
 1

Abstract— UPF2.0 [1], with its ability to define power states and

corruption semantics on them, has made low power verification

flows powerful. This powerful flow provides more flexibility to a

verification engineer to define sophisticated assertions, enabling

them to isolate more low power issues in the design. The

traditional approach of verifying designs relies on functional state

space localized in various blocks, for example an SoC. However,

when verifying low power designs, power states transcend

hierarchies and are at a Chip Level. Converting existing

functional verification platforms into a powerful power aware

one is time consuming and error prone. It is not scalable with the

number of power domains and with the number and types of low

power sequencing checks that one must ideally perform.

Reconciling the architecture-wide low power issues and the

functionally self-contained design blocks should be the first step,

before one can design or conceive a verification flow. Normally,

we end up generating a huge set of assertions with very little

contextual understanding of the design, both in terms of

functionality or power. Even if the context is understood, the

process of conceiving assertions is time consuming.

In this paper, we will highlight how traditional verification flows

based on an assertion library framework falls short in low power

design verification. To address this issue, we will demonstrate

how a static verification tool and UPF 2.0 can be leveraged to

conceive powerful low power assertions that are context sensitive,

resulting in effective low power verification flows. Until now, the

static tools were typically utilized for language semantic checks

and structural low power checks. However, we will broaden the

scope of static tools and extend it to formulating verification

methodologies. We will deal with aspects as to how the assertions

can be statically generated and how the coverage of various

assertions (generated or otherwise) can be organized.

Index Terms—Low Power Verification, Static Verification

I. INTRODUCTION

A. Low Power Verification

The demand for low power verification led to the

formalization of UPF that allows the specification of power

semantics that was not possible in HDL. There have been

static verification offerings at the HDL level, and low power

verification space also provided its own solution. These checks

were in addition to linting and other formal verification

techniques. With the formalization of UPF 2.0, and most

notably the add_power_state semantic, the ability to specify

the power states in the design became much more powerful.

This has opened many opportunities to verify more corner case

scenarios in a standard way.

So far the approach adopted to verify a low power design

[2][3][4][5] is to use the low power assertion library, which is

packaged with a simulator. The library contains various

assertion IPs, which would assert when any illegal low power

sequencing occurs in a design. This helps the verification

engineer to discover low power issues in the design. However,

as the design becomes more complicated, the number of

different assertion IPs active, lead to lot more assertions

getting fired during verification and the number can explode.

The adopted approach for this scenario is to divide and

conquer where the assertion IPs are used to verify in a bottom-

up approach. The block is white box tested with the assertion

IP and then is black/grey boxed when integrating into a higher

hierarchy. This effectively manages the situation. But we

believe this process can be improved upon by exploiting static

verification and UPF 2.0, more effectively. Low power

verification is not only a functional issue, but it is a structural

issue as well. The dependency between design elements does

not respect the hierarchical boundaries, and the issues do not

get contextualized in a bottom-up verification approach. A

static tool can provide better intelligence to the verification

engineer about the cross hierarchy dependency between design

elements. It is imperative that with increasing design

complexity, an engineer must have better clarity across

different reports generated by various tools. For this we adopt

the approach of aligning all the tools, simulator in conjunction

with all static tools, and achieve a clear set of objectives to

ensure a bug free design.

Different static verification tools in conjunction with the

simulator do not have a standard semantic framework. We

need to correlate different tool runs to align with a global

verification objective. For example, the static tool that

specializes in clock domain crossing [6] may not be aware of a

power context understood by a low power rule checker [7].

This makes any issue that is related to both CDC and low

Low Power Static Verification- Beyond Linting

and Corruption Semantics

Kaustav Guha
#1 , Ankush Bagotra

#2, Neha Bajaj
#3

#
Synopsys India Pvt Ltd

Bangalore, India
1
kaustav@synopsys.com

2
ankushb@synopsys.com
3
nehab@synopsys.com

mailto:1kaustav@synopsys.com
mailto:ankushb@synopsys.com

 2

power difficult to detect. Also, with the power states defined

on a domain using the add_power_state of UPF2.0 (henceforth

referred to as “power states”), we might want to verify specific

relationships among Power States of various domains,

functional properties, assertions, and the design rules of a

static tool. The multitude of properties/assertions/rules would

complicate the verification process, unless there is a way to

manage them. As explained earlier, the bottom-up approach

may not help in isolating design issues upfront. The ability to

correlate different properties (static and functional) will help

contextualizing different issues in the design. Having this

correlation will ease the debug process, bringing down the

turnaround time, as any issue detected has a clear context to

debug with.

