
© Accellera Systems Initiative

• Electronic devices have become complex and energy aware

• Require sophisticated power management architectures and strategies

• If not applied properly, will affect design functionality

• Complex protocols, many power modes need to be verified

• Need for advanced & efficient power aware verification

• Catch low-power bugs at early stages and save design cycles

• Power intent specification format (UPF) is used to define power

management logic – without modifying HDL

INTRODUCTION

METHODOLOGY

MOTIVATION FOR METHODOLOGY

• Tool-generated assertions used for low-power verification

• Some specific scenarios may not be met

• New protocols may require new assertions not yet supported by

any tool

CASE STUDY

Isolation Protocol Checking – Whenever the

driving logic supply is switched off while the

receiving logic supply is still ON, an isolation cell is

required. One of thing to be verified is that the

output port (op) is clamped to golden expected

value throughout the duration isolation enable is

asserted.

Assertions and covergroups needed for low-power verification are packed in a checker module. This module is

then instantiated in the design scope using UPF command “bind_checker”. Since these SVAs and covergroups

reside inside checker module, the required design/power signals need to be passed as actual argument to the

checker module. This is achieved by using UPF commands query functions and bind checkers.

Madhur Bhargava, Durgesh Prasad

Low-Power Verification Methodology using

UPF Query functions and Bind checkers

ADVANTAGES OF METHODOLOGY CONCLUSION
• SystemVerilog assertions and Cover groups

• used to achieve the verification closure of low-power designs

• Some EDA vendors provides fixed set of low-power assertions and coverage

• Still a need for custom low-power assertions and coverage items

• UPF command bind_checker can be used

• Standalone usage doesn’t provide a strong way of writing custom assertions and cover groups

• Suggested methodology using bind_checkers, query commands and find_objects

• Allows to write some of the very powerful low power assertion having considerable immunity

from any change in the UPF or the design

• The kind of flexibility the methodology provides in writing assertions and covergroup would be

a leap forward in low-power verification.

Note: The purpose of the query_* command in the methodology is just to extract out the handles

of power/control signals from the power architecture. However any other way apart from query_*

commands can also be used in the methodology to extract out the same information.

In fact UPF 2.0 query function definitions were somewhat ambiguous and they have been moved to

an appendix in UPF 2.1. The P1801 working group is working on an information model and API that

will serve as the basis for a new set of query functions in UPF 3.0.

Low-Power Verification

• Static Verification

• Catch all structural errors – correct

placement and connections of PA Cells

• Dynamic Verification

• Protocol checking – Eg. Check PA Cells

are enabled and active at the required

time

• Power intent checking – Verify power

intent specified in UPF against

implemented logic.

• Power intent coverage – Check if all

coverage goals are met for all power

aware objects

Assertion Based Low-Power
Verification

(Using System Verilog Assertions)

Validate power
control logic

sequence

EDA Vendors

(Tool-Generated
assertions)

Common Protocol
Errors

Monitor and
check

transitions in
power control

signals

Provide
Coverage Data

Custom Low-Power
Assertions

(Ensure all test
scenarios are

covered)

Custom

Assertions

&

Coverage Items

• Custom Assertions & Coverage Items: Club in Checker Module and

instantiate into design using UPF command “bind_checker”

• Low-Power assertions require access of power objects – only

present in UPF and not HDL (RTL Stage)

• Some property checking require design/power control signals

spanning across multiple domains.

• Scope/Inputs of checker module defined in UPF – any change in

UPF can break these assertions

Model

assertions

(Immune from

change in UPF)

Need for

methodology

UPF CONCEPTS & COMMANDS REQUIRED IN METHODOLOGY

bind_checker

Instantiate checker module
(having low-power assertions) into
design hierarchy without
modifying the design code.

Allows one to one port mapping of
the checker module to actual
power object/control signal.

query_*

(query_isolation, query_retention,
query_power_domain)

Search and get handle of power
management object including
strategies (isolation/retention/power
switch), power domains, supply nets,
supply ports.

find_objects

Allows to query the design (HDL)
elements.

