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Abstract―Today’s SoCs use a variety of hardware and software 
power schemes to minimize power consumption. As SoCs continue 
to grow more complex, so do the various power schemes and the 
associated verification challenges. The power format files, together 
with the RTL and netlist, are used to transfer low-power 
information from one design stage to another and from one tool to 

another. All together, they enable the creation of complex SoCs, 
but the shortened design/derivative times pose additional 
challenges. This paper attempts to explore some common low-
power design and verification issues and focuses on some 
methodologies that can address such problems. 

I. INTRODUCTION 

Recently, the growing amount of energy consumed by 
electronic devices has triggered a rush towards energy 
efficiency. On one end, we have huge data centers that 
expend massive amounts of energy to power equipment 
along with heating and cooling costs, and on the other end, 
we see users trying to get the best out of their wireless 
devices in terms of battery life. Designers worry about the 
reliability of devices damaged by excessive heat. The 
benefits gained by implementing design power savings have 
generated a push towards low-power design.  

Today, time-to-market requirements, shortened spin-off 
times, and SoC design complexity pose many challenges. 
Increased focus on low-power design leads to specifying 
power intent much earlier in a system design when the design 
is partitioned into hardware and software. SoC designers use 
a variety of static and dynamic verification techniques and 
various tools for implementing low-power design. We also 
have various power formats (CPF, UPF, and eventually, 
UPF2.0) to express the low-power intent of a design. These 
power format files, together with the RTL and netlist, are 
used to transfer low-power information from one design stage 
to another and from one tool to another. 

The chain is as strong as its weakest link. For example, 
even though the hardware supports many power management 
techniques, the final product is only as good as the software 
that controls the hardware. For complex SoCs, unlike the 
power format files that capture and transfer the low-power 
design information between design cycles, no foolproof 
method exists that would accurately transfer the low-power 
information from underlying hardware to software. 

 

II. CHALLENGES 

The power format files are relatively new. They are Tcl-
based and convey the low-power intent of a design. Many 
RTL designers have not been sufficiently trained to use 
power formats. Moreover, each vendor independently adds 
features to their tools, adding to the confusion. Today’s 
shortened chip spin times imply that design teams cannot 
spend valuable work-hours training everybody and 
developing power format files from scratch. For the chip 
teams, if they are dealing with multiple IPs with power 
format files, integration can be a nightmare. It can lead to 
translation errors and the introduction of new bugs because 
individual IPs may be leveraging heavily on tool/format 
specific features to express the low-power design intent. 
Many tools support specific power format versions, so even if 
a design team adopts a specific format, it can lead to issues. 
Backward compatibility is not guaranteed, so design reuse 
can also become problematic going forward. Since the power 
format files are Tcl-based, the same intent can be coded in 
many ways. There are no specific coding guidelines 
associated with them, further complicating IP integration. 
Currently, there are unification efforts among leading 
vendors in the industry, but those efforts have not matured 
around a single standard. Even if a standard is developed, it 
will still take a while for all the tools and vendors to make the 
necessary changes and adopt any kind of unified approach. 
Meanwhile, engineers need to muddle through all of the 
implementation details. What many chip teams are lacking is 
a good integration methodology, which is automated enough 
to follow through, while producing a consistent and bug-free 
design. 

III. ISSUES WITH DESIGN REUSE 

As mentioned earlier, one approach for improving the 
design-cycle time is design reuse because reused IPs are 
already tested for reliability. Some of today’s large SoCs may 
have 60-70 blocks, the majority of which are reused. As the 
complexity of any chip increases, so does the amount of 
associated reuse. All the IPs may undergo thorough 
verification by separate core teams, low power, or otherwise. 
The block design teams may or may not have sufficient 
expertise to develop the power format files and address the 
specific verification challenges associated with them. But 
they may not know how a block is interfaced with the chip. 
Reuse is going to be the key, so any specific rule constructs 
that designers develop for a block-level environment should 
be easily ported to the chip level. Since the same IP team 
supplies designs to various chip teams, the low-power intent 



passed on should be scalable. The integration team does not 
necessarily know the specific constructs at the block level, 
which need to be reconfigured at the chip level. Such 
constructs can be identified easily using appropriate 
keywords. Chip teams can search for these keywords during 
their integration efforts.     

