
Low-Power Verification Automation – A Practical Approach

Shaji Kunjumohamed

Broadcom Corporation

Email:shajikk@broadcom.com

Hendy Kosasih

Cadence Design Systems

Email: hkosasih@cadence.com

Abstract―Today’s SoCs use a variety of hardware and software
power schemes to minimize power consumption. As SoCs continue
to grow more complex, so do the various power schemes and the
associated verification challenges. The power format files, together
with the RTL and netlist, are used to transfer low-power
information from one design stage to another and from one tool to

another. All together, they enable the creation of complex SoCs,
but the shortened design/derivative times pose additional
challenges. This paper attempts to explore some common low-
power design and verification issues and focuses on some
methodologies that can address such problems.

I. INTRODUCTION

Recently, the growing amount of energy consumed by
electronic devices has triggered a rush towards energy
efficiency. On one end, we have huge data centers that
expend massive amounts of energy to power equipment
along with heating and cooling costs, and on the other end,
we see users trying to get the best out of their wireless
devices in terms of battery life. Designers worry about the
reliability of devices damaged by excessive heat. The
benefits gained by implementing design power savings have
generated a push towards low-power design.

Today, time-to-market requirements, shortened spin-off
times, and SoC design complexity pose many challenges.
Increased focus on low-power design leads to specifying
power intent much earlier in a system design when the design
is partitioned into hardware and software. SoC designers use
a variety of static and dynamic verification techniques and
various tools for implementing low-power design. We also
have various power formats (CPF, UPF, and eventually,
UPF2.0) to express the low-power intent of a design. These
power format files, together with the RTL and netlist, are
used to transfer low-power information from one design stage
to another and from one tool to another.

The chain is as strong as its weakest link. For example,
even though the hardware supports many power management
techniques, the final product is only as good as the software
that controls the hardware. For complex SoCs, unlike the
power format files that capture and transfer the low-power
design information between design cycles, no foolproof
method exists that would accurately transfer the low-power
information from underlying hardware to software.

II. CHALLENGES

The power format files are relatively new. They are Tcl-
based and convey the low-power intent of a design. Many
RTL designers have not been sufficiently trained to use
power formats. Moreover, each vendor independently adds
features to their tools, adding to the confusion. Today’s
shortened chip spin times imply that design teams cannot
spend valuable work-hours training everybody and
developing power format files from scratch. For the chip
teams, if they are dealing with multiple IPs with power
format files, integration can be a nightmare. It can lead to
translation errors and the introduction of new bugs because
individual IPs may be leveraging heavily on tool/format
specific features to express the low-power design intent.
Many tools support specific power format versions, so even if
a design team adopts a specific format, it can lead to issues.
Backward compatibility is not guaranteed, so design reuse
can also become problematic going forward. Since the power
format files are Tcl-based, the same intent can be coded in
many ways. There are no specific coding guidelines
associated with them, further complicating IP integration.
Currently, there are unification efforts among leading
vendors in the industry, but those efforts have not matured
around a single standard. Even if a standard is developed, it
will still take a while for all the tools and vendors to make the
necessary changes and adopt any kind of unified approach.
Meanwhile, engineers need to muddle through all of the
implementation details. What many chip teams are lacking is
a good integration methodology, which is automated enough
to follow through, while producing a consistent and bug-free
design.

III. ISSUES WITH DESIGN REUSE

As mentioned earlier, one approach for improving the
design-cycle time is design reuse because reused IPs are
already tested for reliability. Some of today’s large SoCs may
have 60-70 blocks, the majority of which are reused. As the
complexity of any chip increases, so does the amount of
associated reuse. All the IPs may undergo thorough
verification by separate core teams, low power, or otherwise.
The block design teams may or may not have sufficient
expertise to develop the power format files and address the
specific verification challenges associated with them. But
they may not know how a block is interfaced with the chip.
Reuse is going to be the key, so any specific rule constructs
that designers develop for a block-level environment should
be easily ported to the chip level. Since the same IP team
supplies designs to various chip teams, the low-power intent

passed on should be scalable. The integration team does not
necessarily know the specific constructs at the block level,
which need to be reconfigured at the chip level. Such
constructs can be identified easily using appropriate
keywords. Chip teams can search for these keywords during
their integration efforts.

