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Outline

* Challenge of functional verification
* Background
* Previous work

* Machine learning guided stimulus generation

* Coarse-grained test-level pruning and results

* Fine-grained transaction-level optimization and results

® Conclusions
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* Functional verification
mostly via simulations

* Exercise stimulus and
observe response

* Huge space

* \Verification time and
manpower > design
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Q\ UVM — Universal Verification M
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Sequence

Stimulus
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Constraints applied at test-level are called test-knobs
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Machine Learning for Fast Coverage

* A machine learning
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1%\ Prior Art o?

* ML for functional verification was started 16 years ago

O
* Earlier than the recent booming of deep learning

* Mostly tried a model and then showed verification time reduction

Test Generation for Functional

Coverder Do sing Bayesian Networks

T Verification u

' vi Ziv
Shai Fine | Af
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Some Previous Works

* Fine and Ziv, DAC 03, Bayesian network
®* Guzeya, et al, TCAD 10, SVM

* J]oannides and Eder, TODAES 12, “Coverage-directed test
generation automated by machine learning”

* Chen, Wang, Bhadra and Abadir, DAC 13, knowledge reuse
* Sokorac, DVCON17, genetic algorithm for toggle coverage
* \Wang, et al, Great Lake Symp. VLSI 18, neural network
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Are Existing Technigues Adequate?

* Mostly based on old ML engines -
Test
* No study on the granularity of ML application
* Coarse-grained test level stimulus optimization
* Fine-grained transaction level stimulus optimization \

* Stimulus pruning? or constructive stimulus generation?

* No differentiation between Finite State Machine (FSM) and
non-FSM design




1\] Phase I

* Random test generation
* ML model is trained

Test-Level Stimulus Pruning

(

Transition decided Phase |l
by online validation ® ML model is applied

for test pruning
e ML model continues
to be trained
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ML Model Setup
N

* One ML model for each cover point

O
* For each model
Cover-
* One binary output for each cover bin Points
* 1: the bin will be hit by a test
l ® 0O: the bin will not be hit by a test
O * Atest is simulated if it will hit any uncover

/D bin
\
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ML Model Features
I\ {

Features CPUG | GRUT ) CPUZ | CPUS Cover points
* Seed * Address X req type in bins
* #transactions = D{%he G%he C%he G%he * Snoop request

l * Core selection * $protocol transitions

* $type Arbiter | I I I I * $hit on each address
System Bus
O * Request type f e
I Cache L2 ‘

e
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\!;\) Ternary Classification
!

/ * Will a test improve verification coverage? y
O esS
* Conventionally: binary classification — yes or no
No
® Qur approach:
l * Probabillity p of improving coverage by test Yes
* If p is high, simulate ¥ 2
? * |If pis low, do not simulate v No
/ * |If pis in middle, simulate ¥ and use the result to train ML model
\
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Decision Tree Classification
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- —
Decision Tree False

Temp Today
A

False

Historical <
/ average > 60 [k PR

False

False ~
Temp )
Today > 65 <

True

Season =
Winter False

Temp Today
- <True
AN False [

Historical <
average < 50
g a -
rue
| Temp
Today > 25 <

15




Random Forest Classifier
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Covergroup A: coverage metrics correlate with test knobs

O 120 Simulating selected tests Covergroup A
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Functional Coverage (%)

Test-Level Results: Group B

Covergroup B: coverage metrics do not correlate with test knobs

Covergroup B

120
100
-9 0 0 o
=
80
60 \
Prediction starts here
40

® 100% Coverage

20

o

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
No. of Tests

No Learning ——DNN Random Forest ——SVM




O

N
\

52-TxN

SM-TxN

Transaction-Level Stimulus Optimization

Finer-grained control than test-level pruning
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Offline Sequence Generation for FSM

Coverage metric: state transitions

ML model: given current state and transaction attribute,
oredict the next state

Phase 1: random simulation while ML model is trained

Phase 2: generate transaction sequences leading to new

transitions j




Sequence = longest path

Visited edge

Unvisited and predicted edge
\

Unvisited and illegal prediction
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Online Pruning vs. Offline Sequence
Generation

* Online transaction pruning

* Myopic scope at each pruning

* Offline sequence generation

* Much longer horizon in scope




FSM Transaction Optimization Results

Coverage Metric: MESI state transitions — 143 bins
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FSM Transaction Optimization Results

Coverage Metric: MESI state transitions — 143 bins
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Random Forest Classifier (RF) 55% reduction in simulation cycles
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FSM Verification Time

ML engine: random forest
54.96 sl

23.75
Verification time reduction
--— - -—
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Simulation time Training Time Prediction Time
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Non-FSM Event Coverage

® Events: buffer full, cache hit, etc.

* AImost impossible to deterministically cover events through
test-level optimization

* Event coverage depends on transaction history




\l\) Recurrent Neural Network (RNN)
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Long Short-Term Memory (LSTM)
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o: gate function, allowing a signal to pass or not
LSTM applications: time series, natural language processing
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Non-FSM Event Coverage Results

Coverage Metric: cache hit on every address — 768 bins
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Conclusions

(

* Machine learning-based stimulus optimization for functional
verification

* Fine-grained transaction level optimization outperforms
coarse-grained test level pruning

* Offline sequence generation is superior to online stimulus
pruning

e Random forest and LSTM are helpful j

* Around 70% simulation time reduction




Future Research

e Small testcases

Aakash Tyagi Mike Quinn

* Will work on big cases

* Colleagues with decades of
Industrial verification
experience

®* Seek industrial
collaboration
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