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Example 1 

 
Hardware designs are generally organized hierarchically, 

where the verification of subblocks can be done 
independently. Power formats leverage on this divide-and-
conquer approach and can also be hierarchically organized. 
This is the right approach as design complexity increases. 
The adoption of this methodology should be carefully 
evaluated in the given environment because it can lead to 
translation errors during format conversion. This might not 
work well with tools that do not yet support a hierarchical 
approach and tools that tend to interpret the constructs 
differently, resulting in design bugs. 

   Power format files are Tcl-based, which is 
advantageous because Tcl is a powerful language. However, 
this advantage also allows the same specification to be coded 
in different ways by the user. Also, the relative immaturity 
and inconsistency of tool support means good coding 
guidelines have yet to be developed. Any coding guideline 
will improve readability, maintainability, and compatibility 
of the code. The following are examples of coding 
guidelines: 

1. Naming convention of variables in Tcl code: how the 
names should reflect objects that are being referred 
to. 

2. Naming convention for any reusable components. 

3. Constructs/methods that are of common use should 
be wrapped into a procedural library and reused. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

Example 2 

 

Most companies may have already developed complex 
environments and flows for running simulations, as well as 
methodologies to invoke a variety of static and dynamic 
tools. In order to reduce errors, the same power format file 
must be used across multiple tools. The following are 
examples of commonly found issues. 

1. Some tools used in a design-cycle stage may not 
support a power format file syntax that tools earlier 
in the design cycle had supported. 

2. Tools from different vendors interpret power format 
files differently, such that additional tweaks in the 
power format file may be required to make the tool 
interpret format correctly. 

3. Tools may need many tool-specific options or 
pragmas embedded in the power format files.  

4. The design names or hierarchies within the power 
format files may need to be changed to be compatible 
with a variety of environments, especially in the case 
of design reuse. 

The flow can pass various parameters into the Tcl through 
environment variables. As shown in Example 2, the format 
file then can use such parameters to configure itself for a 
particular tool or design. Adherence to good coding 
guidelines is extremely useful while automating low-power 
environments. 

IV. POWER FORMAT FILE AUTOMATION 

Many companies have internally developed robust flows 
for simulating designs with a variety of simulators. These 
flows allow the users to launch the simulations without 
worrying about the underlying simulators, operating systems, 
and other licenses involved. We can extend the same 
approach to handling power format files. The power format 

# Example for Rule construct at block 

# level 

 

proc  my_core1_generic_rule1{domain1 

domain2 pins cells…} { 

  <Specific_rules> 

} 

 

# Rule construct is called in block 

# environment 

 

my_core1_generic_rule1 "BLK_DMN1" 

"BLK_DMN2" {..} {..}.. 

 

# Same rule construct can be called in  

# chip environment, now rule reflects  

# conditions in chip level 

 

my_core1_generic_rule1 "CHIP_DMN1" 

"CHIP_DMN2" {..} {..}.. 

 

# Examples  

 

#  supply nets with 1.0 volt 

set     supply_net_1p0 [list] 

lappend supply_net_1p0 TOP_VDD1P0_0 

lappend supply_net_1p0 TOP_VDD1P0_1 

.. 

 

# Grab values from environment varables. 

set design_path $env(DESIGN_PATH) 

set target      $env(TOOL_TYPE) 

 

if {$target eq “dynamic"} { 

   <do settings for dynamic tools> 

} else { 

   <do settings for static tools> 

} 

.. 
 



files typically define the power intent in terms of power 
domains and relationships between them. This can be quite 
challenging as chip complexity increases. Similar to the 
approach for simulators, the low-power methodology should 
be able to handle most of the underlying issues associated 
with power format files. Simulation flows are able to handle 
simulators from various vendors; therefore, low-power flows 
should be able to handle different power formats like CPF 
and UPF or any derivatives of them. Users should be able to 
specify the chip level or block level power intent in an easy 
to read format, and the flow should be able to do the rest of 
the work. It should be able to dump out the complete power 
format file, as chosen by the user as either CPF or UPF. 

Figure 1 represents the idea described above. The input to 
the low-power flow is the low-power specification (or a 
configuration file) and some design information. The flow 
dumps out the power format file, which can be used either by 
static or dynamic tools to verify the power intent of the 
design.    

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

Figure 1.   