Example 1

Hardware designs are generally organized hierarchically,

where the verification of subblocks can be done
independently. Power formats leverage on this divide-and-
conquer approach and can also be hierarchically organized.
This is the right approach as design complexity increases.
The adoption of this methodology should be carefully
evaluated in the given environment because it can lead to
translation errors during format conversion. This might not
work well with tools that do not yet support a hierarchical
approach and tools that tend to interpret the constructs
differently, resulting in design bugs.

 Power format files are Tcl-based, which is
advantageous because Tcl is a powerful language. However,
this advantage also allows the same specification to be coded
in different ways by the user. Also, the relative immaturity
and inconsistency of tool support means good coding
guidelines have yet to be developed. Any coding guideline
will improve readability, maintainability, and compatibility
of the code. The following are examples of coding
guidelines:

1. Naming convention of variables in Tcl code: how the
names should reflect objects that are being referred
to.

2. Naming convention for any reusable components.

3. Constructs/methods that are of common use should
be wrapped into a procedural library and reused.

Example 2

Most companies may have already developed complex
environments and flows for running simulations, as well as
methodologies to invoke a variety of static and dynamic
tools. In order to reduce errors, the same power format file
must be used across multiple tools. The following are
examples of commonly found issues.

1. Some tools used in a design-cycle stage may not
support a power format file syntax that tools earlier
in the design cycle had supported.

2. Tools from different vendors interpret power format
files differently, such that additional tweaks in the
power format file may be required to make the tool
interpret format correctly.

3. Tools may need many tool-specific options or
pragmas embedded in the power format files.

4. The design names or hierarchies within the power
format files may need to be changed to be compatible
with a variety of environments, especially in the case
of design reuse.

The flow can pass various parameters into the Tcl through
environment variables. As shown in Example 2, the format
file then can use such parameters to configure itself for a
particular tool or design. Adherence to good coding
guidelines is extremely useful while automating low-power
environments.

IV. POWER FORMAT FILE AUTOMATION

Many companies have internally developed robust flows
for simulating designs with a variety of simulators. These
flows allow the users to launch the simulations without
worrying about the underlying simulators, operating systems,
and other licenses involved. We can extend the same
approach to handling power format files. The power format

Example for Rule construct at block

level

proc my_core1_generic_rule1{domain1

domain2 pins cells…} {

 <Specific_rules>

}

Rule construct is called in block

environment

my_core1_generic_rule1 "BLK_DMN1"

"BLK_DMN2" {..} {..}..

Same rule construct can be called in

chip environment, now rule reflects

conditions in chip level

my_core1_generic_rule1 "CHIP_DMN1"

"CHIP_DMN2" {..} {..}..

Examples

supply nets with 1.0 volt

set supply_net_1p0 [list]

lappend supply_net_1p0 TOP_VDD1P0_0

lappend supply_net_1p0 TOP_VDD1P0_1

..

Grab values from environment varables.

set design_path $env(DESIGN_PATH)

set target $env(TOOL_TYPE)

if {$target eq “dynamic"} {

 <do settings for dynamic tools>

} else {

 <do settings for static tools>

}

..

files typically define the power intent in terms of power
domains and relationships between them. This can be quite
challenging as chip complexity increases. Similar to the
approach for simulators, the low-power methodology should
be able to handle most of the underlying issues associated
with power format files. Simulation flows are able to handle
simulators from various vendors; therefore, low-power flows
should be able to handle different power formats like CPF
and UPF or any derivatives of them. Users should be able to
specify the chip level or block level power intent in an easy
to read format, and the flow should be able to do the rest of
the work. It should be able to dump out the complete power
format file, as chosen by the user as either CPF or UPF.

Figure 1 represents the idea described above. The input to
the low-power flow is the low-power specification (or a
configuration file) and some design information. The flow
dumps out the power format file, which can be used either by
static or dynamic tools to verify the power intent of the
design.

