
Today’s SoCs use a variety of hardware

and software power schemes to minimize

power consumption. This poster attempts

to explore some common low-power

design and verification issues, and will focus

on some methodologies that can address

such problems.

Abstract

Milestones Description

0 to 1 Initial specification, gathering requirements

1 to 2 Generating flows, infrastructure and maintaining them

2 to 3 Availability of Simulation ready (dynamic checking) power format file

3 to 4 Availability of power format file for static tool checking

4 to 5 and possibly beyond Final version of power format file after design/tool/flow fixes

Introduction

Challenges with Power Format Files

• Designers use static and dynamic verification
techniques and various tools to implement low
power design.

• Power formats like CPF and UPF with RTL and
Gate-level netlist transfers low power intent of a
design from one hardware design stage to
another.

• No reliable method exist that would transfer the
low power information from hardware to software.

• Many companies have flows which allow users
to simulate designs without worrying about
various underlying simulators, OS and other
licenses. Low power automation can also use
similar approach.

• Users can specify power intent of a design at a
higher level of abstraction than the
corresponding power format file of the design.
From this initial specification, either CPF or UPF
file can be auto generated.

• The power format file can be auto-generated in
such a way that specific tool dependent pragmas
and constructs can be activated for a specific
tool run. The same file can be shared between
multiple tools.

Example: The high level specification can be

converted into objects and power format files can be

auto generated

• Reuse rule constructs, that designers have
developed and tested at block level, during top
level integration. Constructs can be reused by
wrapping inside TCL procedures and calling it
from chip level.

• Hierarchically organize power format files, the

same way of how major blocks in a chip is
organized.

• Adopt a uniform method of coding for power

format files – in terms of naming conventions for
variables, reusable constructs, methods and
libraries.

• Automate the integration process.

• Share same power format file between different

tools, instead of having multiple copies.

• Integrate the low power environment into existing
flows for invoking different tool chains. The
infrastructure for this need to be developed.

Auto Generation of CPF/UPF

Low Power
Specification

Low Power Flow

Power Format File

(CPF/UPF/other)

Other Design
Stages

Design

Simulations
(Dynamic)

Assertions

Static Tools

Power Format – Reuse Guidelines

CPF/UPF Power
Formats and
Challenges

CPF/UPF Power
Formats and
Challenges

Relatively
New/

Insufficient
Training

Relatively
New/

Insufficient
Training

Vendor
or Tool

Dependent

Vendor
or Tool

Dependent

Format
Conversion or

Translation
Errors

Format
Conversion or

Translation
Errors

Different
Versions

Within Same
Power Format

Different
Versions

Within Same
Power Format

Unification
Efforts Still

Ongoing

Unification
Efforts Still

Ongoing

No Coding
Guidelines/
Integration

Issues

No Coding
Guidelines/
Integration

Issues

Example:

Configuring

power format

file for multiple

tools.

Grab values from environment

variables.

set design_path $env(DESIGN_PATH)

set target $env(TOOL_TYPE)

if {$target eq “dynamic"} {

 <do settings for dynamic tools>

} else {

 <do settings for static tools>

}

How Automation Fits into Flow

Example Configuration Snippets

Power Domains

my $dsn = {

 DOMAINS => [

 {

 name => “aon_domain”,

 default => “yes”,

 power_net => “aon_vdd”,

 ground_net => “vss”,

 power_net_volt => [“1.0”],

 ground_net_volt => [“0.0”],

 …

 }

 {

 name => “domain1”,

 power_net => “vdd1”,

 ground_net => “vss”,

 power_net_volt => [“1.0”,

 “0.0”],

 ground_net_volt => [“0.0”],

 blocks => [“I_A”, “I_B”],

 shutoff => “shut_off_1”,

 isolation => “iso_1”,

 …

 }

 …

]

 …

}

State table.

my $dsn = {

 DOMAINS => [

 …

]