For a typical design, the variables that designers have in hand 
for specifying the low-power intent are limited in number. The 
following is an example list of such variables with which a power 
format file can be constructed. (This list is not exhaustive.)  

1. Number of power domains, domain names, supply 

nets, and voltage states associated with each supply 

net in the design. 

2. Blocks associated with each power domain. 
3. Shut-off condition/isolation conditions for each 

domain. 

4. Power state table of the design.  

5. Any domain-specific or pin-specific rules involving 

isolations, level shifters, etc. 

6. Information on power switches, state retention 

elements, etc. 
Whether it is a block-level or top-level low-power design, 

the list stays pretty much the same. A power format generally 
captures the above information and assembles it in Tcl for the 

tools to read. Whether it is CPF or UPF, the hardware 
implementation envisioned by the designer should be the 
same.  

With the above list, a lot of information can be deduced. For 
example, from the voltage states of the power nets associated 
with each domain, it can be determined which domain is always 
on, switchable, etc. This can be cross-checked against other given 
information, such as whether a shut-off condition is specified for 
all switchable domains. Although these checks are simple and 
will be caught one way or the other later, the flagging of such 
errors by the flow itself will aid the designer to specify a better 
low-power specification. It is observed that simple issues that 
initially go unnoticed, but get caught later in the design cycle, 
require additional time and effort to fix. 

Given the above variables, one can specify power intent in 
many different ways, especially the isolation/level shifter 
relationship between different domains and associated blocks. 
Such a specification can be easily expressed in a scripting 
environment such as PERL. There are various ways to express 
design intent. Below is example code. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Example 3: An example of a configuration/power spec. 

 

Low power 

specification

Low power flow

Power format 

file 

(CPF/UPF/other)

Other design 

stages

Design

Simulations 

(Dynamic )

assertions

Static tools

 

my $dsn = { 

 DOMAINS => [ 

   { 

     name => “aon_domain”, 

     default => “yes”, 

     power_net => “aon_vdd”, 

     ground_net => “vss”, 

     power_net_volt => [ “1.0” ], 

     ground_net_volt => [ “0.0” ], 

     … 

   } 

   { 

     name => “domain1”, 

     power_net => “vdd1”, 

     ground_net => “vss”, 

     power_net_volt => [ “1.0”, “0.0” ], 

     ground_net_volt => [ “0.0” ], 

     blocks => [“instA”, “instB”], 

     shutoff => “domain_shut_off_1”, 

     isolation => “domain_iso1”, 

     … 

   } 

   { 

     name => “domain2”, 

     power_net => “vdd2”, 

     ground_net => “vss”, 

     power_net_volt => [ “1.5”, “0.0” ], 

     ground_net_volt => [ “0.0” ], 

     blocks => [“instC”, “instD”], 

     shutoff => “domain_shut_off_2”, 

     isolation => “domain_iso2”, 

     … 

   } 

   … 

 ] 

 …   

} 



The power states in the design can be specified by the 
following code: 

 

 
 

 

 

       
    

     

     
 

 

 
 

 

 

 
Example 4 

 
Similarly, we can come up with generic methods for 

specifying other relationships with power domains as below 
(for example, which domain crossings need to have 
isolation). 

 

 

 

 
 

 

 
 

 

 
 

Example 5 

 
The advantage with this approach is that any user can fill 

in the given template easily and generate the corresponding 
power intent. The flow can check the specification for errors 
and notify users immediately; for example, when the flow is 
missing any components, there are mismatches in power net 
names between different closures, whether the state table is 
specified correctly, etc. The flow can even embed checks and 
diagnostic messages that are targeted for particular low-
power architectures, and notify users immediately to correct 
the same. Such are difficult to incorporate with power format 
files, since they are only a medium to configure the 
underlying tools. There, these errors will be flagged only 
when some expert runs the tool with a design, and it might 
take a while to resolve such issues.  

The platform can be implemented with any good scripting 
language that supports closures and object-oriented styles. 

