
Low-Power Verification at Gate Level for
Zen Microprocessor Core

Baosheng Wang, Keerthi Mullangi – AMD
Raluca Stan, Diana Irimia – AMD Service Provider (Silicon

Service SRL)

1

Outline
• Introduction

– Key targeted low power features

• Power Aware Gatesim (PAG)
– Advantage of co-sim models

• Reset Checker at Gates
• Real Power Up Sequence
• Automation
• Results
• Summary

2

Introduction

• AMD “Zen” microprocessor
– High-performance and low power x86 core
– Energy efficient 14LPP FinFET
– 1.4B transistors core complex unit
– Shared 8MB L3 cache and four cores

• Low-power features verified at Gate level
– Scan shift reset
– Power gating
– Power on clock/reset

3

The necessity of
low power verification at Gate level

• RTL verification limitations
– Scan chain is partially modeled
– Reset logic not fully verified
– No power supply ports physically inserted

• Traditional Logical Equivalence Check (LEC) limitations
– Scan chains are inserted after the LEC verification completes
– Performs scan chain check only at the macro level
– Cannot detect design optimization

4

Power Aware Gate Level Simulation
(PAGLS) Environment

Stimulus

GATERTL
RV checker

Power up
sequence
testbench

PAGLS TOP

UPF PG

Cycle-based comparison of the primary outputs

Apply the same stimulus at
both RTL and gate

Power aware
components

Power aware
logic

Power
intent
spec

5

PAGLS configuration model

NLP model

UPFRTL
macros

gate model

PG
stdLib

PG
macros

PAGLS testbench

RTL PG netlist

UPF describes the power aware logic and
reflects the power intent of the design

PG netlist is the result of the conversion of the
RTL design to gate-level description via a

synthesis tool
All power ports are inserted and connected

NLP tool is an external irritator used in
UPF-based verification at the RTL level

VDD
VSS

1’bx

logic
outputs

6

Advantages of the co-simulation
environment

• Reuse of infrastructure – same verification tools

• Reuse of stimulus – reproduce any scenario

• Stimulus sampling – testcase variety and quality

• Plug-and-play execution and reconfiguration – same built-in template

7

Scan Shift Reset Design Methodology
• Scan shift reset (SSR)

– Performs a synchronous reset of the design
– All the scannable flops in the design are in a known state

• Example of reset1 flop

dff #(.RVAL(1)) dff_inst (...);

SE
CLK

Q
D

SI

SDO

lib cell

8

Reset checker methodology
• Reset value (RV) checker

– Performs the flop checks inside the macros
– Compares the RV of all the scannable flip-flops after SSR
– Detects inverters inserted during design optimization into scan chains

RTL .rv parameter LEC mapping RTL equals Gate RTL non-equals Gate

0 direct OK mismatch

0 inverted mismatch OK

1 direct mismatch OK

1 inverted OK mismatch

9

RV checker sample code
always @(negedge SSE) begin
if (GATE_FF_instance0.QB !== RTL_FF_instance0.dff_q) begin
$display (":RV checker %m RV Value mismatch, RTL

statepoint CAN'T BE DIFF as Map Direct GATE statepoint upon
scan);

rv_check_err_cnt = rv_check_err_cnt + 1;
end else
$display (“Map Direct RTL GATE statepoint matched”);

if (GATE_FF_instance1.Q === RTL_FF_instance1.dff_q) begin
$display (":RV checker %m RV Value mismatch, RTL

statepoint CAN'T BE SAME as Map Invert GATE statepoint upon
scan reset”);

rv_check_err_cnt = rv_check_err_cnt + 1;
end else
$display (“Map Invert RTL GATE statepoint matched”);

end

direct mapping
between state point
for “QB” output port

inverted mapping
between state point
for “Q” output port

10

Power Gating Design in Zen

• Three Power Domains
– RVDD: raw power supply
– VDD: gated power supply
– VDDM: gated power supply,

for memory array retention
only

• Power gating is achieved in
UPF with power_switch

• Ring Style
• Digitally Controlled

create_power_switch pgheader -domain PD_TOP
-input_supply_port {RVDD RVDD}
-output_supply_port {VDD VDD}
-control_port {RUN_X CONTROL_SIGNAL}
-on_state {vdd_on RVDD {!RUN_X}}
-off_state {vdd_off {RUN_X}} 11

Real Power Up Sequence
• In a design, all the power rails won’t power up from 0 time

– Randomization sequence of the power supplies is defined according to Spec

• Clocks are verified during power up
– how mesh clocks make the transition from clock generator to local clocks
– how clocks propagate when the power supply is high

• Also, checks if level shifters are isolated correctly

Power rail Package power supply Comment

PowerRail1 VDDTop VDDTop has to be powered up before all the power supplies

PowerRail2 VDD1, VDD2 VDD1 and VDD2 can be powered up at any sequence after PowerRail1