Provides good deal of filtering
support to extract relevant
elements.

Author’s Contact Information

• Failing Assertions – Indicate functional issue or a

low-power bug

• Coverage Data – Help achieve verification closure

Steps for Methodology

• Model protocols/power intent to be checked

• Use SystemVerilog assertions and club

them together in a checker module

• Define interface based on UPF commands

• Extract out required power/control signals

(UPF objects) from power architecture

using UPF query_* commands. Extract out

design signals (HDL objects) using UPF

command find_objects.

• Pass on above handles to checker module

and instantiate it in the design with help

of UPF command “bind_checker”.

Step1 - Write checker module

• Above check can be expressed in the form of SVA

which is written inside a checker module

Step2 – Define interface

• Checker module requires the handle of isolated

signals, isolation_enable, clk and parameter

values.

• Extract these handles from power architecture

(using query_*) and pass these as actual to the

formal port names in the checker module.

• Attach the checker module to the design using

the bind_checker command.

Checker module:

module checker_isolation(input op, iso_en, clk) ;

 parameter int clamp_value = 1 ;

 parameter isolated_signal_name = “” ;

 parameter iso_strategy_name = “”;

 always@(posedge clk)

 if(iso_en)

 assert (op == clamp_value) else $error(“isolated signal „%s‟

for isolation strategy „%s‟ is not clamped(%b) correctly”,

isolated_signal_name, iso_strategy_name, clamp_value);

endmodule

Tcl Proc:

proc chk_isolation_properties {

foreach domain [query_power_domain *] {

 foreach isolation [query_isolation * -domain $domain] {

 array set Iso_Strat[query_isolation * -domain $domain]

 foreach iso_sig $Iso_Strat(elements) {

 bind_checker

chk_$Iso_Strat(isolation_name)_$domain(domain_name)\

 -module checker_isolation

 -ports [list \

 [list op $iso_sig] \

 [list iso_en $Iso_Strat(isolation_signal)]\

 [list clk clk]\

] \

 -parameters [list \

 [list clamp_value $Iso_Strat(clamp_value)] ...]

 }

 }

}

REFERENCES

EXTENTIONS REQUIRED IN UPF CONCEPTS/COMMANDS

query_* commands

Extend these commands to return the object handle

as the full hierarchical path of the object

referenced from the design top - methodology

require the handle of power/control signals needs to

be the full hierarchical path.

Some query_* command need to be extended to

provide additional information which is not as

defined, per the UPF LRM. For example,

query_power_domain needs to be extended to

provide the primary supply (power/ground) of the

queried power domain.

• As query_*, bind_checker commands used in methodology are
UPF commands, so any change in UPF will automatically reflect
on output of these commands and will be fed to bind_checker

Immune to change in UPF

• Based on Tcl, so can be embedded in UPF file to automate the
verification process

Highly programmable and easy to
use

• As it relies on method to query and extract information from
UPF

Access to all power objects and
design signals

bind_checker command

Certain SVAs and covergroups require object name

or constant values to give intuitive messages,

which are passed on as parameters to the checker

module. Extension of “bind_checker –

parameters” needs to be added.

Support for expressions in –ports in

bind_checker: In certain cases, the actual port of

checker module can be an expression composed of

power objects extracted from power architecture.

For example, save_condition/restore_condition of

set_retention.

Name: Madhur Bhargava

Email: madhur_bhargava@mentor.com

Company: Mentor Graphics

IEEE Std 1801™-2013 for Design and Verification of Low Power Integrated Circuits. IEEE Computer Society, 29 May 2013

Rudra Mukherjee, Amit Srivastava, Stephen Bailey: “Static and Formal Verification of Low Power Designs at RTL using UPF”, DVCon

2008.

Name: Durgesh Prasad

Email: durgesh_prasad@mentor.com

Company: Mentor Graphics

mailto:madhur_bhargava@mentor.com
mailto:durgesh_prasad@mentor.com