For example, components from the above specification can 
be easily converted into arrays of objects and convenient data 
structures. Once this is done, the checking and corresponding 
autogeneration of the power format file becomes trivial. 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

Example 6 

 

One obvious advantage of such a flow is guaranteed 
compatibility of the autogenerated power format file with a 
tool such as a simulator. In the current environment, where 
there are multiple power format files, nobody is sure on the 
outcome of any unification efforts. Certain standards can 
disappear, many commonly used constructs in a format can 
suddenly become redundant, or tools might not support some 
features going forward. The proposed methodology helps to 
avoid dependency on any specific language and tool sets 
while offering greater flexibility. Whoever maintains the flow 
should track what the various tools support and industrywide 
trends. The flow can be adjusted so that the same input 
specification can autogenerate power format files having 
newer constructs as demanded by tool vendor. As discussed 
earlier, reusability is one approach used to improve design-
cycle times. The proposed flow addresses most of the 
reusability issues of IPs. 

There can be instances where minor changes in the 
design, such as changes in the names of power nets and 
power domains, etc., can lead to the modification of the 
power format file in multiple places. In the above setup, the 
user would only need to make a corresponding change in the 
input configuration file at a single place. Another example is 
a case where the designer tries to specify isolation or a level-
shifter behavior at the I/O of a subblock, based on some 
naming convention or regular expression pattern matching. 
While power format files from different vendors have the 
capability to apply constraints based on regular expressions, 
the exact syntax may vary between power formats. The flow 
can be configured to read in the block-level RTL files, extract 
the names of ports that need special handling, and put it into 
an autogenerated power format file as an I/O net-based rule, 
rather than a regular expression based rule.   

During the development cycle of a chip, the design will 
be in a continuous state of flux. For example, block instance 

my $dsn = { 
 DOMAINS => [ 

   … 

 ] 

 POWER_STATES =>  [ 

   { state => “on”, value => { aon_vdd => “1.0”, 

vdd1 => “1.0”, vdd2 => “1.5”, vss => “0.0”},}, 

 

   { state => “dmn1_off”, value => { aon_vdd => 

“1.0”, vdd1 => “0.0”, vdd2 => “1.5”, vss => 

“0.0”},}, 

 

{ state => “dmn2_off”, value => { aon_vdd => 

“1.0”, vdd1 => “1.0”, vdd2 => “0.0”, vss => 

“0.0”},}, 

… 

 

 ] 

} 

my $dsn = { 
 DOMAINS => […] 

 POWER_STATES => […] 

 ISOLATIONS => [  

     {domain1 => aon_domain,}, 

     {domain2 => aon_domain,}, 

 ] 

LEVEL_SHIFTERS => [  

     {domain2 => aon_domain,} 

 ]  

 …  

} 

# Pseudo code 
… 

foreach my $d (@domains) { 

 if ($d->get_default) { 

   $d->dump_code_snippet($d, 

      “default_domain”); 

 } 

 … 

 if (!$d->get_default &&  

     !$d->get_shutoff &&  

     $d->can_be_switched) { 

   error(“No shut off condition specified for 

switched domain %s\n”,  

    $d->get_name); 

 } 

… 

}  



names can often change, new blocks can get added or 
removed from power domains, power net names and power 
modes can change, and chip-level I/Os can change. The 
power format file needs to be kept up to date with the 
changing design because all tools using the power format file 
will consider it to be golden. Manually updating a power 
format file each time there is a change is cumbersome and 
can introduce new bugs. To reduce the risk, the process can 
be automated. This is done by capturing a time capsule. 

 
1. The flow can be made in such a way that it can 

have the ability to read the top-level RTL of the 

chip, where the blocks that are partitioned to go 

into different power domains are instantiated. The 

flow hence gets the list of instances.  

2. Depending on a regular expression or manual 

mapping provided by users, the flow can determine 

which instance goes to which domain. This 

information can be handed off to the low-power 

flow. If the appropriate interfaces are already built, 
the flow can take this information and make it part 

of the low power specification. Users do not need 

to explicitly spell out the instances in various power 

domains in configuration files again, as is done in 

Example 3.  

3. The list generated in (2) can be stored in a file or 

database, which can be called a time capsule. The 

next time the flow is run, the time capsule during 

that run can be compared with the earlier time 

capsule. Anything different can be reported as 
errors. All mismatches need to be reviewed because 

they can indicate whether the design has changed. 
   

The implementation of such a check is important since it 
can capture bugs that can be overlooked otherwise. A typical 
example can be the introduction of a new block in a specific 
power domain. If the power intent is not updated, the block 
may go to the default domain. The above check will catch 
such a scenario. 