 POWER_STATES => [

 { state => “on”,

 value => { aon_vdd => “1.0”,

 vdd1 => “1.0”,

 vdd2 => “1.5”,

 vss => “0.0” },},

 { state => “dmn1_off”,

 value => { aon_vdd => “1.0”,

 vdd1 => “0.0”,

 vdd2 => “1.5”,

 vss => “0.0”},},

 { state => “dmn2_off”,

 value => { aon_vdd => “1.0”,

 vdd1 => “1.0”,

 vdd2 => “0.0”,

 vss => “0.0”},},

 …

]

}

my $dsn = {

 DOMAINS => […]

 POWER_STATES => […]

 ISOLATIONS => [

 {domain1 => aon_domain,},

 {domain2 => aon_domain,},

]

 LEVEL_SHIFTERS => [

 {domain2 => aon_domain,}

]

 …

}

Example: on

how to specify

relationships

between domains

(isolation, level

shifter rules)

• Designers can fill out the above template, any

missing components will be flagged by the flow.

• Diagnostic messages targeted for particular

architecture can be embedded in the setup –

This is not possible with CPF/UPF since they are

only a medium to control the underlying tools.

Pseudo code

…

foreach my $d (@domains) {

 if ($d->get_default) {

 $d->dump_code_snippet($d, “default_domain”);

 }

 …

 if (!$d->get_default && !$d->get_shutoff && $d->can_be_switched) {

 error(“No shut off condition specified for switched domain %s\n”,

 $d->get_name);

 }

…

}

Why this approach?

• Standards can change/become less popular.

• Tools may not support certain constructs

anymore or newer ones can get added. Whoever

is maintaining the platform can track such

changes and industry wide trends and make

changes to flow.

• The flow can have a feature to read in designs,

extract design information based on user

supplied regular expressions while also

performing some design checks based on that.

• Assertions checking low power features can be

automatically generated.

• Users can insert tags and headers in the power

format file generated, which will be used to

automatically stitch together the top level power

format file. (Similar to Verilog auto instantiation

scripts that designers commonly use)

• NOT a new power format – rather a wrapper

which provides a higher level abstraction, built

around tools.

Transferring Power Intent to S/W

• No automated mechanism exist, this is the

weakest link in the chain – No vehicle similar to

power format file.

• Software need to follow complex program

sequences to manage power.

• Software program sequences might also be

dependent on how the specification is

implemented in chip.

• Complex specifications can be captured by

means of dependency graphs – Dependency

between various blocks in a chip in terms of

clocks, domains and functionality.

Dependency Graphs

• The dependency graphs can be captured in a

data structure. This may be used for generating

program sequences that will be consumed by

software.

2) Analyze functional dependency between

blocks. Sometimes other blocks need to be

programmed before power down can begin.

Generate program sequences.

Main Ctrl

Clk Ctrl1

Block1 Block3

Clk Ctrl2

Block2 Block4

Top

Block5

Block1

Block7

Block3 Block4 Bock5

1) Before powering down a block, check for

any clock dependency between blocks.

Generate the program sequences for same.

3) Check for power domain dependency

between blocks. Go back to 1) and 2) until all

dependencies are resolved.

Top

DomainA

Block1 Block2

DomainB

Block3 Block4 Bock5

Results

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18

 Graph of Development time in weeks (X-axis)
vs milestones (Y-axis)

Chip1(2010-11) Chip2(2011-12) Chip3(ongoing) Target

Chip1 (2010-
2011)

Chip2 (2011-
2012)

Chip3
(Ongoing)

Future Chips

Chip1 (2010-2011)

Chip2 (2011-2012)

Chip3 (Ongoing)

Future Chips

Conclusion

This power format automation flow

will be able to detect issues on the

low power specification provided by

the users, even before the

specification evolve into any power

format files and run with any tools.

Hence , designers can avoid basic

errors that they often make. The

implementation of such method

saves time in design cycle. There

will be an initial investment for

developing the flow, but the benefits

are tremendous. This may lead to

fewer bugs, improved design-cycle

times, and better time-to-market.

LOW-POWER VERIFICATION AUTOMATION

Shaji K. Kunjumohamed, Broadcom Corporation

Hendy Kosasih, Cadence Design Systems

A PRACTICAL APPROACH