PowerRail3 VDD3, VDD4 VDD3 and VDD4 can be powered up at any sequence after PowerRail2

12

Real Power Up Sequence
• Power ramps up gradually

– Analog and mixed clock macros in
the Zen core demand this process
in simulation models

– Achieving this by adding a delay
element in the test sequence

– Starting from cycle0, the delay
numbers are randomized ensuring
there is a gap of 20-30 clock
cycles between each rail ramp up.

delay_up1

delay_up2

delay_up3

delay_up4

Cycle0

VDDTop

VDD1

VDD2

VDD3

VDD4

delay_up0

13

Power Up Sequence Sample Code
task rampUp_Seq1();
fork
#(delay_up0) set_vddtop = 1'b1;
#(delay_up1) set_vdd1 = 1'b1;
#(delay_up2) set_vdd2 = 1'b1;
#(delay_up3) set_vdd3 = 1'b1;
#(delay_up4) set_vdd4 = 1'b1;
join
Endtask

always_comb @* begin
VDDTop = (set_vddtop== 1'b1) ? 1'b1 : 1'b0;
VDD1 = (set_vdd1 == 1'b1) ? 1'b1 : 1'b0;
VDD2 = (set_vdd2 == 1'b1) ? 1'b1 : 1'b0;
VDD3 = (set_vdd3 == 1'b1) ? 1'b1 : 1'b0;
VDD4 = (set_vdd4 == 1'b1) ? 1'b1 : 1'b0;
end Note: delay_up0<delay_up1<…<delay_up4

connect_supply_net SN_VDDTop -ports {tb_nlp_power_seq_inst/VDDTop VDDTop }
connect_supply_net SN_VDD1 -ports {tb_nlp_power_seq_inst/VDD1 VDD1 }
connect_supply_net SN_VDD2 -ports {tb_nlp_power_seq_inst/VDD2 VDD2 }
connect_supply_net SN_VDD3 -ports {tb_nlp_power_seq_inst/VDD3 VDD3 }
connect_supply_net SN_VDD4 -ports {tb_nlp_power_seq_inst/VDD4 VDD4 }

UPF

Test bench

14

Real Power Up Sequence at Gate Level

• Re-use of NLP test bench in PAGLS

• Testbench Drives the power ports in netlists and UPFs

• Randomization and delays are applied in PAGLS

• Verify the clocks on powerup , isolation strategies

15

PAGLS Flow Automation

Gen Work Area GLS

Configuration
File

• Parse configuration file
• Parse BOM file
• Extract/Process netlist
• Create RTL environment
• Create build/simulation

Gatesim commands

Gen RV Check

Generate RV checker

Gen Test Bench GLS

• Uniquify netlist
• Create port checker

• Insert power up
sequence testbench

• Insert RV checker
module

16

PAGLS Flow Automation

Gen GLS WorkArea

Gen GLS RV Check

Gen GLS TestBench

PAGLS Flow Total 330
minutes

RV checker generation
process

RV checker module

23
minutes

152
minutes

145
minutes

10
minutes

155
minutes

17

Results and Performance

Zen Runtime Memory Allocation
Build 5x 5x

Simulation 2x 2x

• PAGLS performance downgrade
over RTL NLP run

• Issue 1: PD scan insertion
tool fails to consider the extra
inverter in the lib cell

• Issue 2: RTL fails to consider
quad flops SE

CLK

Q
D

SDI

SDO

lib cell

D[3:0]
SDI
SE
CLK[3:0]

Q[3:0]
SDO

dff #(.RVAL(4’b0101)) dff_inst (...);

dff #(.RVAL(4’b0000)) dff_inst (...);

18

Summary
• Capabilities at gate level

– Perform a synchronous reset in the design
– Compare the RTL and Gate output scannable flops inside the macros
– Verify low-power structures added during synthesis by applying real power

up sequence
• Challenges

– PG netlist is available very late in the design cycle
– Gate model has a slower runtime and a higher memory footprint

• Future improvements
– Perform detailed investigations during runtime using the simulator profiling

19

Copyright & Disclaimer
• AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies. © 2019 Advanced Micro Devices, Inc. All rights reserved.

• Disclaimer:
– The information presented in this document is for informational purposes only and may contain technical

inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may
be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component
and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update
or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to
make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

– THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

20

	Low-Power Verification at Gate Level for Zen Microprocessor Core
	Outline
	Introduction
	The necessity of � low power verification at Gate level
	Power Aware Gate Level Simulation (PAGLS) Environment
	PAGLS configuration model
	Advantages of the co-simulation environment
	Scan Shift Reset Design Methodology
	Reset checker methodology
	RV checker sample code
	Power Gating Design in Zen
	Real Power Up Sequence
	Real Power Up Sequence
	Power Up Sequence Sample Code
	Real Power Up Sequence at Gate Level
	PAGLS Flow Automation
	PAGLS Flow Automation
	Results and Performance
	Summary
	Copyright & Disclaimer