B. Static Verification

Before we proceed further, let us know the definition of Static

Verification.

Definition

 Static Verification is a verification of all specified desirable

invariant properties and absence of all specified undesirable

invariant properties in both the structure and functionality of

the design.

The most significant statement to make here is about a

property being “invariant”, which means a property that

always “makes sense”. A property is invariant, only if the

context of the property and the property itself is made clear in

its specification. This is however not true, as we have

witnessed in the evolution of low power verification. An HDL

assertion is invariant when we verify the design in a functional

context. However, with the advent of low power verification,

an HDL assertion has to take into account a power context in

order to make sense. The HDL semantic space has not kept up

with the power semantics required to verify the design, in the

context of low power. As a result, the HDL assertion makes

sense in context when the logic block is fully powered on, and

does not make sense when the block is powered off, the

property ceases to be an invariant. A static property asserted

by one tool can also cease to be an invariant when some other

static property is asserted by another or the same tool. What

this means is, unless the static properties of various tool are

contextualized, it will be very difficult to make sense of the

health of the design given the multitude of report logs.

C. Objective

The objective of this paper is to describe a methodology,

wherein the various HDL assertions, static rules, and low

power states are contextualized. Once this is done, this

methodology provides semantics to formally describe various

verification objectives that would help determining the root

cause of design issues quickly. We can clearly demonstrate the

state of a verification cycle on a given design, by this

methodology, in terms of quality, coverage, and signoff.

II. HIGH LEVEL LOW POWER VERIFICATION FRAMEWORK

We introduce High Level Low Power Verification (HLLPV)

Framework which is a holistic approach to address low power

verification flows and enable non low power verification flows

into power-aware ones. The framework brings together

assertions from HDL specification, simulation tool, power

states, and the static rules of different point tools to ensure that

the low power flow is complete. We do this by specifying a

“Verification Objective” in terms of logical, low power states,

and the static rules. Thus, we introduce the notion of a

power_operation. The following code example introduces

various components that together constitute a

power_operation.

A. Definition:power_operation

A named power_operation has a start condition and a

terminating condition. The start and terminating condition can

be a logical/low power property or a start/stop of other

power_operations specified.

One can consider power_operation to denote the

advancement of verification objectives during verification.

However, the onus is on the verification engineer to design and

specify the power_operation in such a manner, so that the

resulting power_operation sequence completes the global

verification objectives. power_operation will be a means of

power_operation <Name>

 on_definition {domain_list}

 off_definition {domain state list}

 complete_upon {all_on |domain state expression | all_off}

 apply_when -domain_state {<domain state list>}

 –operation_completed {<power operation list >}

 don‟t_apply_when {<list of domain expression>}

 property_with {<domain state expression>,

 <domain state expression>)

 property_after {<domain state expression>,

 <domain state expression>}

 property_before {<domain state expression>,

 <domain state expression>}

 property_until {<domain state expression>,

 <domain state expression>}

 assert_on {<domain state expression>}

 user_property_when -state<domain state expression>

 -checker <checker file name>

 –bind_to <domain instance>

 user_assert_when –state <domain state expression>

 -assertion <assertion file>

 -bind_to <domain instance>

 disregard_user_property_when –state <domain state

expression>

 -checker <checker file name>

 –bind_to <domain instance>

 disregard_user_assert_when –state <domain state

expression>

 -checker <checker file name>

 –bind_to <domain instance>

 assert_on_rule –rule <rule name> -tool <tool name>

 cover_rule –rule <rule name> -tool <tool name>

end_operation

 3

prioritizing and categorizing high level design states into

verification objectives.

A. Definition: on_definition

on_definition constitutes a set of domains or UPF power

states of a domain that are to be considered powered-on in the

power_operation. The rationale behind this semantic is that

one can define what a domain being powered really means.

off_definition is the converse of on_definition in a

power_operation.

With this, we can define states that are neither ON nor OFF in

a given power_operation, or in other words irrelevant to the

verification objective being verified.

