LOW-POWER VERIFICATION AUTOMATION

A PRACTICAL APPROACH

Shaji K. Kunjumohamed, Broadcom Corporation —_
Hendy Kosasih, Cadence Design Systems C a d e n C e

BROADCOM.
YA Y

4 N N N A

AbStraCt Example; : sziliaa;:i::as from environment ° The ﬂOW can have a feature to read in designS, 3) CheCk for power domain dependency |

Todav’s SoC iotv of hard Configuring sot dosign path Sem(DESIGN PATH) extract design information based on user between blocks. Go back to 1) and 2) until all

O ay S OoLS use a varie y O a.r .W?re power format set target $env (TOOL_TYPE) Supplied regu'ar expressions Wh||e aISO dependenCIeS are reSOlved.
and software power schemes to minimize file for multiple e e) ies performing some design checks based on that
power consumption. This poster attempts - e e for static tooles ‘
to ?Xplore AL GG L |°W'_P°W9r } - Assertions checking low power features can be
design and verification issues, and will focus automatically generated.

meth logi h n r - to i

on some methodologies that can address How Automation Fits into Flow | | Top
such problems. « Users can insert tags and headers in the power

format file generated, which will be used to
. Low Power automatically stitch together the top level power I DomainA I Domaing
Introduction format file. (Similar to Verilog auto instantiation oman oman
l scripts that designers commonly use)
l Block1 l Block2 | Block3 | Block4 l Bock5
ccion Y o powerFlow T « NOT a new power format — rather a wrapper
m which provides a higher level abstraction, built

« Designers use static and dynamic verification
techniques and various tools to implement low
power design.

 Power formats like CPF and UPF with RTL and
Gate-level netlist transfers low power intent of a

around tools.

design from one hardware design stage to . _— Results
ZInelines staticTools Rl F e Rl (Dvnamic) Transferring Power Intent to S/W
Graph of Development time in weeks (X-axis)
 No reliable method exist that would transfer the 1 « No automated mechanism exist, this is the vs milestones (Y-axis)
low power information from hardware to software. weakest link in the chain — No vehicle similar to 6
power format file.
= u Stages 2 Pl o
Challenges with Power Format Files J
« Software need to follow complex program ; ¢’ /
n g g sequences to manage power. i
relativel Example Configuration Snippets ; 9P i e
3 @
Insufficient # Power Domains s e, « Software program sequences might also be i //,/
Raline my $dsn = { my Sdsn = { dependent on how the specification is | ——
: DOMAINS => [DOMAINS => [_ _ _ Y //
No Coding Vendor « e aemi L Implemented in chip. Y _—
Guidelines/ or Tool default => “yes”, , POWER_STATES => | an tl
Integration power net => “aon_vdd”, { state => “on”, {
Issues Dependent ground net => “vss”, value => { aon_vdd => “1.07, . . p’
Power_petvolt => [1.0 1, T « Complex specifications can be captured by 0
ground net vo = “0.0" 1, v => “1.57, 2 4 1 12 14 1 1
CPF/UPF Power . s =007 L means of dependency graphs — Dependency D o cowmm —emms e scmm
Formats and { state => “dmnl_off”, between various blocks in a chip in terms of
Cha"enges { value => { aon_vdd => “1.0”, . . .
G vl vasL = 10.07, clocks, domains and functionality. T— S
BONS Ll = v Z v = : v Oto1l Initial specification, gathering requirements
o g . Format ground net => “vss”, s => %0.0"},}, o enerating flows, infrastructure and maintaining them
Unlflcatlo.n Conversion or e ey eis =2 |l :1’0::’ “ . ;:0223 ivailab?litf/gof Simulatio; reatdy (dynamic ctheckiﬁg) power format file
Efforts Still Translation . “0.0” 1, { state i> dmn2_off T . De pendency G raphs 3to4 Availability of power format file for static tool checking
. ground net volt => [“0.07], value => { aon_vdd => “1.0”,) -
blocks => [“I A”, “I B” vddl => “1.0”
Ongo|ng Errors Blaa s > ‘ESh;t éff I” 1, sl = 4 to 5 and possibly beyond |Final version of power format file after design/tool/flow fixes
Different riifion =5 9 17, vss =>"0.0"},}, The dependency graphs can be captured in a
Versions) 2 data structure. This may be used for generating
I}’(‘)"'At";“Fz";‘r’::t] program sequences that will be consumed by = Chip1 (2010-2011)
} software. |
m Chip2 (2011-2012)

