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Abstract—Power management is a critical feature of today’s 

SoCs, almost as important as functionality.  IEEE 1801™-2009 

UPF enables specification of the intended power management 

infrastructure for an SoC to enable early verification and to drive 

implementation.  Just as the complexity of an SoC demands a 

well-structured hierarchical approach to design and verification 

of its functional specification, the complexity of the power 

management infrastructure for an SoC similarly requires a 

hierarchical methodology that enables separation of concerns 

and supports partitioning, parallel development, and reuse. 

    In this paper, we propose a hierarchical methodology for the 

use of IEEE Std 1801™-2009 UPF (aka UPF 2.0) for the 

specification of power intent for low power SoCs.  This 

methodology enables verification at the IP block level, 

hierarchical composition of complex system-level power intent 

specifications from IP block power intent specifications, and 

automatic consistency checking to ensure that IP block 

constraints are met by the system in which they are used.  The 

proposed methodology is illustrated in the context of a complex 

SoC design architecture that was used to validate the concepts. 

 
Index Terms — Functional Verification, Hierarchical 

composition, IP Reuse, Low Power, Methodology, SoC 

Integration, UPF.  

I. INTRODUCTION 

A. Power Aware Design 

Power has become a critical aspect of electronic design.  

For mobile systems, each new generation must offer new 

features but at the same time must run longer on a single 

battery charge.  For non-mobile systems, minimizing heat and 

therefore cooling costs dictates ever increasing control over 

power consumption.  The most recent process technologies 

require aggressive power management strategies that include 

not only clock gating but also power gating and use of 

multiple voltages and clock frequencies.  These strategies can 
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affect functionality if not executed correctly, which leads to an 

increasing need for power aware verification. 

Power aware design involves partitioning a design into 

separate regions, or power domains, such that each domain 

can have its power supplies managed independently.  At any 

given time, only a subset of the full system may be powered, 

and a given portion may operate at different voltage and 

consequent performance levels depending upon the operating 

mode of the system.  The ability to control power consumption 

based on functional requirements of the system enables power 

optimization for typical usage scenarios.   

Power management is imposed on top of the normal 

functionality of the design in a manner that is transparent to 

the user.  The power management infrastructure can be 

thought of as a layer of logic integrated with the design logic 

that controls power supplies for each separate power domain, 

mediates the interfaces between power domains to ensure that 

differences in power state do not interfere with functionality, 

and orchestrates the transitions between power states to ensure 

that system state information is preserved where required or 

reinitialized as needed. 

While power management logic historically has been added 

to the design late in the flow, the increasing need for power 

aware verification has led to methods for specifying power 

intent, i.e., the intended power management infrastructure, 

much earlier.  A power intent specification is essentially a 

virtual definition of the power management logic that will be 

added in the implementation process, provided in a form that 

can be implicitly integrated with an RTL description in order 

to verify the RTL specification together with the planned 

power management infrastructure. 

B. Power Intent Specification 

IEEE Standard 1801
TM

-2009 Unified Power Format (UPF) 

[2] enables specification of power intent.  Based on Tcl, UPF 

defines concepts and commands required to describe power 

management requirements for IP blocks, the architecture of 

the power management infrastructure for a complete system, 

and even the implementation of power distribution networks.  

It is used both for early verification of power intent and to 

drive implementation of the power management infrastructure. 

UPF defines the following concepts and terminology for 

specification of power intent: 
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 Power domain: a collection of library cells and/or 

HDL module instances that typically share a common 

primary supply and typically are all in the same power 

state at a given time. This collection of instances is 

referred to as extent of a power domain. 

 Power state: an abstract representation of the voltage 

characteristics of a power supply, and also an abstract 

representation of the operating mode of the elements of 

a power domain or of a module instance (e.g., on, off, 

sleep). 

 Isolation: logic that mediates the interaction between 

logic elements that are in different power states, to 

protect elements that are powered up from being 

adversely affected by elements that are powered down. 

 Level shifting: logic that mediates the interaction 

between logic elements that are powered up at different 

voltage levels, to ensure that logic values generated by 

one element at one voltage level are correctly 

translated to the appropriate voltage level of the other 

element. 

 Retentionlogic that enables the state of selected state 

elements to be saved when a domain is powered down 

and restored when the domain is powered up again. 

 Supply net: an abstraction of a power rail that provides 

power to elements of a domain. 

 Supply set: an abstraction of a collection of supply 

nets that, in aggregate, provide all the supply 

connections required by a given logic element. The 

individual nets are referred to as functions of a supply 

set. 

 Simstate: the simulation behavior associated with a 

state added on the supply set. This behavior is one of 

the simstate values specified in UPF and semantics 

associated with those simstate values are applied 

during simulation, when the power state having that 

simstate behavior is active. This behavior is applicable 

to design instances which are connected to the supply 

set. 

 Switch: a power management element that controls 

whether a supply net is connected to a supply source. 

 Logic net: an abstraction of a control signal that 

controls the operation of isolation, retention, or power 

switching logic. 

 Driver supply: the supply set providing power to the 

logic that is the ultimate source (driver) of a net. 

 Receiver supply: the supply set providing power to the 

logic that is the ultimate sink (receiver) of a net. 

 

A UPF specification defines the power domains, supply sets 

and power states of a design and specifies strategies for 

inserting isolation, level-shifting, and retention logic between 

and within power domains to ensure that the design will 

function correctly in all of its operating modes in the context 

of the power management infrastructure.   

C. The Importance of Methodology 

The concepts, capabilities, and features provided by any 

standard language for electronic design, whether it be Verilog, 

VHDL, SystemVerilog, or UPF, are necessary but not 

sufficient.  The way in which those concepts, capabilities, and 

features are used in practice is just as important, if not more.  

In addition to the features of UPF, a well-defined 

methodology for power intent specification using UPF is also 

needed to ensure efficient development, interoperable tools, 

and reliable results from a low power design and verification 

flow. 

