
 

1 

 

Machine Learning for Coverage Analysis in 

Design Verification 
 

V Jayasree, Engineer, Qualcomm India Private Limited (vjayasre@qti.qualcomm.com) 

 

Abstract— This paper aims at formulation of an algorithm for selection of test cases for code coverage, based on the 

analysis of initial coverage database comprising basic test cases, using Machine Learning (ML) models. From the 

predicted outputs of the ML model, the relative impact of features on Coverage Percentage and Simulation Time is 

analyzed. The optimal set of test cases to achieve higher coverage numbers in shorter duration is determined from the 

inferences of the analysis.  

Keywords— verification; coverage; machine learning; automation  

I.  INTRODUCTION  

Coverage is an integral aspect of Register Transfer Level (RTL) Verification, for maximizing the accuracy of 

testing of the design. At present, manual analysis of coverage database is performed by Design and Verification 

engineers, towards the closing phase of projects. The implementation of this algorithm would help in saving 

considerable amount of manual effort and time spent for coverage analysis, to develop test plans and meet stringent 

deadlines for hectic tape-out schedules. 

II. RELATED WORKS 

Automation of coverage analysis has been on the radar in recent years, with the evolution of ML. Research on 

applications of various ML algorithms to coverage have been carried out. References [2] and [3] focus mainly on 

stimulus generation for functional coverage. However, modelling a specific type of coverage may not be viable in 

situations where all kinds of coverage need to be optimized. The algorithm in this paper provides a comprehensive 

solution, where the impact of tests on different types of coverage can be integrated and a consolidated set of 

tests/features can be chosen by the verification engineer. Further, in the computation of “Score” mentioned in the 

“Implementation Methodology” section, the engineer can tune the weights of scalars as per requirement in different 

projects. Thereby flexibility and reusability are some of the key aspects of novelty of this paper.  

III. BACKGROUND 

A. Existing flow of coverage analysis 

In RTL Verification, the existing flow of coverage closure involves the following steps: 

• Regressions are run for a large set of tests by the verification engineer 

• The coverage database is manually analyzed by the design and verification engineers  

• Uncovered code is covered by re-running a directed set of tests, post manual analysis 

B. Proposed flow of coverage analysis  

     Understanding the impact of various features and reduction of manual effort and time spent on code coverage 

are the primary goals of the paper. The proposed solution involves the following stages: 

• Selection of important arguments/parameters used to configure verification tests, as inputs to ML 

model. 

• Procuring the individual coverage database for a set of basic test cases. The percentage of coverage 

can be obtained from Unified Report Generator (URG) report, generated by the simulation tool. The 

run-time of each test can also be obtained by parsing log files. 

• The input parameters (configurations) used in tests are considered as the features for the ML model. 

The coverage percentage and simulation time are considered as the labels (outputs) for the model. 



 

2 

 

• The training and test datasets can be created by splitting the initial database in the ratio of 75:25. 

Using the training data set, we generate the models for supervised learning algorithms in any 

software such as Python/Matlab.  

• The efficiency of a particular model can be tested by obtaining the cross-valuation score of test data 

set. The model that maximizes the score can be chosen.   

Once the data is modelled, the verification engineer can predict the coverage percentage of various combination 

of features. The impact of each feature on the overall coverage percentage, for every coverage type, can be analyzed 

and understood. If a particular feature does not improve the coverage much, running too many seeds of that test can 

be prevented.  This will help in improving efficiency of coverage analysis. Figure 1 depicts the difference in the 

current flow and the proposed flow for speeding up Coverage Closure through Machine Learning.  

Run tests with 
different input 
configurations

Generate 
coverage DB by 

running tests

Manual analysis 
of Coverage 

Database by RTL 
Design/

Verification 
owners

Modify 
sequences/

scenarios, to 
improve 
coverage 

percentage

Run tests with 
different input 
configurations

Generate 
coverage DB by 

running tests

Apply ML to 
analyze 

Coverage 
Database

Modify 
sequences/

scenarios, to 
improve 
coverage 

percentage.

Existing flow

Proposed Solution

 

Figure 1. Existing vs. Proposed flow of Coverage Analysis 

 

IV. IMPLEMENTATION METHODOLOGY 

A prototype of the aforementioned solution has been implemented with regression results of RTL code of an IP 

module, using scikit-learn package in Python. Analysis has been performed on a dataset containing coverage 

numbers and run-time of tests, procured from simulations. Three different regression models were experimented to 

be used in the algorithm, namely: 

• Linear regression 

• Decision Tree regression  

• Random Forest regression  

A. Inputs and Outputs of the ML Model 

➢ Features:  

• Parameters with Bernoulli distribution, defined in the inputs of test cases, based on which the 

functionality and corresponding RTL code coverage will differ. For example, presence (1) or 

absence (0) of encryption in the use cases of a product. 

