
Low Power Verification With LDO

Shang-Wei Tu
MediaTek Inc.

+886-3-5670766#23493

kuma.tu@mediatek.com

Amol Herlekar

Synopsys Inc.

+91-80-4018-8337

herlekar@synopsys.com

Yu-Juei Chen

MediaTek Inc.

+886-3-5670766#22794

maso.chen@mediatek.com

Abstract-Low-Dropout Regulators or LDOs are used to regulate an output voltage that is powered from a higher input

voltage. Hence, they are commonly used in advanced low power designs, especially for Dynamic Voltage and Frequency

Scaling (DVFS). For low power verification engineers, modeling such an LDO is a huge problem. Although Unified Power

Format (UPF) or IEEE-1801 standard [1] is defined and released for both the low power implementation and verification,

UPF still does not provide a mechanism to model LDOs. Hence, verification engineers are left with no choice but to

continue modeling the behavior in SystemVerilog. As the number of LDOs grows in the design, this challenge becomes

manifold and can result in a number of verification holes. Also since the LDO is modeled in SystemVerilog, it effectively

loses the UPF messaging and debug infrastructure. Besides, another problem verification engineers facing is the

resolution mechanism that determines the state and voltage of the supply net when the net has multiple supply sources

driving it. Although UPF provides parallel, one_hot, and parallel_one_hot mechanism, these are not sufficient to exactly

simulate all kinds of resolution.

In this paper, we share our experience on how we were able to model the LDO in UPF by extending the UPF

command "create_power_switch" with some more option. In addition, we also share how we extended the UPF command

"create_supply_net -resolve" to simulate the required resolution semantics. With the new syntaxes, we are able to model

the LDOs and the supply net resolution easily and more accurately.

I. INTRODUCTION

Optimizing power consumption has become equally important along with optimizing performance for mobile

based SoCs. For applications like Internet of Things (IoT), minimizing power consumption is even more important

than improving chip computing power, because changing battery could be very difficult and for some extreme cases,

devices might require to be self-powered and operate with the very little energy. Hence, to aggressively minimize

the power consumption, various power management schemes are used. IEEE-1801 or UPF is commonly adopted to

capture the power intent of low power designs. However, adopting UPF into the IC design flow is not simple plug

and play. Adopting UPF introduces extra design and verification efforts, since different power states could have

different impact on design function and leakage power. Hence, we require a robust low power verification

methodology to minimize the risk of failure of low power designs.

Low-Dropout Regulators or LDOs play an important role in the power management. LDOs are used to regulate an

output voltage that is powered from a higher input voltage. However, for low power verification engineers,

modeling such an LDO is a huge problem. Before the advent of Unified Power Format (UPF) or IEEE-1801

standard, engineers had different ways to model the power management logic within the design. UPF solved that

problem to a large extent and now engineers had an industry blessed standard, which could be used to capture the

power intent. Unfortunately, UPF still does not provide a mechanism to model LDOs. So verification engineers are

left with no choice but to continue to model the same in SystemVerilog. Now this is a challenging task because most

of the supply network is captured in the UPF. So engineers have to make sure that LDO inputs in SystemVerilog are

connect to and being driven by correct UPF nets and LDO output is connected to corresponding UPF nets. As the

number of LDOs grows in the design, this challenge becomes manifold and can result in a number of verification

holes. Also since the LDO is modeled in SystemVerilog, it effectively loses the UPF messaging and debug

infrastructure.

Another problem verification engineers facing is related to the resolution mechanism that determines the state and

voltage of the supply net when the net has multiple supply sources driving it. Although UPF provides parallel,

one_hot and parallel_one_hot mechanism, these are not sufficient to exactly simulate all kinds of resolution for real

designs.

In this paper, we share our experience on how we were able to model the LDOs in UPF by extending the UPF

command “create_power_switch” with some more option. Similarly, we also share how we extended the UPF

command “create_supply_net -resolve” to simulate the required resolution semantics. We plan to submit these UPF

mailto:kuma.tu@mediatek.com
mailto:herlekar@synopsys.com

extensions to IEEE-1801 committee. With the new syntax, we are able to model the LDOs and the supply net

resolution easily and more accurately and it helps to make our low power verification more robust removing various

verification holes and instilling more confidence for us while signing off. With the new syntax, we are also able to

specify all LDO output power states with “create_power_switch” command, and hence the simulator could

automatically convert all these states into covergroup helping us to achieve comprehensive low power coverage [2].

