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Outline

• Challenge of functional verification

• Background

• Previous work

• Machine learning guided stimulus generation
• Coarse-grained test-level pruning and results
• Fine-grained transaction-level optimization and results

• Conclusions
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Simulation-Based Functional Verification

• Functional verification 
mostly via simulations

• Exercise stimulus and 
observe response

• Huge space

• Verification time and 
manpower > design

Push the curve toward left

Volume Regressions
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UVM – Universal Verification Methodology
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Stimulus

Random or 
Directed-Random 

Test Suite

Test

Sequence

Transaction

Constraints applied at test-level are called test-knobs

5



Coverage

Coverage Metrics

Code Coverage

Line/Block Toggle Condition

Functional Coverage
Primary Target

Cover-
Groups

Cover-
Points

Bins 
(0/1)
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Machine Learning for Fast Coverage

• A machine learning 
model

• Tells if a stimulus 𝜓𝜓 will 
cover an unverified 
point 

• Simulate 𝜓𝜓 only if the 
answer is yes
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Prior Art

• ML for functional verification was started 16 years ago

• Earlier than the recent booming of deep learning

• Mostly tried a model and then showed verification time reduction
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Some Previous Works

• Fine and Ziv, DAC 03, Bayesian network

• Guzeya, et al, TCAD 10, SVM 

• Ioannides and Eder, TODAES 12, “Coverage-directed test 
generation automated by machine learning”

• Chen, Wang, Bhadra and Abadir, DAC 13, knowledge reuse

• Sokorac, DVCON17, genetic algorithm for toggle coverage

• Wang, et al, Great Lake Symp. VLSI 18, neural network
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Are Existing Techniques Adequate?

• Mostly based on old ML engines

• No study on the granularity of ML application
• Coarse-grained test level stimulus optimization
• Fine-grained transaction level stimulus optimization

• Stimulus pruning? or constructive stimulus generation?

• No differentiation between Finite State Machine (FSM) and 
non-FSM design

Test

Sequence

Transaction
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Test-Level Stimulus Pruning

Phase I:
• Random test generation
• ML model is trained

Phase II:
• ML model is applied 

for test pruning
• ML model continues 

to be trained

Transition decided 
by online validation
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ML Model Setup

• One ML model for each cover point 

• For each model
• One binary output for each cover bin
• 1: the bin will be hit by a test
• 0: the bin will not be hit by a test

• A test is simulated if it will hit any uncover 
bin

Cover-
Groups

Cover-
Points

Bins 
(0/1)

12



ML Model Features

Features
• Seed

• #transactions

• Core selection

• $type

• Request type

• …

Cover points
• Address X req type in bins

• Snoop request

• $protocol transitions

• $hit on each address

• …

13



Ternary Classification

• Will a test improve verification coverage?

• Conventionally: binary classification – yes or no

• Our approach:
• Probability p of improving coverage by test 𝝍𝝍
• If p is high, simulate 𝝍𝝍
• If p is low, do not simulate 𝝍𝝍
• If p is in middle, simulate 𝝍𝝍 and use the result to train ML model

Yes

No

Yes

No
?
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Decision Tree Classification
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Random Forest Classifier
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Test-Level Results: Group A
Covergroup A: coverage metrics correlate with test knobs
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Test-Level Results: Group B
Covergroup B: coverage metrics do not correlate with test knobs
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Transaction-Level Stimulus Optimization

Finer-grained control than test-level pruning

Finite State Machine Non-FSM

Online 
transaction 

pruning

Offline 
sequence 

generation
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Offline Sequence Generation for FSM

• Coverage metric: state transitions

• ML model: given current state and transaction attribute, 
predict the next state

• Phase 1: random simulation while ML model is trained

• Phase 2: generate transaction sequences leading to new 
transitions
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Sequence Generation by Graph

I_I_I_I

1

0

0

Initial 
state

I_I_I_M M_I_I_I

I_E_I_I

I_S_S_I

I_I_M_I

S_I_S_I

S_S_S_I

0

0

1

1

1
Path-1

Path-2

Visited edge

Unvisited and predicted edge

Unvisited and illegal prediction

State

Transition

Sequence = longest path

Terminate at illegal state
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Online Pruning vs. Offline Sequence 
Generation

• Online transaction pruning
• Myopic scope at each pruning

• Offline sequence generation
• Much longer horizon in scope
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FSM Transaction Optimization Results
Coverage Metric: MESI state transitions – 143 bins 

Deep Neural Network (DNN)48% reduction in simulation cycles
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FSM Transaction Optimization Results
Coverage Metric: MESI state transitions – 143 bins 

Random Forest Classifier (RF) 55% reduction in simulation cycles
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FSM Verification Time

ML engine: random forest 

Verification time reduction
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Non-FSM Event Coverage

• Events: buffer full, cache hit, etc.

• Almost impossible to deterministically cover events through 
test-level optimization

• Event coverage depends on transaction history
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Recurrent Neural Network (RNN)

Input

Output

Unrolling over time, accounting for history
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Long Short-Term Memory (LSTM)

𝜎𝜎: gate function, allowing a signal to pass or not
LSTM applications: time series, natural language processing 28



History Effect
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Non-FSM Event Coverage Results

Long Short-Term Memory (LSTM)  61% reduction in simulation cycles

Coverage Metric: cache hit on every address – 768 bins 
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Non-FSM Verification Time

Verification time reduction
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Conclusions

• Machine learning-based stimulus optimization for functional 
verification

• Fine-grained transaction level optimization outperforms 
coarse-grained test level pruning

• Offline sequence generation is superior to online stimulus 
pruning 

• Random forest and LSTM are helpful
• Around 70% simulation time reduction
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Future Research

• Small testcases
• Will work on big cases
• Colleagues with decades of 

industrial verification 
experience

• Seek industrial 
collaboration

Aakash Tyagi Mike Quinn
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