A key consideration in the use of UPF is how to structure 

the power intent specification to leverage the hierarchical 

structure of the design.  While it is possible to describe the 

power intent for a complete system in a flat manner, all in one 

file, a hierarchical approach allows for partitioning of a power 

intent specification so that different portions can be 

constructed at different times, or by different engineers or 

teams.  Hierarchical structuring also leads to reuse of 

components of the power intent specification. 

The IEEE 1801
TM

-2009 UPF specification defines language 

features that can be used to support a variety of 

methodologies.  However, the specification does not define 

any one methodology in detail.  Users have been left to work 

out for themselves what methodology to adopt when using 

UPF.  In this paper, we propose a particular methodology that 

supports hierarchical specification of power intent and reuse 

of IP-level power intent specifications. 

II. REQUIREMENTS 

A. General Motivation 

Chips today are highly complex and application specific. 

Ever-increasing design complexity and shrinking process 

nodes demand complex power management strategies. This 

increased design effort coupled with strict time-to-market 

requirements require a proper hierarchical approach, one 

that supports separation of concerns, parallel development, 

and reuse of previously designed, optimized and verified 

design components. 

There is a well-defined methodology prevalent in the design 

industry which is widely used as SoC methodology. This 

addresses the functional aspect of a system, but the 

complexity, variety and impact of power management on the 

functionality of a system demands a similar methodology for 

specifying, verifying, and implementing Power Intent. 

Formats for expressing power intent have been available for 

some time now, but there seems to be a general lack of 

methodology for the use of those formats. 

The methodology for expressing power intent needs to 

inherit the benefits of SoC methodology, which are – 

reusability and hierarchical composition. Along with that 

they need to be general enough to cater to a variety of power 

management demands for different sub-components. 

It is also important for the methodology for Power Intent 

specification to empower tools to automate a lot of redundant 

tasks, perform efficient integration and provide consistency 
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checks, hence reducing the chances of design bugs and 

functional failures related to power management. 

B. IP based development [1] 

Intellectual Property (IP) is a critical component for SoC 

based design methodology. In order to achieve lesser time to 

market it becomes necessary to reuse an existing IP by 

integrating it in their chip and hence improving the overall 

productivity. An IP block is a predesigned component that can 

be used in a larger design. There are two major kinds of IP. 

Hard IP is a predesigned layout with all power 

management functionality built into the IP itself. A large 

number of memories are delivered as hard IPs. Another 

example of hard IPs is analog and mixed signal components 

which are directly integrated in SoCs, e.g. low-dropout 

regulators (LDOs), DDR PHYs, USB PHYs, PLLs etc. 

Soft IP comes as a synthesizable module in hardware 

description languages (HDL) such as SystemVerilog or 

VHDL. Soft IP is designed to be implemented using logic 

synthesis and place-and-route tools. As such, it is more easily 

targeted to a new manufacturing process, perhaps at some cost 

in performance, power, and area. A surprising number of large 

blocks, including CPUs, DSPs and specialized hardware 

accelerators are delivered only as soft IP. 

C. Verification Models for IP 

In order to verify the functionality of IP blocks, vendors 

provide verification models for their IPs. The verification 

models allow simulation tools to simulate the IP in the SoC 

environment. The verification models come in different 

flavors. 

Behavioral verification models describe functional 

behavior in a way that is simulatable but not synthesizable. 

They are typically expressed in a hardware description 

language and may include the power intent behavior. In some 

cases, the behavior can also be expressed in other languages 

such as C/C++ or analog hardware description languages such 

as Verilog-AMS, VHDL-AMS, and Spice. In such cases, they 

also provide an HDL interface to allow integration of these 

models into the SoC environment. These models are 

associated with Hard IP blocks. 

Synthesizable verification models describe the 

functionality of IP in terms of synthesizable HDL. The power 

intent is typically not present in the verification model but is 

expressed in terms of a UPF specification. This allows 

designers to use the same verification model at different 

technology nodes with different power management. These 

models are associated with Soft IP blocks. 

D. Power Intent Specification 

The power intent of a System on Chip (SoC is typically 

expressed separately in terms of Unified Power Format (UPF), 

an IEEE standard for the specification of power intent [2]. 

UPF provides a consistent, comprehensive way to express the 

power intent without modifying the HDL description, thus 

enabling independent verification of the design’s power 

management architecture separate from verification of the 

design’s functionality. Because SoCs are implemented at 

various technology nodes and each node may have its own 

unique power management requirements, it is important to 

express power intent in a way that allows the power intent to 

change without modifying the functional behavior of the SoC. 

This is easily achieved by UPF. 

In the absence of any well-defined methodology, the power 

intent is expressed for the full SoC as a flattened view. 

Considering the complexity of an SoC design with different 

IPs, which can be hard or soft, the task of expressing power 

intent can be very tedious and error prone. Also, in the case of 

hard IPs, the designer has to make some assumptions of the 

power intent of the IP and rely on the complete integrated 

simulation for verifying the correctness of power intent.  

E. Methodology for Power Intent Specification 

Considering the benefits of SoC methodology and IP based 

development, it becomes important to express power intent in 

such a way that it is aligned with the overall methodology. 

The methodology should cater to the following: 

Reuse of power intent during the SoC development. 

Hierarchical composition of power intent of IPs is easily 

achieved with effective integration in the SoC environment. 

Module based development of IPs is possible, without the 

knowledge of how the IP will be integrated. This allows for a 

potential reuse of power intent during development and across 

all variants of the IP – hard or soft implementations. 

Automatic checking of constraints during integration of IPs 

should be possible. 

The present UPF standard is powerful enough to pave the 

way for such kinds of methodology to exist for power intent 

specification. The standard provides various commands, 

which when used properly, allow tremendous flexibility in 

development of IPs and integration in SoCs. In this paper we 

will describe and demonstrate a methodology for Power Intent 

Specification and highlight the capabilities of UPF used in this 

methodology. 