Some simulators, such as Cadence’s Incisive Enterprise 
Simulator, can generate a report of low power intent in a 
design once the design and the power format file are loaded 
in the simulator. This report can also be used as a time 
capsule to check for any low-power design changes between 
different simulator runs. 

A low-power verification environment can use assertions 
for automated checking of power sequencing. Some 
simulators can automatically generate assertions from the 
power format files. While these might satisfy most of the 
verification requirements, there can be cases where engineers 
need to write custom assertions for checking low power. An 
example is a case where a domain has multiple isolation 
controls and some relationships between them. In some other 
cases, assertions need to be enabled only after an 
initialization sequence to avoid false violations, so finer 
control may be desired. Another common scenario is the 

checking of the relationship between shut-off conditions and 
power nets associated with each power domain. Furthermore, 
a user might want to reuse all these assertions in the final 
physical netlist simulations. Since the assertions that need to 
be generated are common for all power domains, the flow 
can be configured to autogenerate assertions as well, when it 
generates power format files. Such assertions can be used in 
any simulation environment.         

One of the difficulties that a team encounters is in writing 
the top-level power format file. The power format file can 
have many components, or it can be organized hierarchically, 
depending on the selected power format. Using the 
autogeneration platform, users can insert tags and other 
headers in the block-level format files. The flow can leverage 
on this for automatically generating the top-level power 
format file. This method is analogous to the autogeneration of 
top-level RTL code from the block level, which many chip-
level teams are currently using. As in the case of RTL, for 
this to work, the interface of the block-level power format file 
needs to be consistent, and the autogeneration of block-level 
power formats must also be consistent. The low-power flow 
does not need to be 100% perfect, but it should be flexible 
enough to be tailored to suit various architectures and user 
needs. 

The intent of the method proposed here is not to introduce 
a new power format. The platform can be considered as a 
wrapper built around various tools. The number of 
parameters that designers need to specify to come up with a 
CPF/UPF power format file is not that many. These  can be 
captured in a template, similar to what is being proposed 
earlier. The interface given to designers through this platform 
can be of much higher level of abstraction than the actual 
power format file description of the design. This can be 
paralleled to scripts that some design teams use to generate 
RTL designs in Verilog. In this case, by changing a handful 
of parameters in the scripts, designers generate  different 
design configurations. These parameters and the templates 
that capture them serve as a high level abstraction of  such 
complex designs, but cannot serve as a replacement for the 
actual RTL design or Verilog language.   

V. TRANSFERRING LOW-POWER INTENT INTO 

SOFTWARE 

The desired low-power performance of a device not only 
depends on the underlying hardware but also on how well the 
software uses the low-power features of the hardware. 
Software developers create low-level APIs that interface with 
the hardware. These APIs are used to build other complex 
software applications. In developing the software, the 
developer tries to determine the program sequence that 
configures the chip. Developers primarily use hardware 
register interface information to determine the required 
program sequences. In some cases, the software is tested on a 
hardware emulation platform until the real parts are available. 

Software runs in real time. It can create many untested 
chip scenarios that can crash the system. Today’s chips use a 



variety of complex techniques to save power. This means that 
the sequences that use the low-power features also tend to be 
complex. For example, software may want to power down a 
particular section or feature in hardware to save power. There 
can be many associated dependencies. To power down a 
block, software must power down a domain that might 
include other blocks. In some cases, software must ensure 
that blocks in the middle of performing a function are 
allowed to finish before powering down. In such cases, the 
software might need to wait until the block reaches a known 
state. There can be scenarios where the software 
configuration changes based on some status flags. In some 
power-down modes, the clocks going into the hardware 
blocks to be powered down need to be stopped. This can 
affect other blocks that use the same clock tree. Hence, 
powering down a block means that the user must follow a 
variety of software sequences. These sequences tend to be 
complex, and they can depend on how the specification 
requirements are implemented in the chip. A conventional 
specification may not cover all these details. This calls for a 
better understanding of the chip’s low-power architecture by 
software developers and the need to interact more with 
designers. Most of the time this is not practical; it can add to 
the development time of the software and introduce more 
bugs because of perception differences. As in hardware 
design, there is no vehicle similar to the power format file to 
transfer low-power design intent. However, this issue can be 
addressed by a suitable methodology.  