Figure 1.

For a typical design, the variables that designers have in hand
for specifying the low-power intent are limited in number. The
following is an example list of such variables with which a power
format file can be constructed. (This list is not exhaustive.)

1. Number of power domains, domain names, supply

nets, and voltage states associated with each supply

net in the design.

2. Blocks associated with each power domain.
3. Shut-off condition/isolation conditions for each

domain.

4. Power state table of the design.

5. Any domain-specific or pin-specific rules involving

isolations, level shifters, etc.

6. Information on power switches, state retention

elements, etc.
Whether it is a block-level or top-level low-power design,

the list stays pretty much the same. A power format generally
captures the above information and assembles it in Tcl for the

tools to read. Whether it is CPF or UPF, the hardware
implementation envisioned by the designer should be the
same.

With the above list, a lot of information can be deduced. For
example, from the voltage states of the power nets associated
with each domain, it can be determined which domain is always
on, switchable, etc. This can be cross-checked against other given
information, such as whether a shut-off condition is specified for
all switchable domains. Although these checks are simple and
will be caught one way or the other later, the flagging of such
errors by the flow itself will aid the designer to specify a better
low-power specification. It is observed that simple issues that
initially go unnoticed, but get caught later in the design cycle,
require additional time and effort to fix.

Given the above variables, one can specify power intent in
many different ways, especially the isolation/level shifter
relationship between different domains and associated blocks.
Such a specification can be easily expressed in a scripting
environment such as PERL. There are various ways to express
design intent. Below is example code.

Example 3: An example of a configuration/power spec.

Low power

specification

Low power flow

Power format

file

(CPF/UPF/other)

Other design

stages

Design

Simulations

(Dynamic)

assertions

Static tools

my $dsn = {

 DOMAINS => [

 {

 name => “aon_domain”,

 default => “yes”,

 power_net => “aon_vdd”,

 ground_net => “vss”,

 power_net_volt => [“1.0”],

 ground_net_volt => [“0.0”],

 …

 }

 {

 name => “domain1”,

 power_net => “vdd1”,

 ground_net => “vss”,

 power_net_volt => [“1.0”, “0.0”],

 ground_net_volt => [“0.0”],

 blocks => [“instA”, “instB”],

 shutoff => “domain_shut_off_1”,

 isolation => “domain_iso1”,

 …

 }

 {

 name => “domain2”,

 power_net => “vdd2”,

 ground_net => “vss”,

 power_net_volt => [“1.5”, “0.0”],

 ground_net_volt => [“0.0”],

 blocks => [“instC”, “instD”],

 shutoff => “domain_shut_off_2”,

 isolation => “domain_iso2”,

 …

 }

 …

]

 …

}

The power states in the design can be specified by the
following code:

Example 4

Similarly, we can come up with generic methods for

specifying other relationships with power domains as below
(for example, which domain crossings need to have
isolation).

Example 5

The advantage with this approach is that any user can fill

in the given template easily and generate the corresponding
power intent. The flow can check the specification for errors
and notify users immediately; for example, when the flow is
missing any components, there are mismatches in power net
names between different closures, whether the state table is
specified correctly, etc. The flow can even embed checks and
diagnostic messages that are targeted for particular low-
power architectures, and notify users immediately to correct
the same. Such are difficult to incorporate with power format
files, since they are only a medium to configure the
underlying tools. There, these errors will be flagged only
when some expert runs the tool with a design, and it might
take a while to resolve such issues.

The platform can be implemented with any good scripting
language that supports closures and object-oriented styles.

For example, components from the above specification can
be easily converted into arrays of objects and convenient data
structures. Once this is done, the checking and corresponding
autogeneration of the power format file becomes trivial.