III. THE METHODOLOGY 

The power intent specification for an IP block is divided 

into two components.  

The Power Intent Interface contains information about the 

power management interface of the IP. This includes supply 

interface, control interface and the constraints related to IP 

block power management that are checked during integration. 

The power intent interface is the same for different models of 

the same IP block (e.g., hard or soft IP).  

The power intent interface packages the power intent for an 

IP block in a way that makes it easily reusable in a larger 

system.  Integration of an IP block into a larger system 

involves loading and connecting parts of its power intent 

interface. 

The Power intent body contains information about the 

actual implementation of the IP block’s power management. 

The power intent body may be different for different models 

of the same IP block (e.g., hard or soft IP). The power intent 

body content may also depend on whether a behavioral model 

of the IP block or a synthesizable model is being used. 
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The clean and intuitive interface, well-defined integration 

process, and variable power intent body result in an effective 

methodology that is scalable and reusable in a complex SoC 

environment. 

IV. POWER INTENT INTERFACE 

The Interface is a critical part of any IP. It provides linkage 

of the IP with the external environment and hides the internal 

workings of the IP. A proper interface definition is the key to 

good integration of the IP in a larger System.  

An important characteristic of an interface is that it is 

constant for a particular IP throughout the design flow. 

Traditional HDLs have a well-defined syntax and mechanism 

to define the interface of an IP in terms of module ports. 

Because the power intent of the IP is not modeled in HDLs, it 

is necessary to define the power interface of an IP in UPF. For 

consistency with the HDL definition, an IP’s power intent 

interface must not depend on anything not in the HDL 

interface definition. 

The power intent interface of the IP is defined in terms of 

the following information: 

A. Top-level Power Domain 

The first part of defining the interface is to define a top-

level power domain that represents the entire IP block. This 

power domain becomes the starting point of the interface to 

the larger system. All the other sub-components of the 

interface are contained within this power domain. 

B. Input Supplies 

Defining the supply interface is the major and most 

important part of defining the power interface of the IP. Every 

IP requires power supply connections. In current designs, the 

IPs exhibit complex power management and hence require 

multiple kinds of supplies. Traditionally, this information is 

provided at a very late stage just before the implementation in 

the form of supply ports. However, the need for early 

verification of power management requires this information to 

be present at the RTL phase or even at the design phase. UPF 

provides an ability to abstract out the supply interface in the 

form of supply sets. This results in less burden on integration 

and fewer chances of incorrect supply connections, especially 

in cases where a lot of supply ports are connected to an IP. 

Supply sets simplify the interface of the system in several 

ways. First, it is easier to make connections explicitly using a 

supply set rather than making connections for each individual 

supply port. Also, using supply sets allows tools to make 

connections automatically without a need to create explicit 

supply ports/nets.  Supply set definitions also enable 

specification of supply constraints, which a tool can validate 

while making connections. This allows tools to catch any 

connectivity related errors early in the design cycle. 

UPF also defines supply set handles, which are effectively 

local parameters of an object (e.g. a power domain). These 

supply set handles allow a designer to defer creation of actual 

objects and work with just abstract objects without worrying 

about the actual details of the implementation. The successive 

refinement concept of UPF allows easy implementation of 

supply connectivity. Tools can ensure that the implementation 

step does not violate the power intent specified during the 

design phase. In our methodology, we use these handles to 

refer to input/output supply sets for interface power domain. 

One of the benefits of using these handles is that they are 

defined in the namespace of the power domain to which they 

belong, hence avoiding any possible chance of name clashes. 

C. Input Supply Constraints 

An IP block will operate correctly only if each of its input 

supplies provides power in a specific voltage range.  It is a 

good practice to capture these voltage requirements in the 

form of constraints on the input supplies, so the constraints 

can be checked by tools during integration. Specifying voltage 

constraints also provides better documentation for the IP 

interface and ensures that the designers can develop the IP 

independently without worrying about the global picture. 

Supply constraints are expressed in UPF by using supply 

expressions to define power states of each input supply set. 

D. Control Inputs for Power Management 

Some of the power management cells in the IP require 

inputs to control their operation. These include the control 

signals for power switches, isolation control signals, and 

retention control signals. Since the HDL description is 

typically written without power management and therefore 

does not contain these special cells, their control inputs often 

need to be added via the UPF specification.  It is appropriate 

to define these control inputs as part of the power interface. 

E. Internal Supply Constraints 

Many IPs contain embedded power supply generators. 

These generators modify an input supply to cater to the 

specific power demands of the IP. One type of generator is a 

logical switch that gates power to the IP. Another type is a 

special cell called a low dropout regulator (LDO) that scales 

the input voltage to various levels.  This type is typically 

required for Dynamic Voltage and Frequency Scaling (DVFS) 

techniques. The operation of these internal supply generators 

may have an effect on the state of the system containing this 

IP. Also, there could be ports on HDL interfaces which are 

powered by these supplies and hence the IP integrator may 

require these supplies. As a result, the constraints and supply 

set corresponding to these internal supplies are a part of the 

Power Interface of the IP.  

F. Output Supplies 

If the internal supplies need to be output outside of the IP, 

then they are connected to supply set handles on the top-level 

power domain so that they are visible to the external 

environment. Connecting these supplies to power domain 

supply set handles provide a consistent mechanism for the IP 

integrator to connect output supply sets in the same way as is 

done for input supplies. 

G. Output Power States 

Power states of the IP block as a whole are an important 
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part of the power intent specification. They indicate how the 

functionality of the IP is related to the power management and 

how they are affected by it. In a SoC environment, IPs interact 

with other IPs and play a role in determining the overall state 

of the SoC. As a result, defining the power states of an IP as a 

part of power interface is necessary for the composition of the 

overall system states. It is also important to determine the 

inter-dependencies between the power management of 

different IPs and the supplies connected to them. Another 

advantage of defining IP block power states as part of the 

power interface is that it encapsulates and hides the internal 

details of the IP’s power management yet presents sufficient 

constraints at the interface to allow tools to perform checking 

during the IP integration.  