B. Definition: apply_when

apply_when captures the start condition for a

power_operation to become active. A start condition can be a

Boolean expression of power domains states whose ON/OFF

is defined using the on_definition/off_definition of the

power_operation or when other specified power_operation

are active or have terminated.

apply_when specifies the dependency of the current

verification objective of a named power_operation against

others or certain power state conditions.

C. Definition: complete_upon

complete_upon is used to specify the UPF domain state

condition, upon which the power_operation would terminate.

Having achieved this, the verification engineer can use the

terminating condition of the power_operation to define new

ones.

The following definitions will be used to capture verification

objectives in terms of power states, HDL specified

properties/assertions, and the static rules of various

participating tools.

D. Definition: property_*

property_with is used to specify two power state expressions

that have to be true together. property_after is used to specify

a power state expression that has to be true, after certain power

state expression is true. property_before is used to specify a

power state expression that has to be true, before certain other

power state expression is true. property_until is used to

specify the power state expression that has to be true, until

certain other power state expression is true. These definitions

are primarily used to define relationship between the power

states specified in the UPF.

E. Definition: user_*_when

user_property_when is used to specify the validity and

binding of a user-defined checker, based on an expression of

domain power states that are relevant in a given

power_operation. user_assert_when is used to specify the

validity and binding of a user defined assertion, based on an

expression of domain power states that are relevant in a given

power_operation. disregard_user_property_when is a

converse of user_property_when, and so is

disregard_user_assert_when is of user_assert_when.

Binding and instrumenting of user specified properties and

assertions are powerful ways of laying down verification

objectives. This is the heart of the framework and the payload

that any power_operation carries within. Various

power_operations can be specified by individual verification

teams, all of which can be sorted into a sequence of multiple

power_operation using the apply_when and complete_upon

semantics. Together, all the power_operations achieve the

global verification objective. Depending on how the

power_operations are designed, multiple power_operations

can be relevant at the same time. A power_operation

execution can be gated by other power_operation(s). In a

single simulation run, various power_operation(s) may be

active. Depending on which leaf level assertion gets fired, the

relevant power_operation against which the assertions are

specified has to be debugged. Hence, with all the noise

generated by the Simulator, the power_operation can

correlate all the assertion and properties. With multiple teams

defining power_operation or power_operation sequence

independently, it leads to more debug parallelism.

F. Definition: assert_on_rule

assert_on_rule is used to associate a static rule that is

undesirable, when verifying a given power_operation.

cover_rule is the converse of this semantic, wherein the static

rule is necessary to achieve the verification objective of the

power_operation.

III. FLOW DESCRIPTION

Figure 1 - Various Stages of Execution Cycle in the HLLPV

Framework.

A. Specification

The verification engineer would use the semantics defined in

Section II to describe verification objectives and their

 4

dependency. We term this as the High Level Low Power

Verification (HLLPV) intent. Once this intent is specified, the

HLLPV Engine (shown in Figure 2) will translate the

specification into a Verification flow.

B. Translation

For each verification objective, the tool will generate

customized scripts for each point tool to run relevant checks.

C. Database (DB) Generation

The point tools execute the checks and dump their respective

DB in an SQL compliant format. The existing point tools, if

not SQL complaint, will use an SQL adaptor to dump SQL

compliant reports. The DB generation is incremental and re-

usable. The DB Generation will also honor the

power_operation dependencies laid by the verification

engineer.

D. Correlation

The DB from various point tools are correlated to present a

unified coherent view for analyzing a verification objective.

E. Analysis

Analysis is done on a correlated view using a Query

framework, which works over the DB with generic set of

queries written on an SQL engine. Each verification goal is

validated with the correlated view. In case of a violation, the

verification engineer will be able to connect to most debug

information using these generic queries. The engineer can

query the tool using a .lpq (Low Power Query) file, and can

also perform a “what-if” analysis, correlate results with respect

to previous results, and isolate the root cause.

Figure 2: HLLPV Framework

IV. CASE STUDY

Through our case study, we would demonstrate how a design

issue is isolated in a cell phone design. The high level Design

State Machine (DSM) for this design is shown in Figure 3.