As discussed earlier, software must account for various 
low-power design dependencies between different hardware 
blocks to create program sequences. These dependencies can 
be clock related power-domain related, or functional. They 
can be captured by means of dependency graphs, which are a 
hierarchical representation of dependencies between various 
blocks in terms of clocks, domains, and functionality. They 
can be consolidated into a single entity, or they can be 
separate, depending on the implementation. Graph 
relationships must be updated by designers in the design 
stage. The graphs can be considered a part of design because 
the information is passed on to another stage of product 
development, just as with power format files.  

Figure 2 shows an example of a hierarchical relationship 
between different blocks. A box represents the configurations 
that must be done on that block to attain a particular 
hardware state. If a block is connected to a block above it, 
there is a dependency. For example, if software needs to 
power down Block1, the following must be done: 

 
1. From Graph1, configurations must first be done at 

the top level and then on Block5 to prepare Block1 

for a power-down. 

2. From Graph2, the clock to Block1 must be stopped 

by programming the clk ctrl1 block. It is evident 

that Block1 and Block3 share common clocks, so 
Block3 will be affected by stopping the clock. 

Some configuration must also be done in the main 

ctrl block. 

3. From Graph3, it looks like, in order to power down 

Block1, DomainA needs to be powered down. But 

this will also power down Block2, so the 

prerequisites for powering down Block2 also 

should be satisfied from Graph1 and Graph2, so 
that subsequent sequences should be constructed by 

traversing the same.   

 
From the above explanation, it becomes clear that power-

down sequencing of a block may get complex. After the 
sequencing is constructed, the flow can output a pseudocode 
for software developers to use. To implement the 
pseudocode, any scripting language or libraries that support 
hierarchical data structures can be used. 

Software teams develop software on emulation platforms 
before real hardware is available for use. Software teams can 
use emulation platforms to test different power-down 
sequencing types. Combined with randomization, this can be 
a powerful tool to check the functionality of a design. 
Identifying bugs at this stage is better than finding issues in 
real silicon. 

        

 

 

 
 

 

 
 

 

 

  
 

 

 
 

 

 
 

 

 

 
 

      

 
 

Figure 2 

 

 

Figure 2.   

 
 

Graph1: 

Functional 
dependency graph 

Graph2: Clock 

dependency graph 

Graph3: Power domain 
dependency graph 



VI. IMPLEMENTATION DATA 

A graph which plots the time taken to construct a power 
format file against the project milestones for various projects 
is presented below.  

Chip1 represents the initial case, where the power format 
file was introduced to the team as a tool for expressing low-
power intent. Subsequently, there was a learning curve in 
terms of understanding the methodology and tool. Here, the 
entire power format file was hand-coded. There was 
significant ramp-up time. 

Chip2 is an example where low-power automation was 
developed and introduced into the design flow. Here, power 
format files were generated automatically. Script 
infrastructure and flow took some time to develop. In the 
case of Chip3, the automation environment from Chip2 was 
reused, and there were some environment changes as well. 
Overall cycle time for developing an accurate low-power 
format file improved a lot when compared to other projects. 
The Target is the goal to strive for as the low-power flow 
matures. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

VII. CONCLUSION 

Many issues encountered by engineers setting up a low-
power test bench and verification environment have been 
discussed. The central theme is to come up with a good 
low-power methodology for users, so they will not have to deal 
with the power format files directly. The power format auto 
generation can detect issues with input low power specification 
provided, hence avoiding basic errors that designers often 
make. The result of adopting this methodology is consistency 
between power format files provided by different design teams 
and easiness in managing and integrating them into chip level 
environment. Different methods to capture and hand off 
low-power intent are presented. The implementation of such 
methods have saved us time in our design cycle.  There will be 
an initial investment for developing the flow, but the benefits 
are tremendous. This may lead to fewer bugs, improved design-
cycle times, and better time-to-market. 

There may be other solutions besides those proposed in this 
paper. 
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Milestones Description 

0 to 1 Initial specification, gathering requirements 

1 to 2 
Generating flows, infrastructure and 

maintaining them 

2 to 3 
Availability of simulation-ready (dynamic 

checking) power format file 

3 to 4 
Availability of power format file for static tool 

checking 

4 to 5 and possibly 

beyond 

Final version of power format file after 

design/tool/flow fixes 


