
 1 

 

Abstract— UPF2.0 [1], with its ability to define power states and 

corruption semantics on them, has made low power verification 

flows powerful. This powerful flow provides more flexibility to a 

verification engineer to define sophisticated assertions, enabling 

them to isolate more low power issues in the design. The 

traditional approach of verifying designs relies on functional state 

space localized in various blocks, for example an SoC. However, 

when verifying low power designs, power states transcend 

hierarchies and are at a Chip Level. Converting existing 

functional verification platforms into a powerful power aware 

one is time consuming and error prone. It is not scalable with the 

number of power domains and with the number and types of low 

power sequencing checks that one must ideally perform. 

Reconciling the architecture-wide low power issues and the 

functionally self-contained design blocks should be the first step, 

before one can design or conceive a verification flow. Normally, 

we end up generating a huge set of assertions with very little 

contextual understanding of the design, both in terms of 

functionality or power. Even if the context is understood, the 

process of conceiving assertions is time consuming.  

In this paper, we will highlight how traditional verification flows 

based on an assertion library framework falls short in low power 

design verification. To address this issue, we will demonstrate 

how a static verification tool and UPF 2.0 can be leveraged to 

conceive powerful low power assertions that are context sensitive, 

resulting in effective low power verification flows. Until now, the 

static tools were typically utilized for language semantic checks 

and structural low power checks. However, we will broaden the 

scope of static tools and extend it to formulating verification 

methodologies. We will deal with aspects as to how the assertions 

can be statically generated and how the coverage of various 

assertions (generated or otherwise) can be organized.  

 
Index Terms—Low Power Verification, Static Verification  

I. INTRODUCTION 

A. Low Power Verification 

The demand for low power verification led to the 

formalization of UPF that allows the specification of power 

semantics that was not possible in HDL. There have been 

static verification offerings at the HDL level, and low power 

verification space also provided its own solution. These checks 

were in addition to linting and other formal verification 

 
 

techniques. With the formalization of UPF 2.0, and most 

notably the add_power_state semantic, the ability to specify 

the power states in the design became much more powerful. 

This has opened many opportunities to verify more corner case 

scenarios in a standard way.  

 

So far the approach adopted to verify a low power design 

[2][3][4][5] is to use the low power assertion library, which is 

packaged with a simulator. The library contains various 

assertion IPs, which would assert when any illegal low power 

sequencing occurs in a design. This helps the verification 

engineer to discover low power issues in the design. However, 

as the design becomes more complicated, the number of 

different assertion IPs active, lead to lot more assertions 

getting fired during verification and the number can explode. 

The adopted approach for this scenario is to divide and 

conquer where the assertion IPs are used to verify in a bottom-

up approach. The block is white box tested with the assertion 

IP and then is black/grey boxed when integrating into a higher 

hierarchy. This effectively manages the situation. But we 

believe this process can be improved upon by exploiting static 

verification and UPF 2.0, more effectively. Low power 

verification is not only a functional issue, but it is a structural 

issue as well. The dependency between design elements does 

not respect the hierarchical boundaries, and the issues do not 

get contextualized in a bottom-up verification approach.  A 

static tool can provide better intelligence to the verification 

engineer about the cross hierarchy dependency between design 

elements. It is imperative that with increasing design 

complexity, an engineer must have better clarity across 

different reports generated by various tools. For this we adopt 

the approach of aligning all the tools, simulator in conjunction 

with all static tools, and achieve a clear set of objectives to 

ensure a bug free design.  

 

 

Different static verification tools in conjunction with the 

simulator do not have a standard semantic framework. We 

need to correlate different tool runs to align with a global 

verification objective. For example, the static tool that 

specializes in clock domain crossing [6] may not be aware of a 

power context understood by a low power rule checker [7]. 

This makes any issue that is related to both CDC and low 
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power difficult to detect. Also, with the power states defined 

on a domain using the add_power_state of UPF2.0 (henceforth 

referred to as “power states”), we might want to verify specific 

relationships among Power States of various domains, 

functional properties, assertions, and the design rules of a 

static tool. The multitude of properties/assertions/rules would 

complicate the verification process, unless there is a way to 

manage them. As explained earlier, the bottom-up approach 

may not help in isolating design issues upfront. The ability to 

correlate different properties (static and functional) will help 

contextualizing different issues in the design. Having this 

correlation will ease the debug process, bringing down the 

turnaround time, as any issue detected has a clear context to 

debug with. 