In the power intent interface, the output system states are 

defined in terms of input and internal supply constraints 

providing an abstract representation of the power management 

of the IP. This is later updated in the body specification with 

additional details. 

H. Interface Logic Port Constraints 

The ports on the HDL interface are connected to logic that 

is powered by one of the supplies defined in the power intent 

interface of the IP (including the internal supply generators).  

IP designers need to ensure that a particular port on the 

interface of the IP is powered by the specific supply. This can 

be specified in the form of logic port constraints identifying 

the related supplies. UPF has ways to express the driver and 

receiver supply information for any port on the interface of the 

IP.  This constraint provides a consistency check when the 

power management behavior of the IP is modeled. Moreover, 

when a non-power aware behavioral verification model is used 

in simulation then the tools can use this constraint information 

to apply simstate behavior just at the interface to provide 

approximate power aware behavior. UPF also provides ability 

to specify clamping requirements when the interface port will 

be isolated, which can also be put into the power intent 

interface specification. 

I. Interface Port power management cell requirements 

In some cases, the IP requires isolation and/or level shifting 

logic on its ports, to ensure that it will work correctly when 

integrated with other IP blocks in a system. Hence, it is 

important to have isolation/level shifter and retention 

strategies specified in the power interface, so that the handles 

are available to the external environment for additional 

refinements. These strategies also relate logic control ports to 

cells that are a result of these strategies. 

V. IP INTEGRATION 

The integration of power intent of an IP into a larger system 

is similar to that involved for HDL instantiations and port 

connections. The difference lies in the fact that here the 

connections are made for power supplies and power 

management control signals. Additionally, relationships are 

defined between the power states at various levels, and 

constraints are checked for consistency. 

The typical steps are as follows: 

A. Load Power Intent Interface of IP 

The UPF language defines commands which allow another 

UPF file to be loaded in the current context and results in all 

the commands in the loaded UPF file to be executed in the 

context where the command is called. This allows the designer 

to partition the power intent so that it is manageable and 

reusable. The interface of the IP is loaded by the UPF of the 

larger system for an instance of the IP in that system. This 

creates the necessary power domain handles and defines the 

power constraints for that instance. 

B. Update the Extent information for IP 

Once the interface is loaded, then the scope information of 

the IP needs to be updated with the power domain of the IP. 

This is referred to as ‘updating the extent’. There are different 

ways of creating interface level power domains; this will be 

highlighted in later sections. Depending on the kind of 

methodology used, this step is typically combined with the 

first step and is performed in conjunction with “loading the 

interface of IP”. 

C. Connect Supplies 

Thereafter, the connection is made between the supply sets 

present in the parent IP and the supply set handles present in 

the interface PD of the IP. 

D. Update supply constraints 

After making supply set connections, the power states of an 

input supply set (which defines constraints) and the power 

states of the supply set associated with that input supply set 

are correlated.  A tool can automatically correlate power states 

with the same name.  The user can explicitly specify 

correlation between differently named power states. 

This step enables consistency checks to ensure that supplies 

provided to an IP block satisfy the constraints defined for 

those supplies. Any potential error between the connections 

can be caught at this stage.  For example, if a supply set 

operates at 1.2 Volts in a given power state, and that power 

state is correlated with an IP supply set handle power state that 

is constrained to 0.8V, this situation will be flagged as an 

error. 

E. Connect Control Inputs 

Lastly, the control signals in the larger system are 

connected to IP control ports or added to isolation/retention 

strategies of the IP block. 

VI. POWER INTENT BODY 

The power intent body contains the specification of the 

power aware behavior of the IP. The described behavior will 

be used in verification and implementation of the IP. It can be 

possible to have different power intent bodies for a single 

power intent interface. One possible scenario could be a 

different power intent body for hard and soft macro 

implementations of the same IP. In this case, the power intent 

interface remains the same and only the power intent body 
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changes depending on the kind of verification model provided. 

In order to completely encapsulate the power intent body, it is 

necessary to restrict the body specification to refer to objects 

created in the power intent interface of the IP. This ensures 

that the IP is self-contained. 

A. Internal Power Domains 

The first step in creating a power intent body is to define 

each of the power domains that comprise the IP block.   

B. Load and Integrate Sub-component IPs and internal 

supplies 

It could be possible that IP contains some instances which 

are themselves IP components. Hence, these IPs are integrated 

as described in the IP integration step. In this step, the power 

interfaces for internal supplies that are local to the IP block 

and not imported from the larger system are also loaded. 

C. Load the Body of Sub-component IPs and internal 

supplies 

Load the power intent bodies of the sub-system IPs and 

internal supplies to ensure that the power aware behaviors of 

these IPs are specified. 

D. Define simstate behavior of Internal Power Domains 

After loading all the sub-component IPs’ UPF files, define 

simstates for each power state of each supply set of each of the 

internal and interface power domains of this IP. These 

simstates define how simulation behavior should be affected 

by the state of power supplies at any given time. This also 

describes the operating capabilities of different states of the 

supply sets and power domains. 

E. Specify Isolation/Retention and Level Shifter 

Requirements 

Specify the different strategies for isolation, level shifting 

and retention for the interface power domain of each sub-

component IP instance in this block and for each internal 

power domain within this block. 

F. Specify Automatic connection semantics 

This step is specific to hard IP components with behavioral 

verification models that are power aware. These models have 

supply pins in the HDL interface itself and hence need to be 

explicitly connected with the supplies defined in the power 

intent interface. UPF’s automatic connection semantics is 

based on pg_type attributes on model ports, resulting in a 

fairly simple specification. 

G. Update Output Power States with Sub-component IP’s 

states 

Lastly, update the output power states of the interface 

power domain with the power states of sub-component IP 

instances. This is a crucial step in composition of IP in the 

sense that it links the power aware behavior of subordinate 

instances to the power aware behavior of the containing block. 