➢ Labels:  

• Per-test Coverage Percentage  

• Per-test Run-time of simulation  

➢ Training Dataset: 

• Features and labels of basic testcases 

➢ Test Dataset: 

• Different combinations of features chosen at random  

➢ Predicted Outputs: 

• Predicted values of coverage percentage and simulation time for test dataset  



 

3 

 

 

Figure 2 depicts the inputs and outputs of the ML Model.  

 

ML MODEL

FEATURES: 
 Bernoulli distributed 
parameters defined in test case 
inputs

LABELS: 
Coverage percentage and 
Simulation time

TRAINING DATA: 
 Features and labels of basic 
test cases

TEST DATA: 
 Features and labels of test 
cases chosen by verification 
engineer

PREDICTED OUTPUTS: 
 Coverage percentage and 
simulation times of different test 
cases

 

Figure 2. Inputs and Outputs of ML Model  

 

B. Selection of features, tests  

For a given set of inputs (combination of features defined by the verification engineer), the Coverage 

Percentages and Simulation Times can be predicted from the trained ML model. From these values, the algorithm 

involves computation of a final parameter called “Score”, based on which the subset of tests for achieving a higher 

coverage in shorter time can be chosen. The parameter “Score” is computed as a linear combination of the outputs 

of the ML model, i.e. the Coverage Percentages for various types of coverage (such as line, conditional, branch, 

FSM) and the Simulation time. The scalars involved in the computation of “Score” can be tuned based on the 

priority assigned to each output and their impact on speeding up the coverage closure process. The value of “Score” 

for each combination of features is used to select the optimal set of tests and features that would maximize the 

coverage in minimal run-time.  

V. RESULTS OF PROTOTYPE IMPLEMENTATION 

The results obtained from the prototype implementation of the algorithm are summarized in this section.  

 

A. Accuracy of ML models 

The “Accuracy Scores” of three different ML models are captured in Table 1. From the Accuracy Scores, it is 

seen that Decision Tree (DT) or Random Forest (RF) models would be better choices for the given data set. The 

Actual values of overall Coverage Percentage and Simulation Time for various testcases are presented in Table 2. 

The Actual and Predicted values (from Random Forest and Decision Tree models) of Coverage Percentages for 

Line, Condition, Branch and FSM coverage, and the Simulation Time are presented in Table 3 and Table 4. 

Graphical comparisons of the Predicted and Actual outputs are presented in Figure 3 and Figure 4.  

Table 1. Accuracy Scores of ML Models 

ML Model Accuracy Score 

Linear Regression 0.55 

Decision Tree 0.99 

Random Forest 0.955 

 



 

4 

 

Table 2. Coverage percentage and Simulation time (Actual values) 

 

 

Table 3. Coverage percentage and Simulation time (Actual and Predicted values) 

Coverage 

Percentage Actual 

(%) 

Coverage 

Percentage: RF 

(%) 

Coverage 

Percentage: DT 

(%) 

Simulation Time 

Actual (s) 

Simulation Time: 

RF (s) 

Simulation 

Time: DT (s) 

64.2 63.3264 64.2 800 774.33 800 

64.2 63.024 64.2 800 772.04 800 

53.8 53.6281 54.6 210 270.86 228 

49.74 51.5003 47.14 209 275.19 215 

54.34 52.6044 53.07 556 507.09 585 

 

Table 4. Coverage percentages of different coverage types (Actual and Predicted values) 

Line Conditional Branch FSM 

Actual 

values (%) 

Predicted 

values (%) 

Actual 

values (%) 

Predicted 

values (%) 

Actual 

values (%) 

Predicted 

values (%) 

Actual 

values (%) 

Predicted 

values (%) 

56.57 56.8628 49.49 49.73 50.14 50.43 22.55 22.55 

59.38 59.1403 54.41 53.87 53.86 53.98 31.37 30.15 

59.48 60.5786 56.75 57.6 54.61 55.11 27.94 29.17 

69.59 68.3014 70.67 70.67 65.73 65.73 50.25 50.25 

69.59 69.0457 70.67 70.67 65.73 65.73 50.25 50.25 

 

 

 

Figure 3. Coverage percentage: Actual vs. Predicted Outputs 

1 2 3 4 5

Coverage Actual 64.2 64.2 53.8 49.74 54.34

Coverage RF 63.3264 63.024 53.6281 51.5003 52.6044

Coverage DT 64.2 64.2 54.6 47.14 53.07

40

45

50

55

60

65

70

C
o

ve
ra

ge
 P

er
ce

n
ta

ge
 (

%
)