m Chip3 (Ongoing)

my $dsn = {
Power Format — Reuse Guidelines poREE = Example: on | Main Ctrl - =Future Chips

POWER STATES => [..] hOW tO SpeCi fy

* Reuse rule constructs, that designers have O Sal = aon domain,], relationships
:jee\/veellicr)\?ee drgtri]gnte(slfr?s?rtulzltzccl:(alr? \E)eel,rcelldggg LOp p T T sensenend between domains
: g C : y LEVEL SHIFTERS => [(iSOIation, level Clk Ctrl1 Clk Ctrl2
wrapping inside TCL procedures and calling it (domain? => aon domain, }

from chip level. ! shifter rules)

}
« Hierarchically organize power format files, the Chip1 (2010- Chip2 (2011- Chip3 Future Chips
same way of how major blocks in a chip is Block1 l Block3 | Block2 | Block4 2011) 2012) (Ongoing)

: « Designers can fill out the above template, any
organized.
Janiz missing components will be flagged by the flow.

« Adopt a uniform method of coding for power

format files — in terms of naming conventions for . Diagnostic messages targeted for particular Conclusion
?ilgpaarlijelgs’ reusable constructs, methods and architecture can be embedded in the setup —
' This is not possible with CPF/UPF since they are This power format automation flow

only a medium to control the underlying tools. 1) Before powering down a block, check for will be able to detect issues on the

any clock dependency between blocks. I ificati ided b
Generate the program sequences for same. i plehEl Epigle plseilioll eliehdiels y
users, even before the

» Share same power format file between different the
tools, instead of having multiple copies. Example: The high level specification can be specification evolve into any power
format files and run with any tools.

 Integrate the low power environment into existing ;a?gzreticelrlgfg dObJeCtS and power format files canibe
Hence , designers can avoid basic
errors that they often make. The

flows for invoking different tool chains. The
Infrastructure for this need to be developed. ‘
implementation of such method

Auto Generation of CPF/UPF f Feeudo cone saves time in design cycle. There

Eoreach my $d (@domains) {
. . if ($d->get default) { . | | will be an initial investment for
« Many companies have flows which allow users Fd->aump_code_snippet (3d, “default domain®d ; Block5 Block7 d lobi the fi but the b fit
to SImUIate deSIQnS WIthOUt Worrylng abOUt 1f (!'$d->get default && !$d->get shutoff && $d->can be switched) { eve oplng e OW, u e ene I S

various underlying simulators, OS and other error (“No shut off condition specified for switched domain %s\n”, are tremendous. This may lead to

licenses. Low power automation can also use sty fewer bugs, improved design-cycle
similar approach. ; Blockl § Block3 § Block4 Bock5 Hrram mrm| e e E

« Users can specify power intent of a design at a

« Automate the integration process.

Top

higher level of abstraction than the i 2
corresponding power format file of the design. Why this approach)
From this initial specification, either CPF or UPF . Standards can change/become less popular
file can be auto generated. '

* Tools may not support certain constructs

 The power format file can be auto-generated in 2) Analyze functional dependency between

such a way that specific tool dependent pragmes ;”%Zﬁiziﬁ[ngemzrpﬁggzrﬁ’;E?ftt;‘iiidqc\:‘\’hoe"er blocks. Sometimes other blocks need to be
and constructs can be activated for a specific :
tool run. The same file can be shared between changes and industry wide trends and make SIEEIENTITEE SEEE POrEr CONR G2 eI

multiple tools. changes to flow. Generate program sequences.

" AN NS NS v