A number of consistency checks can be performed at this 

stage and potential problems in power intent specification can 

be flagged here. 

VII. CASE STUDY 

In order to validate this methodology, we applied it to a 

complex SoC design with the following characteristics: 

 Multiple levels of hierarchy 

 Multiple levels of integration 

o SoC level integration 

o Sub-System Level integration 

o Functional block ( hard/soft ) 

implementation 

o Internal supplies 

 

A. Example 

1) Introduction 

The SoC presented in Fig. 1 incorporates low power design 

features and techniques that are used extensively in mobile 

devices such as smart phones, tablets and notebooks.  We have 

chosen this example to exemplify the need and value 

proposition of hierarchical UPF 2.0/2.1 methodology for 

power intent definition and integration.  This methodology 

should follow the typical development verification and 

integration flow of an SoC, in which complex designs are 

defined by an architecture that integrates multiple functional 

subsystems, advanced connectivity, and an array of custom 

IPs and peripherals.  

 

 
 

Figure 1.  Example SoC 

 

Defining a flat UPF power intent file to be used for 

verification and implementation of an SoC is impractical, 

extremely expensive, and error prone. It is desirable to have an 

SoC system-level UPF that integrates subsystem UPF files, 

which can be developed independently in parallel, following 

the UPF system level power intent specification but defining 

subsystem specific low power strategies and techniques that 

can be abstracted from the SoC system-level UPF. This 

provides flexibility to subsystem design teams to implement 

independently the best low power strategies customized for 

each specific subsystem, eliminating the complexity of 

defining lower level low power strategies at the SoC UPF 

system level. 

The UPF hierarchical methodology addresses both soft IP 

and hard IP power intent modeling and integration 
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requirements. For complex hard IPs such as PLLs, IO Pads, 

LPDDR Phys, LDOs, SATA, and memories, it is desirable to 

have complete UPF power intent models that describe all the 

low power features implemented in the IP block.  This goes 

beyond the capabilities provided by Liberty files. Complete 

definition of supply sets and power states, isolation and level 

shifter strategies applied to the boundary ports, feed-throughs 

and analog ports specification, internally generated supply 

sets, and internal power gating can be described using hard IP 

UPF models. It is required that the UPF model of a hard IP to 

be a superset of the corresponding Liberty file with respect to 

the power intent description.    

The UPF model of a soft IP block is defined by the interface 

and body UPF file. The system level UPF can use the UPF 

interface definitions for each of the subsystems very early in 

the design process before those subsystems are actually 

implemented. This provides the flexibility to perform power 

aware verification of the SoC very early in the design stage 

with a simplified model and then later update the UPF body of 

the subsystems when the subsystem development is 

completed. In this way much more efficient divide and 

conquer verification strategies can be employed.  

Another major objective of the UPF hierarchical 

methodology is to enable portability of UPF files across the 

design process from RTL to GDS. We believe that the 

proposed methodology creates the framework for a 

hierarchical power aware design methodology that can be 

further enhanced by future updates of the IEEE 1801 standard. 

   

2) Structure of the design 

 

The SoC architecture comprises of the following: 

 SoC top level 

o Core_top (Figure 2) 

o IO_Sys (Figure 3) 

 Sub-Systems 

o Communication  sub-system 

o Multimedia subsystem (Figure 5) 

o Application processor 

 

 
Figure 2.  Core top 

 

As shown in Figure 2, the Core_top hierarchy integrates 

multiple functional subsystems, each of which has specific 

power and functional requirements. Core_top and Multimedia 

subsystems share the same primary supply set and contain 

memory instances that have dedicated supply sets connected 

to the periphery logic and the memory array. Communication 

and Application processor subsystems have dedicated external 

supply sets that allow independent dynamic voltage and 

frequency scaling for different usage scenarios. 

 

 
Figure 3.  IO System 

 

The LDO instantiated in Core_Top generates the internal 

supply net vdd3_ldo_int, which is the primary supply for the 

power management unit PMU block. 

The Communication subsystem integrates multiple soft IP 

blocks which are hardened during physical implementation. 

Extensive power gating and DCVS techniques together with 

isolation and retention strategies are used to optimize the 

standby and active power for this subsystem. Similarly the 

Multimedia subsystem integrates specific hardware 

accelerators such as high definition encoder/decoders and an 

encrypted high performance GPU.  

 

 
 

Figure 4.  Multimedia Subsystem 

 

Figure 5 shows some of the low power techniques that are 

implemented in the HD_decoder, such as power gating and 

retention flops together with isolation strategies employed for 

the output ports when the power gate is in the off state. Feed-

through ports driven by external supply sets and memory 

instances with dedicated supply sets for periphery and 
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memory array are part of the soft IP implementation.  

 

 
 

Figure 5.  HD Decoder 

 

B. Application of the Methodology 

Using a top down strategy we first defined the system level 

supply sets and power states and propagated these 

specifications to subsystem level interface UPFs.  Then, using 

a bottom up approach, we built the subsystem body UPFs and 

performed integration. For example, we defined in the UPF 

body the power domains and supply sets used in the 

HD_decoder block, together with the power states used in the 

memory UPF model and the sensor UPF in integrating the 

power intent for the corresponding memory and analog sensor 

instances.  We used the power switch UPF model to generate 

the internally collapsible supply net vdd3_int1, and we defined 

the isolation and retention strategies. Then we integrated the 

HD_decoder UPFs (interface and body) into the Multimedia 

subsystem UPF. 

 Following the same pattern, we integrated all the 

subsystems into the Core_top UPF which in turn was 

integrated into the SoC_top UPF.  This integration step 

included all of the following: 

 Top-level glue-logic 

 IO pads 

 Analog Phys 

 PLLs 

 On-chip LDOs 

Clearly a significant number of hard IPs and soft IPs were 

involved in the SoC UPF integration step. This highlights the 

need for automation and simplicity (intuitive for the designers 

which are building these files) of the integration process.  