B. Static Verification 

Before we proceed further, let us know the definition of Static 

Verification. 

 

Definition 

 Static Verification is a verification of all specified desirable 

invariant properties and absence of all specified undesirable 

invariant properties in both the structure and functionality of 

the design. 

 

The most significant statement to make here is about a 

property being “invariant”, which means a property that 

always “makes sense”. A property is invariant, only if the 

context of the property and the property itself is made clear in 

its specification. This is however not true, as we have 

witnessed in the evolution of low power verification. An HDL 

assertion is invariant when we verify the design in a functional 

context. However, with the advent of low power verification, 

an HDL assertion has to take into account a power context in 

order to make sense. The HDL semantic space has not kept up 

with the power semantics required to verify the design, in the 

context of low power. As a result, the HDL assertion makes 

sense in context when the logic block is fully powered on, and 

does not make sense when the block is powered off, the 

property ceases to be an invariant. A static property asserted 

by one tool can also cease to be an invariant when some other 

static property is asserted by another or the same tool. What 

this means is, unless the static properties of various tool are 

contextualized, it will be very difficult to make sense of the 

health of the design given the multitude of report logs.  

C. Objective 

The objective of this paper is to describe a methodology, 

wherein the various HDL assertions, static rules, and low 

power states are contextualized. Once this is done, this 

methodology provides semantics to formally describe various 

verification objectives that would help determining the root 

cause of design issues quickly. We can clearly demonstrate the 

state of a verification cycle on a given design, by this 

methodology, in terms of quality, coverage, and signoff.  

II. HIGH LEVEL LOW POWER VERIFICATION FRAMEWORK 

We introduce High Level Low Power Verification (HLLPV) 

Framework which is a holistic approach to address low power 

verification flows and enable non low power verification flows 

into power-aware ones. The framework brings together 

assertions from HDL specification, simulation tool, power 

states, and the static rules of different point tools to ensure that 

the low power flow is complete. We do this by specifying a 

“Verification Objective” in terms of logical, low power states, 

and the static rules. Thus, we introduce the notion of a 

power_operation. The following code example introduces 

various components that together constitute a 

power_operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Definition:power_operation 

A named power_operation has a start condition and a 

terminating condition. The start and terminating condition can 

be a logical/low power property or a start/stop of other 

power_operations specified.  

One can consider power_operation to denote the 

advancement of verification objectives during verification. 

However, the onus is on the verification engineer to design and 

specify the power_operation in such a manner, so that the 

resulting power_operation sequence completes the global 

verification objectives. power_operation will be a means of 

power_operation <Name> 

    on_definition {domain_list}  

    off_definition      {domain state list} 

    complete_upon  {all_on |domain state expression | all_off} 

    apply_when    -domain_state {<domain state list>}   

                    –operation_completed {<power operation list >} 

    don‟t_apply_when  {<list of domain expression>} 

    property_with {<domain state expression>,  

          <domain state expression>) 

    property_after  {<domain state expression>, 

 <domain state expression>} 

    property_before {<domain state expression>, 

 <domain state expression>} 

    property_until {<domain state expression>, 

 <domain state expression>} 

    assert_on {<domain state expression>} 

    user_property_when -state<domain state expression>  

                         -checker  <checker file name>  

                         –bind_to <domain instance> 

    user_assert_when –state <domain state expression>  

                                   -assertion <assertion file> 

                                   -bind_to <domain instance> 

    disregard_user_property_when –state <domain state 

expression>  

                         -checker  <checker file name>  

                         –bind_to <domain instance> 

    disregard_user_assert_when –state <domain state 

expression>  

                         -checker  <checker file name>  

                         –bind_to <domain instance> 

   assert_on_rule –rule <rule name> -tool <tool name> 

   cover_rule –rule <rule name> -tool <tool name> 

end_operation     

 

 



 3 

prioritizing and categorizing high level design states into 

verification objectives.  