Example 6

One obvious advantage of such a flow is guaranteed
compatibility of the autogenerated power format file with a
tool such as a simulator. In the current environment, where
there are multiple power format files, nobody is sure on the
outcome of any unification efforts. Certain standards can
disappear, many commonly used constructs in a format can
suddenly become redundant, or tools might not support some
features going forward. The proposed methodology helps to
avoid dependency on any specific language and tool sets
while offering greater flexibility. Whoever maintains the flow
should track what the various tools support and industrywide
trends. The flow can be adjusted so that the same input
specification can autogenerate power format files having
newer constructs as demanded by tool vendor. As discussed
earlier, reusability is one approach used to improve design-
cycle times. The proposed flow addresses most of the
reusability issues of IPs.

There can be instances where minor changes in the
design, such as changes in the names of power nets and
power domains, etc., can lead to the modification of the
power format file in multiple places. In the above setup, the
user would only need to make a corresponding change in the
input configuration file at a single place. Another example is
a case where the designer tries to specify isolation or a level-
shifter behavior at the I/O of a subblock, based on some
naming convention or regular expression pattern matching.
While power format files from different vendors have the
capability to apply constraints based on regular expressions,
the exact syntax may vary between power formats. The flow
can be configured to read in the block-level RTL files, extract
the names of ports that need special handling, and put it into
an autogenerated power format file as an I/O net-based rule,
rather than a regular expression based rule.

During the development cycle of a chip, the design will
be in a continuous state of flux. For example, block instance

my $dsn = {
 DOMAINS => [

 …

]

 POWER_STATES => [

 { state => “on”, value => { aon_vdd => “1.0”,

vdd1 => “1.0”, vdd2 => “1.5”, vss => “0.0”},},

 { state => “dmn1_off”, value => { aon_vdd =>

“1.0”, vdd1 => “0.0”, vdd2 => “1.5”, vss =>

“0.0”},},

{ state => “dmn2_off”, value => { aon_vdd =>

“1.0”, vdd1 => “1.0”, vdd2 => “0.0”, vss =>

“0.0”},},

…

]

}

my $dsn = {
 DOMAINS => […]

 POWER_STATES => […]

 ISOLATIONS => [

 {domain1 => aon_domain,},

 {domain2 => aon_domain,},

]

LEVEL_SHIFTERS => [

 {domain2 => aon_domain,}

]

 …

}

Pseudo code
…

foreach my $d (@domains) {

 if ($d->get_default) {

 $d->dump_code_snippet($d,

 “default_domain”);

 }

 …

 if (!$d->get_default &&

 !$d->get_shutoff &&

 $d->can_be_switched) {

 error(“No shut off condition specified for

switched domain %s\n”,

 $d->get_name);

 }

…

}

names can often change, new blocks can get added or
removed from power domains, power net names and power
modes can change, and chip-level I/Os can change. The
power format file needs to be kept up to date with the
changing design because all tools using the power format file
will consider it to be golden. Manually updating a power
format file each time there is a change is cumbersome and
can introduce new bugs. To reduce the risk, the process can
be automated. This is done by capturing a time capsule.

1. The flow can be made in such a way that it can

have the ability to read the top-level RTL of the

chip, where the blocks that are partitioned to go

into different power domains are instantiated. The

flow hence gets the list of instances.

2. Depending on a regular expression or manual

mapping provided by users, the flow can determine

which instance goes to which domain. This

information can be handed off to the low-power

flow. If the appropriate interfaces are already built,
the flow can take this information and make it part

of the low power specification. Users do not need

to explicitly spell out the instances in various power

domains in configuration files again, as is done in

Example 3.

3. The list generated in (2) can be stored in a file or

database, which can be called a time capsule. The

next time the flow is run, the time capsule during

that run can be compared with the earlier time

capsule. Anything different can be reported as
errors. All mismatches need to be reviewed because

they can indicate whether the design has changed.

The implementation of such a check is important since it
can capture bugs that can be overlooked otherwise. A typical
example can be the introduction of a new block in a specific
power domain. If the power intent is not updated, the block
may go to the default domain. The above check will catch
such a scenario.

Some simulators, such as Cadence’s Incisive Enterprise
Simulator, can generate a report of low power intent in a
design once the design and the power format file are loaded
in the simulator. This report can also be used as a time
capsule to check for any low-power design changes between
different simulator runs.

