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DvCON Motivation

* Verifying under PVT variations = essential in AMS
verifications

 Traditional method: extreme-case corners

Can the corners always
capture the worst case?

Do the corners provide a @ @

good coverage of the
continuous PVT space? -
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Dveorni Example (1)

* Analog signals = continuous, nonlinear

* Extreme corners may not be sufficient in capturing
the worst case

Supply
° Example T current
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DV

CONFERENCE AND EXHIBITION

* Supply current: extreme corners work

3/1/2017

Example (2)

Current

10

2.8

2.6

24

2.2

emperature

&>
y
=
e
= e,
Q.’_._._.’.
2 = ——
“ e e
T T e s
S
==
e
===
——————
=
==

20

Voltage

Honghuang Lin, Texas Instruments Inc.

40

Worst case =
Max. current

S




2017

DESIGN AND VERIFICATION™

DV Example (3)

CONFERENCE AND EXHIBITION

* OSC frequency and LDO output voltage
— Extreme corners miss the worst cases
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tion (Cont.)

Iva

Mot

CONFERENCE AND EXHIBITION

* Straight-forward solutions
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Large amount of simulations - can be

very expensive
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DV N Proposed Method
* From the data-driven perspective
— Simulation results - data
— Modeling, prediction = machine learning
* Coverage of the PVT space

— Prediction of unknown PVT configurations -
classification / regression

 Sample selection

— Best choice based on “learnt knowledge™ - active
learning

3/1/2017 Honghuang Lin, Texas Instruments Inc. 7
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DV

0 u I V I
CONFERENCE AND EXHIBITION e I ew

* Machine learning model
— PVT coverage -2 reliability evaluation

— Worst case exploration - efficient verification

3/1/2017

Run new

l T l
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PVT Space Coverage

CONFERENCE AND EXHIBITION

* PVT configuration: {x;},i =1,2,...,n
* Resulting performance: t;
* Actual mapping: #:x - t

* Approximate with f such that errors are small, ¢; =

size of {x|tmin<f(X)<tmax.XEQN}
size of {x|x€}

* PVT coverage =

Can be solved by general
purpose machine
learning techniques

Support vector
machines (SVM)

e ——
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CONFERENCE AND EXHIBITION SV M

* A powerful nonlinear regression tool
* f(x) =w-x+ b > Kernel method for nonlinearity

lwl|*

LI (& +ED,

e Minimize

ti—W'xi—bSE+€i
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i, =0
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SVM b ase d PVT COVG rage

CONFERENCE AND EXHIBITION

* Calculation flow of the SVM based PVT space
coverage
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DV Simulation Reduction (1)

NNNNNNNNNNNNNNNNNNNNNNN

* SVM - What if training data is reduced?

— Intuition: less data - lower accuracy? Not always
right!

* Sparse solution = concept of support vectors

* Dual form: f =Y (a; —a;) (x;-x)+ b

* x; with non-zero (a; — a;) = support vectors -
have contribution to the model

* Reach the same or similar SVM model with fewer
samples - possible!

3/1/2017 Honghuang Lin, Texas Instruments Inc. 12
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DV Simulation Reduction (2)

CONFERENCE AND EXHIBITION

* For the purpose of verification - Pass or Falil

Really need to run Ideally: identify the
simulations intensively? worst case
- Spec. upper bound | Actual Mapping

Samples
¥

Aproximation

*

: More practically,
sample more

simulations near worst
case locations

. Maximum Minimum

Performance

Spec. lower bound— — — — — — — — —

1 1 1 1 1 1 1 1 1

PVT parameter

e ——
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DVC:CiN Active Learning

* Smarter way to sample?

T Train to acquire the Select new samples
with worst

prediction

training data set oL e .Of the
mapping

Repeat C

Add to the data set

Simulate to check
the actual
performance of the
selected samples

3/1/2017 Honghuang Lin, Texas Instruments Inc. 14
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CONFERENCE AND EXHIBITION

2017

Worst Case Exploration

simulations [

coverage

e p——

[ I [
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J S S

Find predicted
worst cases
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DV

CONFERENCE AND EXHIBITION

* Exploration process (2-D projection)

Example: OSC Frequency (1)
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Dvcod Example: OSC Frequency (2)

* Successfully capture the
worst case

— Only needs 76
simulations

— Uniform discretization
needs 605 simulations

— Saves 87% simulations

s Compute time/
resource saving

3/1/2017 Honghuang Lin, Texas Instruments Inc. 17
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DVi:ii Example: LDO Voltage (1)

* Exploration process (2-D projection)
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Dvc.on Example: LDO Voltage (2)

CONFERENCE AND EXHIBITION

* Successfully capture the
worst case

— Only needs 139
simulations

— Uniform discretization
needs 1280 simulations

— Saves 89% simulations

LDO Voltage

s Compute time/
resource saving

19
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DviorN Conclusion

SVM based PVT space coverage = Reliability
evaluation

Active learning based worst case exploration
— Smarter PVT configuration selection

Capability of reducing the need of simulation

Stress the design for more robust
verification

3/1/2017 Honghuang Lin, Texas Instruments Inc. 20
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DvCOn Thanks!

* Questions?

3/1/2017
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