Figure 3: High Level Design State Machine

This state machine is created by the designer, and given to the

verification engineer for verification. The framework detected

a design issue, which is described as follows:

The voice transmission domain (D_VOICE_TRANSMISSION) is

powered-off in the “Stand-by” and “Ringing” state. The

D_VOICE_TRANSMISSION domain has to be powered on when

the design is in the “Busy” state. The power switch enable

signal sig_pwr_transmission for

D_VOICE_TRANSMISSION domain is getting generated by the

D_SETUP domain. The isolation enable signal

sig_iso_setup to the D_SETUP domain should be set to

logic „1‟, before the power switch enable signal

sig_pwr_transmission reaches the

D_VOICE_TRANSMISSION domain. But sig_iso_setup got

set to „0‟, and thereby sending the wrong value („0‟) through

sig_pwr_transmission to the D_VOICE_TRANSMISSION

domain. Hence, D_VOICE_TRANSMISSION domain did not

power on when it is supposed to be, resulting in X propagation

happening from the outputs of this domain, as the isolation at

the output of the domain was set to 1 (as per the correct

functionality). This is shown in Figure 4. There were

functional assertions within the D_VOICE_TRANSMISSION,

and they all failed.

 5

Figure 4: Corruption of D_VOICE_TRANSMISSION

We exploit the add_power_state construct from UPF 2.0 to

define intended state semantic for each of the domains.

Following add_power_state syntax is defined in the UPF:

add_power_state D_SETUP -state {ON_MODE –

supply_eq {VDDI_setup == `{FULL_ON,1.5}} –

state {RUN_MODE –logic_eq sig_iso_setup}

This syntax defines that the domain D_SETUP is ON when the

supply VDDI_setup is in FULL_ON state, and in RUN_MODE

when the isolation signal is „1‟.

add_power_state D_VOICE_TRANSMISSION –state

{STDBY –supply_eq {VDDI_VT == `{OFF}} –state {

ON_MODE –logic_eq sig_pwr_transmission}

This syntax defines D_VOICE_TRANSMISSION is in STDBY

with supply being OFF, and in ON_MODE when the power

signal sig_pwr_transmission is set to 1.

add_power_state D_RECEIVER –state {ON_MODE –

simstate NORMAL} –state {SLEEP_MODE –logic_eq

sig_setup}

This syntax defines the SLEEP_MODE and ON_MODE for

D_RECEIVE.

All the above UPF add_power_state constructs capture the

dependency of various signals on the respective domains, as

shown in Figure 4.

Although, add_power_state semantic helped in depicting state

of the domain in the design, it still did not portray any

compliance to the DSM shown in Figure 3. To specify the

dependency of various domain states and capture the intent of

DSM for verification objective (Vg), following HLLPV intent

is defined.

power_operation u_standby

 apply_when –domain_state {!D_RECEIVER}

 on_definition {D_RECEIVER.SLEEP_MODE}

 complete_upon { D_RECEIVER.ON_MODE}

end_power_operation

This power operation defines when in “Standby” state the

D_RECEIVER domain should be in SLEEP_MODE and when this

domain goes to ON_MODE, the operation is considered

complete.

power_operation u_ringing

 apply_when –operation_completed u_standby

 on_definition {D_RECEIVER.ON_MODE}

 property_after {D_SETUP.ON_MODE,

D_RECEIVER.ON_MODE}

end_power_operation

This power operation defines that the operation starts only

when the u_standby power operation is complete. Also, in

this power operation, D_RECEIVER should be in ON_MODE and

that the D_SETUP should be in ON_MODE, only after

D_RECEIVER is in ON_MODE.

power_operation u_busy

 apply_when –operation_completed u_ringing

-domain_state {D_VOICE_TRANSMISSION.ON_MODE}

 property_after {

D_VOICE_TRANSMISSION.ON_MODE,

D_SETUP.RUN_MODE}

 assert_on_rule –rule {WRONG_SENSE} –tool

MVRC

 user_property_when –state

{D_VOICE_TRANSMISSION.ON_MODE} –checker

vcs_checker.sva –bind_to

{D_VOICE_TRANSMISSION}

end_power_operation

This power_operation defines that it will start only when the

u_ringing operation is complete and should start also

satisfying that D_VOICE_TRANSMISSION domain is in

ON_MODE. This operation is also associated with the MVRC

rule WRONG_SENSE. Figure 5 displays the relationship among

the power_operations defined.