The subsystems in turn contained a number of elements: 

 CPUs 

 SRAMs 

 On-chip LDOs 

 Glue-logic 

 Other IPs 

The subsystems can be hard IP or soft IPs. Having a 

consistent power intent modeling methodology and 

specification that works for both hard and soft IP will help the 

IP provides to generate consistent power intent models 

required for verification and integration.  

In order to illustrate the methodology, UPF code snippets 

from the example used in this case study are presented in the 

following section. 

VIII. UPF 2.0 SUPPORT FOR THE METHODOLOGY 

In this section, we describe how the specific components of 

power intent can be expressed in terms of UPF 2.0 commands. 

We also highlight the interactions of UPF commands and 

some of the core concepts that enable automation of various 

steps. We discuss alternatives for expressing power intent that 

give the designer some flexibility in applying the 

methodology. 

A. Interface UPF 

1) Top-level power domain PD 

There are three different ways in which the top-level power 

domain (PD) interface can be expressed in UPF.  

a) Creating PD within the IP scope and including it. 

This is typically relevant for modeling IPs containing several 

sub-components. The benefit of this is that the whole IP scope 

is encapsulated by the interface PD. This allows any UPF 

commands executed for this interface PD to have complete 

visibility of the  IP, hence can be self-contained. This style of 

creating the interface power domain allows user to develop IPs 

in a module-based approach, where they can refer to top-level 

ports for specifying constraints. When this IP is loaded in a 

larger context, references to it are qualified with the name of 

the instance of the IP. 

 

UPF code 
create_power_domain pd_CPU -include_scope 

b) Creating PD without adding extent information 

This style is used if a large number of IP instantiations are 

present in a scope and have similar power management. This 

style is suited mainly for modeling Soft IPs in power intent 

bodies. In this case, the power domain is created by loading 

the interface UPF of the IP but the extent is not populated. 

Since the extent is not added during loading interface UPF, 

this style requires an additional step of updating extents. This 

also allows user to create power domain in the same scope as 

the IP integrator and associate multiple instances in the same 

scope to that power domain. 

The power domain is created in the power intent interface 

with an empty element list, which signifies that the extent will 

be updated later in parent scope. 

 

UPF Code 
create_power_domain pd_MMS -elements {} 

c) Interface Supply Sets 

This is a special case where instead of creating a power 

domain to represent an interface, a supply set is created. This 

is typically used in modeling internal supply sources. Because 

the supply sources generate additional supplies, supply sets are 
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sufficient to model the power intent interface without a need 

to create an explicit power domain. 

 

UPF Code 
create_supply_set $ldo_op_sset 

 

2) Input supplies 

Input supplies are modeled as supply set handles of the top-

level power domain. This allows the designer to symbolically 

refer to supply sets imported from higher levels of the design 

hierarchy. It also restricts the inputs to the name space of the 

interface PD to avoid any problem with name clashes. 

 

UPF Code 
create_power_domain pd_MMS -update \ 

  -supply { gpu_ssh } \ 

  -supply { sram_ssh } 

 

3) Input supply constraints 

These are modeled as supply expressions for named power 

states defined on input supply set handles.  The specification is 

done in terms of symbolic function handles, hence it doesn’t 

require any supply nets to be associated with supply sets to 

specify constraints. It is also possible to specify voltage ranges 

in the constraints. 

 

UPF Code 
add_power_state pd_MMS.primary \ 

 -state ON_1d2V { 

   -supply_expr { 

    (pd_MMS.primary.power=={FULL_ON, 1.2}) && 

    (pd_MMS.primary.ground==FULL_ON) 

   } 

 } 

 

4) Input logic control ports 

These are modeled using the create_logic_port 

command in UPF. 

 

UPF Code 
create_logic_port iso_ctrl 

 

5) Internal supply constraints 

These are defined by loading the interface UPF 

corresponding to internal supplies. Refer to B.1 for more 

details. 

 

UPF Code 
# sw_op_sset is the parameter which refers to  

# output supply set created in  

# switch_interface.upf 

# sw_ip_sset is the parameter corresponding to  

# input supply set connected to switch. 

# inp_ss_state_list is the list of power 

# states on input supply set which will be 

# added on output supply set with additional 

# constraints 

 

 

load_upf_protected upf/switch_interface.upf \ 

  -params { \ 

    {sw_op_sset ss_cd_MMS_pg_sw} \ 

    {sw_ip_sset pd_MMS.primary} \ 

    {inp_ss_state_list {ON_1d2V}} \ 

  } \ 

  -hide_globals 

 

6) Output supplies 

These are defined in the same way as for input supplies, 

except that we must also associate the output supply set of an 

internal supply with the appropriate supply set handle. 

 

UPF Code 
create_power_domain pd_MMS -update \ 

  -supply { sw_primary_ssh ss_cd_MMS_pg_sw } 

 

7) Output system states 

These are specified by adding power states on the interface 

power domain or interface supply sets. The states are added 

using the add_power_state command and the 

relationship is expressed using a logic expression written in 

terms of states of input supplies and internal supplies. 

 

UPF Code 
add_power_state pd_MMS \ 

  -state PD_MMS_ON { 

    -logic_expr { 

      (pd_MMS.sw_primary_ssh == ON_1d2V) && 

      (pd_MMS.primary == ON_1d2V) && 

      (pd_MMS.gpu_ssh == ON_1d2V) && 

      (pd_MMS.sram_ssh == ON_1d2V) 

    } 

  } 

 

8) Interface logic port constraints 

These constraints are specified using the two options  

–driver_supply_set and –receiver_supply_set 

of the set_port_attributes command.  These 

constraints may be specified in different ways depending upon 

the style of power domain creation used to define the 

interface.  

If style A.1.a is used then it is safe to directly refer to 

interface ports present on the HDL interface. Since the whole 

scope is included, all of the interface ports are visible. 

