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Abstract—The increasing demand to minimize power dissipation and offer energy-efficient chips has resulted in 

the use of highly-advanced power management techniques. Verification of these complex techniques is a challenging 

task and if not executed efficiently it can waste a lot of design verification cycles. One very powerful way to use low-

power verification is with assertions, which can be used to validate power control logic sequences and system-level 

power management, and also ensure that specific requirements are met before and after power mode transitions. 

However, modeling these low-power assertions in HDL in conjunction with their power intent is a very complex task, 

as any change in power intent can completely break the assertions. This leads to a need for an automated way of 

writing these assertions with considerable immunity from any change in the power intent. 

In this paper, we will highlight the challenges in assertion-based low-power verification and propose a 

methodology that leverages the capabilities of UPF (Unified Power Format) to specify the power intent and apply 

efficient and automated low-power assertions and properties. By presenting various examples we will demonstrate 

how you can use UPF to query the power objects from your power architecture and pass on these objects along with 

HDL objects to a checker module that can be instantiated in the design without affecting the actual design. We will 

also propose some of the extensions required in existing UPF commands to use this methodology. We will highlight 

that with the suggested flow, the verification process can become more automated and the closure can be achieved in 

less time. 
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I.  INTRODUCTION  

A. Power Aware Designs 

As electronic systems are getting complex, power and heat dissipation are becoming ever more important. 

There is an increasing demand to reduce the power dissipation and offer energy-efficient chips. This has resulted 

in the use of highly sophisticated power management architectures. Designers are now employing aggressive 

power management strategies ranging from clock gating and power gating to multiple voltages and dynamic 

scaling of voltages and frequencies. It is extremely important to verify the power management because if it is not 

applied properly, then these strategies can affect the functionality of the design. As the power management 

considerations start early in the design cycle, catching power management architecture bugs at early stages can 

save a lot of design verification cycles.  

Creating a power aware design involves partitioning of the design into a set of regions or power domains such 

that each of the power domains can have its own power supplies managed independently. The power architecture 

is modeled using elements like isolation, retention, level-shifter cells, supply nets, ports, etc. This power 

architecture is controlled with the help of a power management unit that issues proper control sequences to 

different elements of the power architecture. At any given time, a power domain may operate at different voltage 

level or state and it can interact with other power domains.  

The increasing need for low-power verification has led to methods for specifying the power intent, i.e., 

defining the power management architecture. Power intent specification formats were introduced to address this. 

These formats allow the user to express the power management which can be overlaid on top of HDL. The power 

intent can be specified much earlier in the design cycle without any modification in the normal design 

functionality. This specification can be used by various tools to perform verification and implementation of power 

managed designs. 
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B. Power Intent Specification and Basic Concepts of UPF 

IEEE Std 1801™-2013 Unified Power Format (UPF) allows designers to specify the power intent of the 

design. It is based on Tcl and provides concepts and commands which are necessary to describe the power 

management requirements for IPs or complete SoCs. A power intent specification in UPF is used throughout the 

design flow; however it may be refined at various steps in the design cycle. 

Some of the important concepts and terminology used in power intent specification are the following: 

 Power domain: A collection of HDL module instances and/or library cells that are treated as a group for 

power management purposes. The instances of a power domain typically, but do not always, share a 

primary supply set and typically are all in the same power state at a given time. This group of instances is 

referred to as the extent of a power domain.  

 Power state: The state of a supply net, supply port, supply set, or power domain. It is an abstract 

representation of the voltage and current characteristics of a power supply, and also an abstract 

representation of the operating mode of the elements of a power domain or of a module instance (e.g., on, 

off, sleep).  

 Isolation Cell: An instance that passes logic values during normal mode operation and clamps its output to 

some specified logic value when a control signal is asserted. It is required when the driving logic supply is 

switched off while the receiving logic supply is still on.  

 Level Shifter: An instance that translates signal values from an input voltage swing to a different output 

voltage swing.  

 Retention: Enhanced functionality associated with selected sequential elements or a memory such that 

memory values can be preserved during the power-down state of the primary supplies.  