This paper is organized as follows. Section II describes an example of an LDO and the UPF limitations in

modeling LDOs. It also describes the supply net resolution challenges which cannot be resolved with

parallel/one_hot/parallel_one_hot resolution techniques. Section III details our previous solution for modeling the

LDO in SystemVerilog and also captures the issues encountered with that methodology. In Section IV, the new UPF

syntax is introduced and its benefits have been illustrated. Finally, Section V concludes this paper.

II. EXAMPLE LDO DESIGN AND UPF LIMITATION FOR MODELING

A. LDO Design and the UPF Limitation

Given an LDO design, the I/O pins of the LDO are illustrated in TABLE I and the control sequence waveform is

demonstrated in Figure 1. In short, the LDO will drive power when LDO_EN is active (i.e. 1’b1) and will be OFF

when LDO_EN is inactive (i.e. 1’b0). The LDO output voltage will depend on the value of LDO_VOSEL when

LDO_EN is active.

TABLE I. Pin Specification of the example LDO.

Pin Name Type Direction Description

 VDD PG Input Power

 VSS PG Input Ground

 LDO_VOUT PG Output LDO output voltage

 LDO_VOSEL[2:0] Signal Input

 Output voltage level selection

3’h0: 0.600V 3’h4: 1.000V

3’h1: 0.700V 3’h5: 1.100V

3’h2: 0.800V 3’h6: 1.150V

3’h3: 0.900V 3’h7: 1.200V

 LDO_EN Signal Input Enable signal (Active high)

Figure 1. Control sequence waveform of the example LDO design.

To the best of the author’s knowledge, there is no way such an LDO can be modeled using UPF commands for the

power-aware simulation. The “create_power_switch” command cannot be used to model the voltage conversion

from one voltage level to another. The voltage level of the input supply net and the output supply net used by

“create_power_switch” command is the same when the power switch is ON and hence it cannot be used for

modeling LDO scenarios where the output voltage is lesser that the input voltage.

B. Real World Design and the Limitation of UPF Supply Resolution

A power supply network as shown in Figure 2 has been used in our real design. The output of the power switch

and the LDO are shorted together and connected to the power domain’s primary power. The driving strengths of the

power switch and the LDO are similar, and either one can solely supply the domain logic operation. Ideally, either

the power switch or the LDO will be enabled for normal operations. This can be handled by “create_supply_net -

reslove one_hot” semantics. The control sequence waveform is demonstrated in Figure 3. Although conceptually,

either the power switch or the LDO will be ON, there will be some overlap between them as shown in Figure 3. In

real scenario, the switching OFF of one and ON of another should not happen at the same time to take care of

voltage spikes. Such control sequence is too risky when considering the circuit delay of the supply network. To

avoid voltage spikes, first LDO should be turned ON and then the PSW should be turned OFF or vice-versa. In this

way, any voltage spike during the transition between the power switch and the LDO can be avoided.

Figure 2. Power domain is supplied by either a power switch or a LDO.

Figure 3. Control sequence waveform for the example design in Figure 2.

For modeling the LDO design in Figure 2 and the control sequence in Figure 3, we need a suitable resolution

function in UPF. The current UPF supply resolution only supports “one_hot, parallel, parallel_one_hot”, but none

can fulfill the requirements above. For “one_hot” resolution, a supply net can be resolved to ON only when there is

single supply source ON at any time. However, for the case above, there are certain overlapping scenarios between

two supply sources, so this resolution technique is not very useful. For “parallel” resolution, a supply net can be

resolved to ON when all supply sources are ON. Obviously, this resolution cannot be used either, since we also

require ON resolution for a supply net when “either one” supply source is ON. For “parallel_one_hot” resolution, at

most one root supply driver shall be ON at any particular time with all sources sharing that driver resolved using

parallel resolution. This resolution technique too is not useful. Hence, we have to find another way to model such

resolution.