Figure 5: power_operations state machine

 6

Figure 6: HLLPV flow in Case Study

The HLLPV engine generates a customized script for all the

point tools used, in our case VCS [8] and MVRC, and also the

powerstate.sva assertion file. The powerstate.sva file contains

the power state assertions defined in the .hllpv file,

instrumented in the form of a System Verilog Assertions

(SVA) [9] which is understood by VCS. In order to debug

from a functional point of view, traditionally, one has to trace

back from all the outputs that have „X‟ propagation, instead,

WRONG_SENSE rule in MVRC has pointed out the root cause of

the above issue- “The power switch signal powering on the

D_VOICE_TRANSMISSION domain has a WRONG_SENSE,

because of the powering off of D_SETUP domain”. The

Correlation Engine constructs a coherent view using the VCS

and MVRC DBs, and provides reports for the status and

coverage of Vg. This is the advantage that HLLPV brings to

the low power verification. Figure 6 shows the flow used while

achieving Vg.

The .lpq file (Figure 6) includes all the queries we had

pertaining to status of Vg. We queried for the status of various

power_operation formulate quality, coverage, and signoff

metrics for the design. Thanks to dependencies defined among

power_operations.

Table 1: Reference designs verification results

Design

Domain

Known

Issues

Root

Issues

caught by

MVRC

Root

Issues

caught by

assertions

in VCS

Root

Issues

caught by

HLLPV

Ref_design1 5 37 10 20 7

Ref_deisgn2 9 63 21 30 12

Our flow was used to validate some reference designs. The

results of the respective runs are shown in Table 1. The table

highlights the value that HLLPV brings to the low power

verification. It represents issues, which were discovered using

MVRC, VCS, and HLLPV. The root causes were isolated

faster than the traditional flow, since we could correlate both

the VCS simulation data and the MVRC logs.

V. CONCLUSION

In this paper, we have demonstrated the HLLPV framework. It

can leverage different Static Verification tools in conjunction

with the Assertion Based Verification flows, in the context of

UPF2.0 (add_power_state). This provides a holistic solution to

the verification problem of low power designs. The framework

also provides the ability to define verification objectives that

can be used to define metrics in terms of quality, coverage, and

signoff. In doing so, it brings down the turnaround time for

fixing a design issue and effectively portrays the accurate

status of the verification exercise.

VI. FUTURE WORK

Our future goal is to incorporate other static verification tools

in HLLPV framework. We are looking into the potential value

at the Translation stage of HLLPV intent, wherein we critique

and optimize the global structure of various power_operations

defined.

REFERENCES

[1] Unified Power Format (UPF 2.0) Standard; IEEE

Draft Standard for Design and Verification of Low Power Integrated

Circuits, IEEE P1801/D18; 23rd October, 2008.

[2] Khan N. and Winkeler W; Power Assertions and Coverage for

Improving Quality of Low Power Verification and Closure of Power

Intent; In the Proceedings of DVCon, pp. 53-58, 2008.

[3] Chidolue G. and Ramanandin B.; Upping Verification Productivity of

Low Power Designs; In the Proceedings of DVCon, pp. 3-10, 2008.

[4] Jadcherla S., Bergeron J., Inoue Y., Flynn D.; Verification

Methodology Manual for Low Power (VMM-LP); February 2009.

[5] Keating M., Flynn D., Aitken R., Gibbons A. and Shi K.; Low Power

Methodology Manual (LPMM) – For System-on-Chip Design; 2nd

Edition, Springer, 2008.

[6] MVRC from Synopsys,

http://www.synopsys.com/TOOLS/VERIFICATION/LOWPOWERVERIFIC

ATION/Pages/MVRC.aspx

[7] Leda from Synopsys,

http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Le

da.aspx

[8] VCS from Synopsys

http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.a

spx

[9] System Verilog from Accellera; http://www.systemverilog.org/.

http://www.synopsys.com/TOOLS/VERIFICATION/LOWPOWERVERIFICATION/Pages/MVRC.aspx
http://www.synopsys.com/TOOLS/VERIFICATION/LOWPOWERVERIFICATION/Pages/MVRC.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Leda.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/Leda.aspx
http://www.systemverilog.org/