 Repeaters: If the distance between driver and receiver is long, special buffers may be required to boost the 

strength of the signal and to ensure that it stabilizes within the required time. These buffers are typically 

called repeaters.  

 Supply net: an abstraction of a power rail.   

II. LOW-POWER VERIFICATION 

Verification of power management techniques is a challenging task and if not executed properly it can waste a 

lot of design verification cycles. Low power verification is generally performed in two steps. Firstly static 

verification is done to catch all structural errors which include detection of correct placement and connection of 

power management objects like isolation, level shifter, repeaters and retention. It is followed by dynamic 

verification where design along with power management architecture is simulated with both functional and power 

control inputs to detect all control sequences and protocol related errors. This paper focuses on dynamic 

verification of low-power designs. 

A. Low-power dynamic verification items 

Some of the common dynamic verification items in low-power designs are as follows: 

 Protocol checking: In a low-power design, various power management cells like isolation cells, level 

shifter cells, and retention cells may be inserted into the design affecting its functionality. Therefore 

it is of high important to check that they are enabled and active at the proper time. One of the 

protocol checks for isolation is to verify that Isolation enable is triggered before the power of the 

source logic goes down; it remains active throughout the power down period and until sometime 

after the power goes up. Similarly if the power domain exhibits retention capability, then another 

protocol check is to verify that its control signals are triggered at the right time i.e. retention SAVE is 

triggered before power down and RESTORE is triggered after power up. 

 Power Intent checking: Another aspect of low-power verification is related to verifying UPF intent 

against the implemented power aware design. For example user wants to ensure that during the 
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active isolation period, the signal on which isolation is applied is being clamped to the correct clamp 

value as specified in UPF file. 

 Power Intent coverage: One of key area of concerns for verification engineer is to ensure that all 

system states are tested and covered. This can be further achieved by meeting coverage goals of its 

constituent objects like power domain, supply sets, supply nets, supply ports. For example the 

coverage of a power domain is defined based on coverage of its strategies, own state and states of its 

supplies.  

There could be many other verification items however those are out of scope of this paper. 

B. Assertion based low-power verification 

One of very powerful way to achieve the dynamic verification of low-power designs is with SystemVerilog 

assertions (SVAs), which can be used to validate power control logic sequence and also ensure that specific 

requirements are met before and after power mode transitions. These assertions can monitor and check transitions 

in the power control signals to verify legal and correct low-power behavior. The assertions also provide coverage 

data that can be used for verification closure. 

Some EDA vendors do provide automated, tool-generated assertions to check common protocol errors. 

However, in cases where these are not complete, the user has to rely on his own custom low-power assertions to 

verify the power intent of the design and also make sure that all test scenarios are covered. 

Modeling these low-power assertions in HDL in conjunction with their power intent is a very complex task, as 

any change in power intent can completely break the assertions. This leads to a need for a methodology of writing 

these assertions such that these assertions remain unaffected from any change in the power intent.  

III. MOTIVATION FOR METHODOLOGY 

Tool-generated assertions are used widely for low-power verification. However they may not be useful or 

exhaustive in all the designs, as highlighted by the reasons below: 

 A design can have a very specific requirement which is not being provided by the tool-generated 

assertion. 

 The low-power technology is still evolving and hence a new set of protocol appears every now and then, 

which may require a different set of assertions that is not yet provided by the tool vendor. 

Due to the above reasons the user may want to write his custom assertions and coverage items. These items 

can be grouped in a checker module, and this checker module can be instantiated into the design using UPF 

command “bind_checker”. However the method of instantiation of such a checker module is not trivial 

because: 

 These low-power assertions/coverage items require access to power objects. However, at the early stages 

of verification these power objects are only present in the UPF file and do not exist in the design. It is 

therefore not straightforward to pass these UPF objects to a checker instance. 

 Some of the property-checking requires access to design/power signals spanning across multiple 

domains. Such a task is highly error prone and time consuming. 

 As the scope and the inputs of these checkers instances are defined in UPF, any change in the UPF or 

design might break these checkers and they need to be re-written. 

The above problems can be averted by use of another set of UPF concepts and commands (query functions) to 

extract the power object handles and pass on these dynamic UPF objects to bind_checker.  