III. SYSTEMVERILOG WORKAROUND SOLUTION

A. SystemVerilog model for LDO Design

To simulate the LDO design illustrated in TABLE I and Figure 1, we use a SystemVerilog model in the absence

of proper UPF support. The UPF snippet and the behavior model are illustrated in Figure 4 and 5 respectively. In

Figure 4, we only describe the input supply ports and nets of the LDO, and we use connect_supply_net command to

connect VDD and VSS to the dummy supply ports VDD_to_SV and VSS_to_SV respectively. To get the

information of the supply source on SystemVerilog model side, the dummy supply ports VDD_to_SV and

VSS_to_SV are created in the behavior model. We need to have a UPF file for the LDO to make these connections.

This UPF file may seem redundant, since all the power intent including supply ports VDD and VSS can be directly

modeled in the SystemVerilog model. But this file is required to keep consistent macro/IP UPF integration style

across the design. That is the UPF integrator can use load_upf and connect_supply_net command for loading all the

macros’ and IPs’ UPFs and connecting their input/output supplies respectively. Hence, creating the redundant LDO

UPF file can make the UPF integration flow consistent.

Figure 4. Example UPF code for the LDO design in Section 2.

Once the UPF supplies are available in the SystemVerilog model, the supply switching and voltage conversion

functionality of the LDO can be coded in the behavior model as illustrated in Figure 5. The value of LDO output

LDO_VOUT depends on LDO_EN and LDO_VOSEL signals which are already available in the behavior model.

The dummy supply ports VDD_to_SV and VSS_to_SV should be declared as output ports with supply_net_type in

the behavior model as recommended by IEEE. We should note that although the supply directions will have the

same meaning if they are declared as input or output in the behavior model or defined with UPF

“create_supply_port –direction in/out”. But, if we declare the dummy supply ports as inputs, we will get multiple

drivers (i.e., input supply port VDD/VSS defined in the UPF and input supply port VDD_to_SV/VSS_to_SV

defined in the model) to the supply nets VDD and VSS. Hence, it is better to declare them as outputs. In addition,

we also have `ifdef POWER_AWARE_SIMULATION for hiding all supplies for non-power-aware simulation, since

the model will be used for both the power-aware simulation and non-power-aware simulation.

Although UPF has limitations for describing the supply switching and voltage conversion from a source supply

net to a sink net, it is very easy and intuitional to model this behavior with SystemVerilog code. The example codes

are demonstrated in Figure 5 from Line 11 to 36. The ON or OFF state of LDO_VOUT depends on the state of

both LDO_EN and VDD_to_SV which connects to VDD, and the voltage level of LDO_VOUT depends on the

state of LDO_EN together with the value of LDO_VOSEL. Since the unit of voltage of supply_net_type is V, the

real variable LDO_VOU_r needs to be multiplied by 106 and then assigned to LDO_VOUT.voltage (Line 16 in

Figure 5). The simulation waveform is demonstrated in Figure 6, and it shows the desired behavior. We can see

that LDO_VOUT.state is FULL_ON only when VDD.state is FULL_ON and LDO_EN is 1’b1, and the value of

LDO_VOUT.voltage depends on the value of LDO_VOSEL when LDO_EN is 1’b1.

Although this solution works, the power intent is only partially captured in UPF. Since the UPF in Figure 4 does

not have any information of LDO_VOUT, user can get confused while referring to UPF. Besides, the power state

table cannot be captured completely due to the same limitation. Hence, although this solution can simulate the LDO

perfectly, it is confusing to the UPF integrator and the verification engineer.

Figure 5. Example SystemVerilog behavior model for the LDO design in Section 2.

Figure 6. Simulation waveform of the LDO SystemVerilog model in Figure 5 and the LDO UPF in Figure 4.