A low-power verification environment can use assertions
for automated checking of power sequencing. Some
simulators can automatically generate assertions from the
power format files. While these might satisfy most of the
verification requirements, there can be cases where engineers
need to write custom assertions for checking low power. An
example is a case where a domain has multiple isolation
controls and some relationships between them. In some other
cases, assertions need to be enabled only after an
initialization sequence to avoid false violations, so finer
control may be desired. Another common scenario is the

checking of the relationship between shut-off conditions and
power nets associated with each power domain. Furthermore,
a user might want to reuse all these assertions in the final
physical netlist simulations. Since the assertions that need to
be generated are common for all power domains, the flow
can be configured to autogenerate assertions as well, when it
generates power format files. Such assertions can be used in
any simulation environment.

One of the difficulties that a team encounters is in writing
the top-level power format file. The power format file can
have many components, or it can be organized hierarchically,
depending on the selected power format. Using the
autogeneration platform, users can insert tags and other
headers in the block-level format files. The flow can leverage
on this for automatically generating the top-level power
format file. This method is analogous to the autogeneration of
top-level RTL code from the block level, which many chip-
level teams are currently using. As in the case of RTL, for
this to work, the interface of the block-level power format file
needs to be consistent, and the autogeneration of block-level
power formats must also be consistent. The low-power flow
does not need to be 100% perfect, but it should be flexible
enough to be tailored to suit various architectures and user
needs.

The intent of the method proposed here is not to introduce
a new power format. The platform can be considered as a
wrapper built around various tools. The number of
parameters that designers need to specify to come up with a
CPF/UPF power format file is not that many. These can be
captured in a template, similar to what is being proposed
earlier. The interface given to designers through this platform
can be of much higher level of abstraction than the actual
power format file description of the design. This can be
paralleled to scripts that some design teams use to generate
RTL designs in Verilog. In this case, by changing a handful
of parameters in the scripts, designers generate different
design configurations. These parameters and the templates
that capture them serve as a high level abstraction of such
complex designs, but cannot serve as a replacement for the
actual RTL design or Verilog language.

V. TRANSFERRING LOW-POWER INTENT INTO

SOFTWARE

The desired low-power performance of a device not only
depends on the underlying hardware but also on how well the
software uses the low-power features of the hardware.
Software developers create low-level APIs that interface with
the hardware. These APIs are used to build other complex
software applications. In developing the software, the
developer tries to determine the program sequence that
configures the chip. Developers primarily use hardware
register interface information to determine the required
program sequences. In some cases, the software is tested on a
hardware emulation platform until the real parts are available.

Software runs in real time. It can create many untested
chip scenarios that can crash the system. Today’s chips use a

variety of complex techniques to save power. This means that
the sequences that use the low-power features also tend to be
complex. For example, software may want to power down a
particular section or feature in hardware to save power. There
can be many associated dependencies. To power down a
block, software must power down a domain that might
include other blocks. In some cases, software must ensure
that blocks in the middle of performing a function are
allowed to finish before powering down. In such cases, the
software might need to wait until the block reaches a known
state. There can be scenarios where the software
configuration changes based on some status flags. In some
power-down modes, the clocks going into the hardware
blocks to be powered down need to be stopped. This can
affect other blocks that use the same clock tree. Hence,
powering down a block means that the user must follow a
variety of software sequences. These sequences tend to be
complex, and they can depend on how the specification
requirements are implemented in the chip. A conventional
specification may not cover all these details. This calls for a
better understanding of the chip’s low-power architecture by
software developers and the need to interact more with
designers. Most of the time this is not practical; it can add to
the development time of the software and introduce more
bugs because of perception differences. As in hardware
design, there is no vehicle similar to the power format file to
transfer low-power design intent. However, this issue can be
addressed by a suitable methodology.

As discussed earlier, software must account for various
low-power design dependencies between different hardware
blocks to create program sequences. These dependencies can
be clock related power-domain related, or functional. They
can be captured by means of dependency graphs, which are a
hierarchical representation of dependencies between various
blocks in terms of clocks, domains, and functionality. They
can be consolidated into a single entity, or they can be
separate, depending on the implementation. Graph
relationships must be updated by designers in the design
stage. The graphs can be considered a part of design because
the information is passed on to another stage of product
development, just as with power format files.