The motivation behind this paper is to show a methodological use of bind_checker and query_* 

functions to overcome the problem of an evolving UPF and changing design and hence provide a strong way of 

writing custom assertions and coverage bins. 
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IV. METHODOLOGY 

A. UPF concepts/commands 

The following UPF commands are the basic building block of our methodology: 

1) bind_checker command 

The sample code snippet: 
bind_checker checker_instance_name \ 

    -module checker_module_name \ 

    -bind_to target_instance 

    -ports {{formal_port1_name power_object_handle} \ 

           {formal_port2_name power_control_signal}} 

 

The UPF 2.0/2.1 standard provides the bind_checker command that helps to instantiate the checker 

module „checker_module_name‟ into the design hierarchy „target_instance‟ with the instance name 

„checker_instance_name‟ without actually modifying the design code or introducing any functional changes. The 

low-power assertions are modeled in this checker module, which can then monitor the power aware design.  

The method of binding this checker module to the design elements relies on the SystemVerilog bind directive. 

The UPF command bind_checker allows specifying the target instance where this checker module needs to 

be instantiated. It also provides one-to-one port mapping of the checker module to the actual argument, which in 

this case can be a power object/control signal. Thus the checker module gets access to any UPF object in the HDL 

scope.   

2) query_* commands 

The UPF 2.0/2.1 standard  provides a great toolset of commands, including query (for example 

query_power_domain, query_isolation, query_retention), which can be used to search and 

get the handle of power management objects, including strategies (isolation/retention/power switch), power 

domains, supply nets, supply ports etc. These commands follow a hierarchical approach and return the handle of 

objects which reside in or below the scope where these commands are called. 

The sample code snippet: 
#------------------ 

# Get list/handle of all power domains defined in this scope or below 

#------------------ 

query_power_domain * 

 

#------------------ 

# Get handle of isolation strategy „PD_ISO1‟ defined in domain „PD‟ 

#------------------ 

query_isolation PD_ISO1 -domain PD 

 

The return value of query_isolation command can be used to get isolation strategy details e.g. isolation 

enable signal, its elements, isolation power etc. 

Note: The purpose of the query_* command in the methodology is just to extract out the handles of 

power/control signals from the power architecture. However any other way apart from query_* commands can 

also be used in the methodology to extract out the same information. In fact UPF 2.0 query function definitions 

were somewhat ambiguous and they have been moved to an appendix in UPF 2.1. The P1801 working group is 

working on an information model and API that will serve as the basis for a new set of query functions in UPF 3.0. 

3) find_objects command 

 UPF 2.0/2.1 standard provides this command to query the design (HDL) elements. It provides a good deal of 

filtering support to extract relevant elements. 

The sample code snippet: 
#------------------ 

# Get all output ports of the instance „inst1‟ 

#------------------ 
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find_objects inst1 –pattern * -object_type port –direction out 

 

B. Steps required for methodology 

The recommended methodology revolves around the above mentioned UPF commands. The assertions and 

covergroup needed for low-power verification are packed in a checker module. This module is then instantiated in 

the relevant design scope using the UPF command bind_checker. For low-power verification, the SVAs and 

covergroups require access to both the power objects and the control signals. Since these SVAs reside inside the 

checker module, the required actual design/power signals need to be passed as actual arguments to the checker 

module. This is achieved by using query functions and bind checkers.  

During low-power simulation of the design, whenever these assertions fail it indicates a functional issue or a 

low-power bug in the design. The coverage bins instantiated within these checkers module collect the coverage 

items and help achieve verification closure. The methodology interface is Tcl-based therefore you can embed 

them in the UPF file itself to automate the verification process. 

Specifically the methodology proposes following steps: 

 Model the protocols/power intent to be checked by a set of SystemVerilog assertions and club them 

together in checker module. 

 Define an interface based on UPF commands query_*, find_objects, bind_checker as 

mentioned below : 

o Determine the required power objects and design signals which are required by the above 

SVAs. Extract the power/control signals (UPF objects) from the power architecture using 

the UPF query_* commands. If required, extract the design signals (HDL objects) using 

the UPF command find_objects. 

o Pass the above handles to the checker module and instantiate it in the design with the help 

of the UPF command bind_checker. 