If style A.1.b is used then it is not safe to refer to ports 

directly by name when PD is not created in the same scope as 

IP, as there is a possibility of multiple scopes being included 

in the interface. In this case, designers can use filters and rules 

to specify port constraints. 

 

UPF Code 
set_port_attributes -ports { out_vdd5 } \ 

    -driver_supply   pd_MMS_GPU.vdd5_ssh 

 

set_port_attributes -domains { pd_MMS } \ 

    -applies_to inputs \     

    -receiver_supply pd_MMS.primary 

 



DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF  

 

10 

9) Interface port power management cell requirements 

In some cases, it is important to specify the isolation, level 

shifting, and retention requirements for the top-level interface 

power domain. This is typically done when there is no need to 

create explicit control ports and thus we can avoid having to 

explicitly connect them. A similar connection can be achieved 

automatically by updating controls in the parent UPF where 

control nets are visible. In such cases, the controls will be 

automatically routed to the exact place they are used by 

implicitly creating ports and nets and connecting them. If 

strategies are specified in the interface UPF, their controls are 

intentionally left unspecified so that they can be added later 

while integrating the IP. 

 

UPF Code 
set_isolation pd_iso_op \ 

  -domain pd_cpu \ 

  -clamp_value 0 \ 

  -applies_to outputs \ 

  -location self 

 

set_isolation pd_iso_ip \ 

  -domain pd_cpu \ 

  -clamp_value 0 \ 

  -applies_to inputs \ 

  -location self 

 

set_level_shifter pd_ls -domain pd_cpu 

 

set_retention pd_ret -domain pd_cpu 

 

B. IP Integration 

1) Loading power intent interfaces 

The interface UPF of each subcomponent is loaded by the 

parent UPF using the load_upf_protected or 

load_upf commands. 

The load_upf_protected command provides 

additional features such as passing the parameters and 

restricting visibility of global names. This is useful when UPF 

files are parameterized for reuse using Tcl variables. In such 

cases, the –params option of load_upf_protected is 

used to specify the value of the variables. It is generally 

recommended to use the –hide_globals option when a 

UPF file uses global variables and restrict the value 

specification through the –params option. This avoids any 

un-intended values being assigned to those variables. 

For cases where a power domain is created in a subordinate 

scope, the –scope option is used to automatically change the 

scope to the scope in which the power domain is created. 

 

UPF Code 
load_upf_protected upf/ldo_interface.upf \ 

  -params { \ 

   {ldo_op_sset ss_cpu0} \ 

   {ldo_ip_sset pd_app_proc.cpu_ssh} \ 

  } \ 

  -hide_globals 

 

load_upf_protected upf/cpu_interface.upf \ 

  -params { \ 

    pd_cpu \ 

  } –scope cpu_i 

 

load_upf upf/app_proc.upf \ 

  -scope application_processor_i 

 

2) Update the extent information for IP 

This is done by invoking the create_power_domain 

command with –update and –elements options. The 

command must be executed in the scope in which the IP is 

integrated as this scope has the visibility of the instance name 

of the IP. 

 

UPF Code 
create_power_domain pd_GL -update \ 

  -elements { gl_i } 

 

3) Connecting supplies 

Supply connections are accomplished by using the UPF 

associate_supply_set command. This command 

associates the supply set imported from the parent context 

with the IP’s supply set handle. 

 

UPF Code 
associate_supply_set pd_app_proc.sw_pri_ssh \ 

  -handle pd_GL.primary 

 

4) Updating supply constraint 

This is also done with the add_power_state command, 

using the –update option to add constraints from the IP’s 

input supply set. 

 

UPF Code 
add_power_state pd_app_proc.sw_pri_ssh \ 

  -update \ 

  -state ON_1d2V { \ 

    -logic_expr { \ 

      ( pd_GL.primary  == GL_ON_1d2V ) \ 

    } \ 

  } \ 

  -state OFF_STATE { \ 

    -logic_expr { \ 

      ( pd_GL.primary  == GL_OFF_STATE ) \ 

    } \ 

  } 

 

5) Connecting control signals 

There are two ways in which control signals can be 

connected during integration of the IP. 

Explicit Connection: This is done when the IP interface 

contains explicit declarations of logic ports that need to be 

connected. It is done using the UPF connect_logic_net 

command. 

Implicit Connections: This is done by updating the 

controls in the strategies. This approach is used when the 

strategies are defined in the power interface of the IP. 

 

UPF Code 
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# Explicit Logic Connection 

connect_logic_net iso_ctrl \ 

  -ports { mms_i/iso_ctrl } 

 

# Implicit Logic Connection 

set_isolation pd_iso_op -update \ 

  -domain pd_GL \ 

  -isolation_signal iso_ctrl \ 

  -isolation_sense high 

 

C. Body UPF 

1) Internal power domains 

The internal power domains are created in the same way as 

is done for an interface UPF. Power domains that follow 

A.1.a/A.1.b are automatically created when their IPs are 

loaded in the system. 

 

UPF Code 
create_power_domain pd_cpu0 -elements {inst1} 

 

2) Integration of sub-system IPs and supplies 

The integration of a sub-system is performed in the same 

ways as described in section B. 