A. Definition: on_definition  

on_definition constitutes a set of domains or UPF power 

states of a domain that are to be considered powered-on in the 

power_operation.  The rationale behind this semantic is that 

one can define what a domain being powered really means. 

off_definition is the converse of on_definition in a 

power_operation.  

 

With this, we can define states that are neither ON nor OFF in 

a given power_operation, or in other words irrelevant to the 

verification objective being verified.  

 

B. Definition: apply_when  

apply_when captures the start condition for a 

power_operation to become active. A start condition can be a 

Boolean expression of power domains states whose ON/OFF 

is defined using the on_definition/off_definition of the 

power_operation or when other specified power_operation 

are active or have terminated.   

apply_when specifies the dependency of the current 

verification objective of a named power_operation against 

others or certain power state conditions. 

 

C. Definition: complete_upon  

complete_upon is used to specify the UPF domain state 

condition, upon which the power_operation would terminate.  

Having achieved this, the verification engineer can use the 

terminating condition of the power_operation to define new 

ones. 

 

The following definitions will be used to capture verification 

objectives in terms of power states, HDL specified 

properties/assertions, and the static rules of various 

participating tools. 

  

D. Definition: property_*  

property_with is used to specify two power state expressions 

that have to be true together. property_after is used to specify 

a power state expression that has to be true, after certain power 

state expression is true. property_before is used to specify a 

power state expression that has to be true, before certain other 

power state expression is true. property_until is used to 

specify the power state expression that has to be true, until 

certain other power state expression is true. These definitions 

are primarily used to define relationship between the power 

states specified in the UPF. 

 

E. Definition: user_*_when  

user_property_when is used to specify the validity and 

binding of a user-defined checker, based on an expression of 

domain power states that are relevant in a given 

power_operation. user_assert_when is used to specify the 

validity and binding of a user defined assertion, based on an 

expression of domain power states that are relevant in a given 

power_operation. disregard_user_property_when is a 

converse of user_property_when, and so is 

disregard_user_assert_when is of user_assert_when. 

 

Binding and instrumenting of user specified properties and 

assertions are powerful ways of laying down verification 

objectives. This is the heart of the framework and the payload 

that any power_operation carries within. Various 

power_operations can be specified by individual verification 

teams, all of which can be sorted into a sequence of multiple 

power_operation using the apply_when and complete_upon 

semantics. Together, all the power_operations achieve the 

global verification objective. Depending on how the 

power_operations are designed, multiple power_operations 

can be relevant at the same time. A power_operation 

execution can be gated by other power_operation(s). In a 

single simulation run, various power_operation(s) may be 

active. Depending on which leaf level assertion gets fired, the 

relevant power_operation against which the assertions are 

specified has to be debugged. Hence, with all the noise 

generated by the Simulator, the power_operation can 

correlate all the assertion and properties. With multiple teams 

defining power_operation or power_operation sequence 

independently, it leads to more debug parallelism. 

 

F. Definition: assert_on_rule 

assert_on_rule is used to associate a static rule that is 

undesirable, when verifying a given power_operation. 

cover_rule is the converse of this semantic, wherein the static 

rule is necessary to achieve the verification objective of the 

power_operation. 

III. FLOW DESCRIPTION 

Figure 1 - Various Stages of Execution Cycle in the HLLPV 

Framework.  

 

 
 

A. Specification 

The verification engineer would use the semantics defined in 

Section II to describe verification objectives and their 
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dependency. We term this as the High Level Low Power 

Verification (HLLPV) intent. Once this intent is specified, the 

HLLPV Engine (shown in Figure 2) will translate the 

specification into a Verification flow. 

B. Translation  

For each verification objective, the tool will generate 

customized scripts for each point tool to run relevant checks.  

C. Database (DB) Generation  

The point tools execute the checks and dump their respective 

DB in an SQL compliant format. The existing point tools, if 

not SQL complaint, will use an SQL adaptor to dump SQL 

compliant reports. The DB generation is incremental and re-

usable. The DB Generation will also honor the 

power_operation dependencies laid by the verification 

engineer.  

D. Correlation 

The DB from various point tools are correlated to present a 

unified coherent view for analyzing a verification objective.  