Test case

Test Inputs (Features) Actual Test Outputs (Labels) 

Feature

1 

Feature

2 

Feature

3 

Feature

4 

Feature

5 

Feature

6 

Feature

7 

Feature

8 

Coverage 

Percentage 

Actual (%) 

Simulation 

Time Actual 

(s) 

1 1 1 1 1 1 0 0 64.2 800 

1 1 1 1 1 0 1 0 64.2 800 

0 1 1 0 1 0 1 0 53.8 210 

0 1 1 0 0 0 1 0 49.74 209 

1 0 1 0 0 0 0 1 54.34 556 



 

5 

 

 

 

Figure 4. Simulation Time: Actual vs. Predicted Outputs 

 

B. Computation of Score 

Score as a function of Coverage Percentage and Simulation Time 

In this model, the ‘Score’ for each test is expressed as a linear combination of Coverage Percentage and 

Simulation Time, using the formula given below: 

Score = α * (Coverage percentage) – β * (Simulation Time) 

The formula is based on the idea that Score (speeding up of coverage) is directly proportional to coverage 

percentage and inversely proportional to simulation time.  The test with a higher score indicates a higher coverage 

percentage, with a lower simulation time. The Computed Score as a function of Overall Coverage Percentage and 

Simulation Time for various test inputs with α = 10 and β = 0.1 are presented in Table 5. 

Score as a function of the coverage percentages of different sub-types of coverage 

In this model, the ‘Score’ is expressed as a linear combination of various sub-types of code coverage, using the 

formula given below: 

Score = α * (Branch coverage %) + β* (Conditional coverage %) + γ * ( FSM coverage %)  + δ* (Line 

coverage %) 

Here, all four scalar multipliers are positive, since all four coverage sub-types impact the Score positively. The 

Computed Score as a function of Coverage Percentage of different coverage types for various test inputs with α = 

0.9, β = 0.9, γ = 0.6, δ=1.0 are presented in Table 6. 

C. Relative Impact of features on coverage  

The relative impact of each input feature on the overall Coverage percentage and Simulation time is computed 

based on the below mentioned algorithm: 

• From the input data, the mean values of Coverage percentages and Simulation Times are 

computed.  

• For each feature, the difference in Coverage percentages and Simulation Times when the feature 

is present or absent is computed as follows: 

o Coverage Percentage: 

▪ Coverage increase with feature = Coverage percent with feature ‒ Mean coverage 

percent 

1 2 3 4 5

Simulation time
Actual

800 800 210 209 556

Simulation time RF 774.33 772.04 270.86 275.19 507.09

Simulation time DT 800 800 228 215 585

40

140

240

340

440

540

640

740

840

Si
m

u
la

ti
o

n
 T

im
e 

(s
)

Test case



 

6 

 

▪ Coverage increase without feature = Coverage percent without feature ‒ Mean 

coverage percent 

▪ Coverage impact with feature = Coverage increase with feature ‒ Coverage 

increase without feature    

o Simulation (Run) Time: 

▪ Run time increase with feature = Run time with feature ‒ Mean run time 

▪ Run time increase without feature =Run time without feature ‒ Mean run time 

▪ Run time impact with feature = Run time increase with feature ‒ Run time increase 

without feature   

• The relative impact of each feature is computed as follows 

Feature Impact = α * (Coverage increase with feature) ‒ β * (Run time impact with feature) 

 Figure 5 depicts the relative impact of each input feature on the Coverage Percentage and Simulation Time, 

with α = 10 and β = 0.1. From the results of experimentation, it can be inferred that Features 1 to 5 have the maximal 

impact on improving the coverage numbers in shorter run-times, and Feature 6 to 8 have relatively lesser impact. 

D. Productivity improvement 

Table 7 provides the average increase in Simulation Time due to each feature. Since feature 6,7 and 8 have only 

a minimal impact on improving the coverage numbers, it is sufficient to run fewer reseeds of regression, with 

those features. CPU time saved by running lesser seeds of test cases is calculated as follows: 

Number of reseeds of test cases run with features 6,7,8 enabled, before implementation of algorithm = 20 

Number of reseeds of test cases run with features 6,7,8 enabled, after implementation of algorithm = 5 

 

CPU Time Saved = (Number of reseeds of test cases not run for features 6,7,8) *(Average Simulation time 

increase due to features 6,7,8) 

                              = (20 - 5) *(39.2 + 66.56 + 54.85) ≈ 2410 seconds 

 

Percentage savings = (CPU Time Saved / (Average run time per seed * Number of reseed runs)) *100 

                                  = (2410/ (468.2*20)) *100 = 25.7% 

 

Number of NAND2 gates in module (14 nm technology) = 300000 instances 

 

Thereby, around 25% of CPU time and machine resources are saved in the prototype implementation with a 

design complexity of 300000 NAND2 gates in 14 nm process. Figure 6 depicts the reduction in the aggregate 

run time of tests for achieving maximal coverage.  