Figure 2 shows an example of a hierarchical relationship
between different blocks. A box represents the configurations
that must be done on that block to attain a particular
hardware state. If a block is connected to a block above it,
there is a dependency. For example, if software needs to
power down Block1, the following must be done:

1. From Graph1, configurations must first be done at

the top level and then on Block5 to prepare Block1

for a power-down.

2. From Graph2, the clock to Block1 must be stopped

by programming the clk ctrl1 block. It is evident

that Block1 and Block3 share common clocks, so
Block3 will be affected by stopping the clock.

Some configuration must also be done in the main

ctrl block.

3. From Graph3, it looks like, in order to power down

Block1, DomainA needs to be powered down. But

this will also power down Block2, so the

prerequisites for powering down Block2 also

should be satisfied from Graph1 and Graph2, so
that subsequent sequences should be constructed by

traversing the same.

From the above explanation, it becomes clear that power-

down sequencing of a block may get complex. After the
sequencing is constructed, the flow can output a pseudocode
for software developers to use. To implement the
pseudocode, any scripting language or libraries that support
hierarchical data structures can be used.

Software teams develop software on emulation platforms
before real hardware is available for use. Software teams can
use emulation platforms to test different power-down
sequencing types. Combined with randomization, this can be
a powerful tool to check the functionality of a design.
Identifying bugs at this stage is better than finding issues in
real silicon.

Figure 2

Figure 2.

Graph1:

Functional
dependency graph

Graph2: Clock

dependency graph

Graph3: Power domain
dependency graph

VI. IMPLEMENTATION DATA

A graph which plots the time taken to construct a power
format file against the project milestones for various projects
is presented below.

Chip1 represents the initial case, where the power format
file was introduced to the team as a tool for expressing low-
power intent. Subsequently, there was a learning curve in
terms of understanding the methodology and tool. Here, the
entire power format file was hand-coded. There was
significant ramp-up time.

Chip2 is an example where low-power automation was
developed and introduced into the design flow. Here, power
format files were generated automatically. Script
infrastructure and flow took some time to develop. In the
case of Chip3, the automation environment from Chip2 was
reused, and there were some environment changes as well.
Overall cycle time for developing an accurate low-power
format file improved a lot when compared to other projects.
The Target is the goal to strive for as the low-power flow
matures.

VII. CONCLUSION

Many issues encountered by engineers setting up a low-
power test bench and verification environment have been
discussed. The central theme is to come up with a good
low-power methodology for users, so they will not have to deal
with the power format files directly. The power format auto
generation can detect issues with input low power specification
provided, hence avoiding basic errors that designers often
make. The result of adopting this methodology is consistency
between power format files provided by different design teams
and easiness in managing and integrating them into chip level
environment. Different methods to capture and hand off
low-power intent are presented. The implementation of such
methods have saved us time in our design cycle. There will be
an initial investment for developing the flow, but the benefits
are tremendous. This may lead to fewer bugs, improved design-
cycle times, and better time-to-market.

There may be other solutions besides those proposed in this
paper.

REFERENCES

[1] Robert Meyer, Joel Artmann: “Creating a Complete Low Power
Verification Strategy using the Common Power Format and UVM”,

DVCon 2012.

[2] Amit Srivastava, Rudra Mukherjee, Erich Marschner, Chuck Seely,

Sorin Dobre: “Low power SoC Verification: IP Reuse and Hierarchical
Composition using UPF”, DVCon 2012.

[3] http://www.powerforward.org

Milestones Description

0 to 1 Initial specification, gathering requirements

1 to 2
Generating flows, infrastructure and

maintaining them

2 to 3
Availability of simulation-ready (dynamic

checking) power format file

3 to 4
Availability of power format file for static tool

checking

4 to 5 and possibly

beyond

Final version of power format file after

design/tool/flow fixes