B. SystemVerilog model for Special Supply Resolution

To conquer the UPF limitation for the supply net resolution mentioned in Section II B, a resolution module as

demonstrated in Figure 7 was created. Conceptually, the output supply net will be resolved to ON when “either”

one of the source input supply net is ON. The output supply net is resolved to OFF when both input supply nets are

OFF (Line 9 to 12). If one input supply net is ON and the other one is OFF, the output supply net will be resolved to

ON with the voltage level of the ON supply net (Line 28 to 35). However, if both input supply nets are ON or partial

ON, we will resolve the output supply net to ON or partial ON and the output voltage level will be resolved to the

lower one of the input supply nets (Line 14 to 16 and 23 to 26). For the case of either one input supply net partial

ON, we will resolve the output supply net to the other input supply net (Line 17 to 22). This is reasonable. Since

when we short two different voltage supplies together, there will be a large short circuit current from the higher

voltage source to the lower voltage source and the higher voltage source will drop the voltage level. However, in

real world, there is always some resistance inside the voltage sources. Hence, if we short two different voltage

sources, the real output voltage level will be less than the higher one and larger than the lower one. The result is

governed by the Voltage divider rule as shown in Figure 9, and it is very easy to conclude that the output voltage

level is between the higher one and the lower one if we analogues the higher voltage source and the lower one to Vin

and ground in Figure 9 respectively.

One thing we have to mention is that if there are more than two supply sources required to be resolved, we have to

use multiple resolution modules to resolve all of them and the structure will be similar to a binary tree.

Figure 7. Supply resolution module for the requirement depicted in Figure 3.

Figure 9. Voltage divider rule.

The next step is to instantiate this module in RTL, and then connects the corresponding UPF source supply nets to

the inputs and the output to the target supply net. Comparing to the origin supply network illustrated in Figure 2, the

new modified supply network with the resolution module is illustrated in Figure 10 below. Since it is not a good

practice to modify the RTL to add the resolution module, we use SystemVerilog bind statement to bind the

resolution module to the target scope. The example code is demonstrated in Figure 11.

Figure 10. Block diagram for the supply network depicted in Figure 2 with the supply resolution module.

Figure 11. Example code for binding the resolution module to top module.

The corresponding UPF code for the supply network in Figure 10 is demonstrated in Figure 12. As shown in

Figure 12, a dummy supply net LDO_VOUT_NET (Line 9) is created to connect output port of LDO

LDO_VOUT to the input of the resolution model (Line 17). The other input of the resolution model is connected to

the output of the power switch (Line 17) through another dummy supply net PSW_VOUT. Finally, the output of the

resolution model is connected to the target supply net VDD_TOP in UPF (Line 18). The power switch command

(Line 24 to 29) is used to model the power switch functionality. The simulation waveform is demonstrated in Figure

13. From Figure 13, we can observe that the resolution model can resolve the supply correctly at time 30000 (only

PSW ON), 40000 (both PSW and LDO ON), and 50000 (only LDO ON).

Although this solution works correctly, it is cumbersome when we adopt this solution into real project. Besides, it

also makes the power intent partial and inadequate in UPF when user is not aware of the resolution function, and the

UPF file could be difficult to maintain if there are multiple resolution modules instantiated.

Figure 12. Example UPF code for the supply network in Figure 10.

Figure 13. Simulation waveform of the example UPF code in Figure 12 with the resolution module.

IV. PROPOSED UPF SOLUTION WITH REVISED SYNTAX

A. Proposed UPF Syntax for Modeling LDO Design

LDO can actually be considered as a special power switch which can not only switch the voltage but also regulate

its value based on the control signals. Is it possible to extend the UPF to model such a power switch?

create_power_switch command already supports multiple ON states today and hence if we can associate every ON

state with a voltage value, it will serve the purpose. Our proposed solution is extending create_power_switch

command to add one argument –output_voltage as follows:
 create_power_switch switch_name

 …

 [-output_voltage {state_name voltage_value}]

With the proposed argument –output_voltage for create_power_switch command, we can rewrite the LDO UPF

demonstrated in Figure 4 to the code demonstrated in Figure 14. The major benefit is that all the LDO power intent

including the output supply LDO_VOUT (Line 5, 8, and 12), the switching and voltage conversion functionality

(Line 16 to 39), and the power state table (not demonstrated in Figure 14) can be described completely in the UPF

file, so the behavior model can be simplified to an empty module with only input control signals. This solution is

much better than the one mentioned in Section III A, and we can get exactly the same behavior as shown in Figure 6

with the latest version of Synopsys power-aware simulator MVSIM NLP which supports the proposed new

argument for create_power_switch command. In addition, the simulator can automatically convert all the control

signals and switch states of the LDO into covergroup helping us to achieve comprehensive low power coverage [2].