 

Table 5. Computed Scores as a function of Overall Coverage Percentage and Simulation Time (Random Forest and Decision Tree models) 

 

 

 

 

Test Inputs (Features) Computed Scores 

Feature 

1 

Feature 

2 

Feature 

3 

Feature 

4 

Feature 

5 

Feature 

6 

Feature 

7 

Feature 

8 

Total Score: 

RF 

Total Score: 

DT 

1 1 1 1 1 1 0 0        555.831  562 

1 1 1 1 1 0 1 0 553.036 562 

0 1 1 0 1 0 1 0 509.195 523.2 

0 1 1 0 0 0 1 0 487.484 449.9 

1 0 1 0 0 0 0 1 475.335 472.2 



 

7 

 

Table 6. Computed Scores as a function of Coverage percentage of different coverage types (Random Forest and Decision Tree models) 

 

Table 7. Average simulation time increase for each feature 

 
Feature Simulation time increase (s) 

1 102.884 

2 17.62 

3 117.2 

4 260.9 

5 54.35 

6 39.2 

7 66.56 

8 54.85 

 

 

Figure 5. Relative Impact of features on coverage 

 

 

Figure 6. CPU time reduction with algorithm 

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Le
ad

 T
im

e 
(s

)

Seed number

Aggregate Run Time of Test cases

Without Algorithm With Algorithm

Test Inputs (Features) Computed Scores 

Feature 

1 

Feature 

2 

Feature 

3 

Feature 

4 

Feature 

5 

Feature 

6 

Feature 

7 

Feature 

8 

Total Score: 

RF 

Total Score: 

DT 

1 1 1 1 1 1 0 0 210.1118 212.787 

1 1 1 1 1 0 1 0 207.6865 211.4204 

0 1 1 0 1 0 1 0 166.6064 168.4108 

0 1 1 0 0 0 1 0 160.6769 162.6761 

1 0 1 0 0 0 0 1 150.4944 149.723 



 

8 

 

VI. APPLICATIONS  

A. Advantages 

The key advantages of implementing this algorithm are as follows: 

• Reduction in time and machine resources for sanity testing on large modules, due to intelligent 

selection and elimination of test cases  

• Identification of redundant tests from code coverage perspective and prevention of re-seed runs  

• Deeper knowledge of functionality of input parameters and their correlation with RTL code 

• Selection of constraints for modern Metric-Driven Verification techniques 

B. Future Scope  

The algorithm is a prototype to demonstrate the usage of ML in code coverage analysis. Using the algorithm, 

the impact of any new feature addition and its combination with existing features can be analyzed. For further 

improvement, a model can be developed to merge the database of both code and functional coverage and provide 

an optimal combination of tests and features for maximizing the same. Thereby, it can be concluded there is a huge 

scope for Machine Learning in improving the efficiency of coverage analysis in verification. 

REFERENCES 

[1] Kerstin Eder, “Coverage-directed test generation automated by Machine Learning - A review,” 

(https://www.researchgate.net/publication/220306081_Coverage-Directed_Test_Generation_Automated_by_Machine_Learning_-

_A_Review) 

[2] William Hughes, Sandeep Srinivasan, and Rohit Suvarna, “Optimizing design verification using Machine Learning: Doing better than 

random,” (https://arxiv.org/ftp/arxiv/papers/1909/1909.13168.pdf) 

[3] S. Gogri, J. Hu, A. Tyagi, M. Quinn S. Ramachandran, F. Batool, and A. Jagadeesh, “Machine Learning-guided stimulus generation for 

functional verification,”  (DVCON 2020: http://confcats-event-sessions.s3.amazonaws.com/dvcon20-us/papers/03_1.pdf)  

 

https://www.researchgate.net/publication/220306081_Coverage-Directed_Test_Generation_Automated_by_Machine_Learning_-_A_Review
https://www.researchgate.net/publication/220306081_Coverage-Directed_Test_Generation_Automated_by_Machine_Learning_-_A_Review
https://arxiv.org/ftp/arxiv/papers/1909/1909.13168.pdf
http://confcats-event-sessions.s3.amazonaws.com/dvcon20-us/papers/03_1.pdf