 

Figure1.  Methodology Flow Chart 
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C. Extensions required in the UPF concepts/commands 

The methodology relies on UPF concepts and commands to extract out the information from power 

management and attach it to a checker module. Though the UPF provides a great toolset to support this,  there a 

few extensions required in these commands in order make full use of methodology potential. 

1) query_* commands 

 As the bind_checker can get instantiated anywhere in the design, the handle of power/control 

signals needs to be the full hierarchical path. All query_* commands return the object handle as a 

name of the object referenced from the active scope. To use query_* commands as recommended 

in the methodology, these commands needs to be extended to return the object handle as the full 

hierarchical path of the object referenced from the design top. 

 Certain query_* commands need to be extended to provide additional information which is not as 

defined, per the UPF LRM. For example, query_power_domain needs to be extended to provide 

the primary supply (power/ground) of the queried power domain.  

 The query_* -elements command needs to be extended to provide processed information. For 

example, it is not possible to extract list of isolated signals when using –source/sink option in 

set_isolation command.  

2) bind_checker command 

 

 Certain SystemVerilog assertions and covergroups use the object name or constant values to give 

intuitive messages. These names are passed on as parameters to the checker module. The 

bind_checker command allows port mapping, however it does not provide a -parameters 

option. Extension of “bind_checker –parameters” needs to be added.  

 Support for expressions in –ports in bind_checker: In certain cases, the actual port of checker 

module can be an expression composed of power objects extracted from power architecture. For 

example, save_condition/restore_condition of set_retention.   

D. Advantages with this methodology 

 Because the query_* and find_objects commands are dynamic in nature, any change in the UPF will 

automatically reflect on the output of these commands and will be fed to bind_checker for the correct 

placement of assertions. Hence this methodological usage for modeling of custom low-power 

assertion is immune to changes in the UPF. 

 Since the methodology relies on a method to query and extract information from UPF, it has access 

to all power objects and design signals. 

 It is highly programmable and easy to use. 

V. CASE STUDIES 

To better understand the methodology and demonstrate the usage, this paper includes a few case studies. 

A. Power Domain State and Transition Coverage  

Today‟s SOCs contain a large number of power domains and each of the power domains can operate in 

various power states. For the verification of such a design, one of the important properties is to ensure that “all the 

power domains cover all power states”. 

Consider the following example, in which a power domain can exist in various power states that are 

dependent on the primary power supply of that power domain. Below is the FSM diagram for the power state 

machine of a power domain: 
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Covergroups are being modeled in the following checker module. In this example, the coverbin is being updated 

for every STATE_LOW reached by the power domain PD_LP. 

Checker Module 
module power_state_checker (input supply_net_type PSN); 

parameter string PD_NAME = “”; 

parameter string pri_power_net_name  = “”; 

initial begin : COV_GRP_SAMPLE_BLOCK 

    cov_grp = new; 

    forever begin 

       @(seq_state) ; 

       if (seq_state === STATE_LOW) begin 

          cov_grp.sample(); 

       end 

    end 

  end 

………… 

initial begin : PD_STATE_TRACKING_BLOCK 

    seq_state = UNKNOWN; 

    forever begin 

       case (seq_state) 

          UNKNOWN: begin 

              if (get_supply_voltage(PSN) == 1.2) seq_state = STATE_LOW;  

              else if(get_supply_voltage(PSN) == 1.8) seq_state = 

STATE_HIGH; 

          end 

          STATE_LOW: if (get_supply_voltage(PSN) == 1.4) seq_state = 

STATE_ON; 

          STATE_ON: if (get_supply_voltage(PSN) == 1.8) seq_state = 

STATE_HIGH; 

          default: seq_state = UNKNOWN; 

       endcase 

 

       @(PSN.voltage) 

        $display ("Power domain '%s' changed its voltage to '%d'", PD_NAME, 

get_supply_voltage(PSN)); 

    end //forever 

 end 

…… 

 

Figure2.  FSM Diagram of power domain PD_LP 
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The above checker module requires the handle of the primary power net of a power domain. This can be 

extracted from power architecture using the UPF command query_power_domain. We can then attach this 

power net to the formal port names in the checker module. After that we can instantiate the checker module into 

the design using the bind_checker command.  