  

E. Analysis 

Analysis is done on a correlated view using a Query 

framework, which works over the DB with generic set of 

queries written on an SQL engine. Each verification goal is 

validated with the correlated view. In case of a violation, the 

verification engineer will be able to connect to most debug 

information using these generic queries. The engineer can 

query the tool using a .lpq (Low Power Query) file, and can 

also perform a “what-if” analysis, correlate results with respect 

to previous results, and isolate the root cause. 

 

Figure 2: HLLPV Framework   

 

 
 
 

IV. CASE STUDY 

Through our case study, we would demonstrate how a design 

issue is isolated in a cell phone design. The high level Design 

State Machine (DSM) for this design is shown in Figure 3. 

Figure 3: High Level Design State Machine 

 

 
 

 

This state machine is created by the designer, and given to the 

verification engineer for verification. The framework detected 

a design issue, which is described as follows: 

 

The voice transmission domain (D_VOICE_TRANSMISSION) is 

powered-off in the “Stand-by” and “Ringing” state. The 

D_VOICE_TRANSMISSION domain has to be powered on when 

the design is in the “Busy” state. The power switch enable 

signal sig_pwr_transmission for 

D_VOICE_TRANSMISSION domain is getting generated by the 

D_SETUP domain. The isolation enable signal 

sig_iso_setup to the D_SETUP domain should be set to 

logic „1‟, before the power switch enable signal 

sig_pwr_transmission reaches the 

D_VOICE_TRANSMISSION domain.  But sig_iso_setup got 

set to „0‟, and thereby sending the wrong value („0‟) through 

sig_pwr_transmission to the D_VOICE_TRANSMISSION 

domain. Hence, D_VOICE_TRANSMISSION domain did not 

power on when it is supposed to be, resulting in X propagation 

happening from the outputs of this domain, as the isolation at 

the output of the domain was set to 1 (as per the correct 

functionality). This is shown in Figure 4. There were 

functional assertions within the D_VOICE_TRANSMISSION, 

and they all failed. 
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Figure 4: Corruption of D_VOICE_TRANSMISSION 

 

 
 

 

We exploit the add_power_state construct from UPF 2.0 to 

define intended state semantic for each of the domains. 

 

Following add_power_state syntax is defined in the UPF:   

 
add_power_state D_SETUP -state {ON_MODE –

supply_eq {VDDI_setup == `{FULL_ON,1.5}} –

state {RUN_MODE –logic_eq sig_iso_setup} 

 

This syntax defines that the domain D_SETUP is ON when the 

supply VDDI_setup is in FULL_ON state, and in RUN_MODE 

when the isolation signal is „1‟. 
 

 

add_power_state D_VOICE_TRANSMISSION –state 

{STDBY –supply_eq {VDDI_VT == `{OFF}} –state { 

ON_MODE –logic_eq sig_pwr_transmission} 

 

This syntax defines D_VOICE_TRANSMISSION is in STDBY 

with supply being OFF, and in ON_MODE when the power 

signal sig_pwr_transmission is set to 1. 
 

add_power_state D_RECEIVER –state {ON_MODE –

simstate NORMAL} –state {SLEEP_MODE –logic_eq 

sig_setup} 

 

This syntax defines the SLEEP_MODE and ON_MODE for 

D_RECEIVE. 

 

All the above UPF add_power_state constructs capture the 

dependency of various signals on the respective domains, as 

shown in Figure 4. 

 

Although, add_power_state semantic helped in depicting state 

of the domain in the design, it still did not portray any 

compliance to the DSM shown in Figure 3. To specify the 

dependency of various domain states and capture the intent of 

DSM for verification objective (Vg), following HLLPV intent 

is defined.   

 
power_operation u_standby 

     apply_when –domain_state {!D_RECEIVER} 

     on_definition {D_RECEIVER.SLEEP_MODE} 

     complete_upon { D_RECEIVER.ON_MODE} 

end_power_operation  

 

This power operation defines when in “Standby” state the 

D_RECEIVER domain should be in SLEEP_MODE and when this 

domain goes to ON_MODE, the operation is considered 

complete. 