Figure 14. Example UPF code with proposed create_power_switch –output_voltage command for the LDO design in Section 2.

B. Proposed UPF Syntax for Special Supply Resolution

To conquer the real supply resolution issue mentioned in Section II B (Figure 2 and 3), we propose new

resolution mechanisms as shown below by extending UPF create_supply_net command:

 create_supply_net net_name

 …

[-resolve <unresolved | one_hot | parallel | parallel_one_hot | either | strong | weak>]

The details of the resolution mechanisms for -resolve either, strong, and weak are listed in TABLE II, III, and IV

respectively. The difference between –resolve strong and weak is whether the output voltage is resolved to the

higher one of the supply sources or the lower one when multiple supply sources are ON. The reason for providing

these two resolution mechanisms is as mentioned in Section III B, the output voltage level will be between two

supply sources when we short two supply sources, since the output voltage is governed by the Voltage divider rule.

Hence, if someone prefers to simulate this design as the best case scenario, he can use –resolve strong. If some user

prefers to simulate this design as the worst case scenario, he can use –resolve weak. The difference between –resolve

either and weak is whether the output supply is resolved to UNDETERMINED or ON when one source supply is

UNDETERMINED and the other one is ON. This is another best-case and worst-case scenario consideration.

TABLE II. Resolution mechanism for –resolve either.

TABLE III. Resolution mechanism for –resolve strong.

TABLE IV. Resolution mechanism for –resolve weak.

With the proposed new resolution mechanisms which has already been implemented in MVSIN NLP, we can

create a UPF code as demonstrated in Figure 15. To fulfill the requirement depicted in Figure 3, we can use –

resolve weak (Line 8) for VDD_TOP and then connect it directly to the output of the power switch rule (Line 22)

and the output of the LDO (Line 14). The benefits are obvious comparing the solution used in Section III B (i.e., we

don’t need to create a resolution module or a bind file to instantiate the module. We also don’t need to create

dummy supply nets in UPF and connect them). Hence, the UPF supply network connection will be very simple with

the proposed resolution mechanisms and designers can even choose the best-case or the worst-case scenario for the

resolution result to be simulated in the power-aware simulation.

Figure 15. Example UPF code for the supply network in Figure 2 with the proposed resolution mechanism.

V. CONCLUSIONS

Minimizing power consumption is very crucial for the IC design especially for the mobile applications. Hence, the

low power verification is “must” to guarantee correct circuit functionality after adding low power techniques to a

design.

Although UPF helps in capturing the power intent of such designs to a large extent, there are some low power

techniques which cannot be modeled using UPF like LDOs and special supply net resolution, which have been

described in this paper. Initially, we presented our existing solution using SystemVerilog modules connected to the

UPF supply network. The existing solution can meet the desired functionality but it leaves some verification holes

related to coverage. The existing solution is a bit cumbersome to understand and maintain as the UPF code is unable

to have a view of the complete supply network. Therefore, we propose some extensions to the UPF commands

“create_power_switch –output_voltage” and “create_supply_net –resolve weak/strong/either“ to easily model LDOs

and special supply net resolution. This will help in making our low power verification more robust. We have

collaborated with Synopsys to implement these extensions into the power-aware simulator MVSIN NLP and

verified these solutions, and the extensions are only for power-aware simulation. We hope to donate these to the

IEEE-1801 committee and hope that these will be accepted and find their place in the next version of the standard.

REFERENCES
[1] IEEE Standard for Design and Verification of Low-Power Integrated Circuits, IEEE Std 1801, May 2013.

[2] Shang-Wei Tu, Tom Lin, Archie Feng, and Chen Ya Ping, “UPF Code Coverage and Corresponding Power Domain Hierarchical Tree for

Debugging,” Design and Verification Conference (DVCon) 2015.