Tcl Proc 
proc cov_power_states_of_power_domain { 

set pd_list [query_power_domain *] 

foreach PD $pd_list { 

        array set pd_details [query_power_domain $PD -detailed] 

        set pri_net $pd_details(primary_power_net) 

        set pdName $pd_details(domain_name) 

        bind_checker check_inst_$pdName \ 

                -module power_state_checker \ 

                -ports [list [list PSN $pri_net]] \ 

                -parameters [list [list PD_NAME $pdName]] 

    } 

} 

B. Isolation Protocol Checking 

In low-power designs, whenever the driving logic supply is switched off while the receiving logic supply is 

still on, an isolation cell is required. One of the things to be verified is that output port (op) is clamped to a golden 

expected value throughout the duration that isolation enable is asserted.  

The above check can be expressed in the form of SVA which is written inside a checker module as follows:  

Checker module: 
module checker_isolation(input op, iso_en, clk) ; 

    parameter int clamp_value      = 1 ; 

    parameter isolated_signal_name = “” ; 

    parameter iso_strategy_name    = “”; 

    always@(posedge clk) 

      if(iso_en)   

        assert (op == clamp_value) else $error(“isolated signal „%s‟ for 

isolation     strategy „%s‟ is not clamped(%b) correctly”, 

isolated_signal_name, iso_strategy_name, clamp_value);  

endmodule 

 

The above checker module requires the handle of isolated signals, isolation_enable, clk and parameter values. 

UPF query functions can be used to extract these handles from power architecture. These power handles are then 

passed as actual to the formal port names in the checker module. The last step is to attach the checker module to 

the design using the bind_checker command.  

Tcl Proc: 
proc chk_isolation_properties { 

foreach domain [query_power_domain *] { 

    foreach isolation [query_isolation * -domain $domain] { 

        array set Iso_Strat[query_isolation * -domain $domain] 

        foreach iso_sig $Iso_Strat(elements) { 

          bind_checker chk_$Iso_Strat(isolation_name)_$domain(domain_name)\ 

            -module checker_isolation 

            -ports [list \ 

                   [list op $iso_sig] \ 

                   [list iso_en $Iso_Strat(isolation_signal)]\ 

                   [list clk clk]\ 

                   ]\ 

             -parameters [list \ 

                         [list clamp_value $Iso_Strat(clamp_value)] ...]                        

        } 

    } 

} 
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VI. DRAWBACKS 

The recommended methodology is very useful to achieve verification closure of low-power designs in a short 

span of time. However it may not be useful in all the scenarios because of following drawbacks: 

 Since the UPF commands used for this methodology require few enhancements so it might not be 

portable to all tool vendors. 

 Some of the highly complex low-power assertions might not be achievable using the recommended 

methodology because of lack of query functions/UPF commands to provide the assertion inputs. For 

example an assertion which requires the sink/source supply of an isolated port cannot be 

implemented using existing query_* function capabilities. 

 There could be a potential simulation performance impact of bind checker assertions written using 

our methodology versus the tool generated assertions because tool generated assertions are highly 

optimized by the tool vendor. 

VII. CONCLUSION 

SystemVerilog assertions and Cover groups can be used to achieve the verification closure of low-power 

designs which otherwise can prove to be a very difficult task. Some of the EDA vendors provide a fixed set of 

low-power assertions and coverage for this purpose but there is still a need for custom low-power assertions and 

coverage items.  

The UPF command bind_checker is a step towards such a goal but its standalone usage doesn‟t provide a 

strong way of writing custom assertions and cover groups. Hence we suggest a methodology using 

bind_checkers, query commands and find_objects to write some of the very powerful low power 

assertion which have considerable immunity from any change in the UPF or the design. We have also listed a few 

enhancements required in these UPF commands that enable the implementation of some very complex low-power 

assertions. Lastly we have demonstrated a few case studies to prove our methodology and its advantages. 

Although there are few minor drawbacks with the suggested strategy but the kind of flexibility it provides in 

writing assertions and covergroup would be a leap forward in low-power verification. 
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