 
power_operation u_ringing  

     apply_when –operation_completed u_standby 

      on_definition {D_RECEIVER.ON_MODE} 

      property_after {D_SETUP.ON_MODE, 

D_RECEIVER.ON_MODE}    

end_power_operation 

 

This power operation defines that the operation starts only 

when the u_standby power operation is complete. Also, in 

this power operation, D_RECEIVER should be in ON_MODE and 

that the D_SETUP should be in ON_MODE, only after 

D_RECEIVER is in ON_MODE. 

 
power_operation u_busy  

     apply_when –operation_completed u_ringing 

-domain_state {D_VOICE_TRANSMISSION.ON_MODE} 

     property_after { 

D_VOICE_TRANSMISSION.ON_MODE, 

D_SETUP.RUN_MODE} 

     assert_on_rule –rule {WRONG_SENSE} –tool 

MVRC 

     user_property_when –state 

{D_VOICE_TRANSMISSION.ON_MODE} –checker 

vcs_checker.sva –bind_to 

{D_VOICE_TRANSMISSION} 

end_power_operation 

 

This power_operation defines that it will start only when the 

u_ringing operation is complete and should start also 

satisfying that D_VOICE_TRANSMISSION domain is in 

ON_MODE. This operation is also associated with the MVRC 

rule WRONG_SENSE. Figure 5 displays the relationship among 

the power_operations defined. 

 

Figure 5: power_operations state machine 
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Figure 6: HLLPV flow in Case Study 

 

 
 

The HLLPV engine generates a customized script for all the 

point tools used, in our case VCS [8] and MVRC, and also the 

powerstate.sva assertion file. The powerstate.sva file contains 

the power state assertions defined in the .hllpv file, 

instrumented in the form of a System Verilog Assertions 

(SVA) [9] which is understood by VCS. In order to debug 

from a functional point of view, traditionally, one has to trace 

back from all the outputs that have „X‟ propagation, instead, 

WRONG_SENSE rule in MVRC has pointed out the root cause of 

the above issue- “The power switch signal powering on the 

D_VOICE_TRANSMISSION domain has a WRONG_SENSE, 

because of the powering off of D_SETUP domain”. The 

Correlation Engine constructs a coherent view using the VCS 

and MVRC DBs, and provides reports for the status and 

coverage of Vg. This is the advantage that HLLPV brings to 

the low power verification. Figure 6 shows the flow used while 

achieving Vg.  

 

The .lpq file (Figure 6) includes all the queries we had 

pertaining to status of Vg. We queried for the status of various 

power_operation formulate quality, coverage, and signoff 

metrics for the design. Thanks to dependencies defined among 

power_operations.  

 

Table 1: Reference designs verification results 

 

Design 
# 

Domain 

#  

Known 

Issues 

# Root 

Issues 

caught by 

MVRC 

# Root 

Issues 

caught by 

assertions 

in VCS 

# Root 

Issues 

caught by 

HLLPV 

Ref_design1 5 37 10 20 7 

Ref_deisgn2 9 63 21 30 12 

 

 

 

Our flow was used to validate some reference designs. The 

results of the respective runs are shown in Table 1. The table 

highlights the value that HLLPV brings to the low power 

verification. It represents issues, which were discovered using 

MVRC, VCS, and HLLPV. The root causes were isolated 

faster than the traditional flow, since we could correlate both 

the VCS simulation data and the MVRC logs. 

V. CONCLUSION 

In this paper, we have demonstrated the HLLPV framework. It 

can leverage different Static Verification tools in conjunction 

with the Assertion Based Verification flows, in the context of 

UPF2.0 (add_power_state). This provides a holistic solution to 

the verification problem of low power designs. The framework 

also provides the ability to define verification objectives that 

can be used to define metrics in terms of quality, coverage, and 

signoff. In doing so, it brings down the turnaround time for 

fixing a design issue and effectively portrays the accurate 

status of the verification exercise. 

VI. FUTURE WORK 

Our future goal is to incorporate other static verification tools 

in HLLPV framework. We are looking into the potential value 

at the Translation stage of HLLPV intent, wherein we critique 

and optimize the global structure of various power_operations 

defined. 
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