not be hit by a test
- A test is simulated if it will hit any uncover bin

ML Model Features

D

D

6

Q

Cover points

- Address X req type in bins
- Snoop request

. . .

- \$protocol transitions
- \$hit on each address

Ternary Classification

- Will a test improve verification coverage?
- Conventionally: binary classification yes or no
- Our approach:

Q

- Probability p of improving coverage by test ψ
- If p is high, simulate ψ
- If p is low, do not simulate ψ
- If p is in middle, simulate ψ and use the result to train ML model

Decision Tree Classification

15

O

Random Forest Classifier

0

 \bigcirc

 \bigcirc

Q

С

Q

 \bigcap

16

O

Test-Level Results: Group A

Covergroup A: coverage metrics correlate with test knobs

Ο

 \bigcirc

Q

simulated tests

Test-Level Results: Group B

Covergroup B: coverage metrics do not correlate with test knobs

 \square

Ċ

Transaction-Level Stimulus Optimization

6

 Q

Finer-grained control than test-level pruning

19

O

Offline Sequence Generation for FSM

• Coverage metric: state transitions

Q

- ML model: given current state and transaction attribute, predict the next state
- Phase 1: random simulation while ML model is trained
- Phase 2: generate transaction sequences leading to new transitions

Ċ

Q

Online Pruning vs. Offline Sequence Generation

Online transaction pruning

6

Ċ

- Myopic scope at each pruning
- Offline sequence generation
 - Much longer horizon in scope

FSM Transaction Optimization Results

Coverage Metric: MESI state transitions – 143 bins

 \bigcirc

Deep Neural Network (DNN)48% reduction in simulation cycles

FSM Transaction Optimization Results

Coverage Metric: MESI state transitions – 143 bins

 \square

<u>Random Forest Classifier (RF)</u> 55% reduction in simulation cycles

FSM Verification Time

ML engine: random forest

O

Ó

Q

Verification time reduction

Non-FSM Event Coverage

• Events: buffer full, cache hit, etc.

 \bigcirc

- Almost impossible to deterministically cover events through test-level optimization
- Event coverage depends on transaction history

Ó

Recurrent Neural Network (RNN)

Output

Input

Unrolling over time, accounting for history

History Effect

 \square

Q

 \bigcirc

Ċ

С

Ċ

Non-FSM Event Coverage Results

Coverage Metric: cache hit on every address – 768 bins

Long Short-Term Memory (LSTM) 61% reduction in simulation cycles

Non-FSM Verification Time

O

O

Conclusions

- Machine learning-based stimulus optimization for functional verification
- Fine-grained transaction level optimization outperforms coarse-grained test level pruning
- Offline sequence generation is superior to online stimulus pruning
- Random forest and LSTM are helpful

Q

Around 70% simulation time reduction

Future Research

Small testcases

О

Q

- Will work on big cases
- Colleagues with decades of industrial verification experience
- Seek industrial collaboration

Aakash Tyagi

Mike Quinn