 

UPF Code 
# **--------------------- 

# ** INTEGRATE: GlueLogic 

# **--------------------- 

 

# **--------------------- 

# ** INTEGRATE: LOAD CONSTRAINTS 

# **--------------------- 

load_upf upf/glue_logic.upf –scope gl_i 

 

# **--------------------- 

# ** INTEGRATE: UPDATE Extents 

# **--------------------- 

# Not required already done in previous step 

 

# **--------------------- 

# ** INTEGRATE: CONNECT Supplies 

# **--------------------- 

associate_supply_set pd_app_proc.sw_pri_ssh \ 

  -handle gl_i/pd_GL.primary 

associate_supply_set pd_app_proc.primary \ 

  -handle gl_i/pd_GL.default_isolation 

associate_supply_set pd_app_proc.primary \ 

  -handle gl_i/pd_GL.default_retention 

 

# **--------------------- 

# ** INTEGRATE: UPDATE Supplies Constraints  

# **--------------------- 

add_power_state pd_app_proc.sw_pri_ssh \ 

  -update \ 

  -state ON_1d2V { \ 

    -logic_expr { \ 

      (gl_i/pd_GL.primary  == GL_ON_1d2V) \ 

    } \ 

  } \ 

  -state OFF_STATE { \ 

    -logic_expr { \ 

      (gl_i/pd_GL.primary  == GL_OFF_STATE) \ 

    } \ 

  } 

 

add_power_state pd_app_proc.primary \ 

 -update \ 

 -state ON_1d2V { \ 

 -logic_expr { \ 

 (gl_i/pd_GL.default_isolation==GL_ON_1d2V)&&\ 

 (gl_i/pd_GL.default_retention==GL_ON_1d2V) \ 

  } \ 

 } 

 

# **--------------------- 

# ** INTEGRATE: CONNECT Logic Controls 

# **--------------------- 

set_isolation pd_iso_op -update \ 

  -domain gl_i/pd_GL \ 

  -isolation_signal iso_ctrl \ 

  -isolation_sense high 

 

3) Load the body of sub-component IPs and supplies 

The body of the power intent specification for each IP 

instance and the body of the power intent specification for all 

internal supplies are loaded in a similar way to their power 

interface UPF. The difference here is that additional 

parameters can be passed to provide the scope information to 

the body UPF. Because the body UPF is intended to be loaded 

only inside Power intent body of IP, the scopes within the IP 

instance are visible to the parent context and can be passed to 

the body UPF of the sub-component IP blocks and supplies. 

 

UPF Code 
load_upf_protected upf/ldo_body.upf \ 

  -params { \ 

    {ldo_ip_sset pd_app_proc.cpu_ssh} \          

    ldo_scope \ 

    ldo_op_sset \ 

  } \ 

  -hide_globals 

 

load_upf_protected upf/cpu_body.upf \ 

  -params { \ 

    cpu_scope \  

    pd_cpu \ 

  } 

 

4) Defining simstate behavior of power domains 

Simstates are added to the definitions of supply set power 

states using the add_power_state –update command. 

In this step the primary supplies of internal PDs and interface 

PD are associated with input or internal supplies present in 

Interface UPF before updating the simstate behavior. 

 

UPF Code 
add_power_state pd_app_proc.primary \ 

  -update \ 

-state ON_1d2V { \ 

    -simstate NORMAL \ 

  } 

 

5) Specifying isolation/level shifter and retention 

The strategies for isolation, level shifting and retention are 

specified for the internal power. These strategies should refer 
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to controls defined in the interface or controls of any other 

strategies. 

 

UPF Code 
set_retention pd_ret \ 

-domain pd_MMS_pg \ 

-save_signal { ret_ctrl posedge } \ 

-restore_signal { ret_ctrl negedge } 

 

set_isolation pd_iso_op \ 

-domain pd_MMS_pg \ 

-clamp_value 0 \ 

-applies_to outputs \ 

-location parent \ 

-isolation_signal iso_ctrl \ 

-isolation_sense high 

 

set_level_shifter pd_ls \ 

-domain pd_MMS_pg 

 

6) Specifying automatic connection semantics 

The automatic connection semantics are specified by the 

connect_supply_set command. If the domain contains 

multiple supply sets, then multiple connect_supply_set 

commands may be needed. Additionally, users can explicitly 

associate pg_type attributes to hard macro pins if required. 

 

UPF Code 
#Automatic connection semantics for  

#Hard Macro Supply Connections 

connect_supply_set pd_MMS_GPU.primary \ 

  -connect { \ 

    power  {primary_power pg_gpu_vdd8} } \ 

  -connect { \ 

    ground {primary_ground} } 

 

#Ground is common, so not connected again 

connect_supply_set pd_MMS_GPU.vdd5_ssh \ 

  -connect { power {pg_gpu_vdd5} } 

 

connect_supply_set pd_MMS_GPU.vdd3_ssh \ 

  -connect { power {pg_gpu_vdd3} } 

 

7) Updating output power states 

The system states specified in the interface UPF are now 

updated to reflect the sub-component instance states. This 

creates the necessary correlation between power states of the 

IP block in and power states of its sub-components. 

To achieve this, the add_power_state command is 

used with the –update option; the power state relationships 

are specified with –logic_expr. 

Note that the same states are specified in the interface UPF 

with logic_expr containing reference to supply sets. These 

state definitions are now updated with information about 

subcomponent states. This redundancy is necessary to ensure 

that the whole system is working properly without violating 

any constraints specified in the interface UPF. As UPF 

provides an internal self-checking mechanism for the 

add_power_state command any logical contradiction is 

caught by tools and reported as an error. Hence, any tool 

compliant with the UPF standard will catch any such issues in 

a power intent specification. 

 

UPF Code 
add_power_state pd_MMS -update \ 

  -state PD_MMS_ON { 

    -logic_expr { 

      (cd_MMS_pg == PD_MMS_PG_ON)&& \  

      (mms_gpu_i/pd_MMS_GPU==PD_MMS_GPU_ON)&&\  

      (pd_SRAM == PD_SRAM_ON) \ 

    } \ 

  } 

IX. SUMMARY 

With the increasing complexity of today’s SoCs, power 

management has become a critical aspect of the design 

process, one that cannot be ignored due to its potential impact 

on overall functionality. A typical SoC consists of various IPs 

each performing some specific functionality along with its 

own power management strategy. In some IPs the power 

management can become quite complex involving multiple 

power domains with different power requirements. Integrating 

multiple IPs into a SoC, while maintaining correctness of the 

power management structures, and ensuring that no functional 

issues are introduced in the process, can be very challenging.  

Reuse and hierarchical composition are an integral part of 

any SoC design. It is very difficult to reason clearly about the 

interaction of functionality and power management using a 

flat model of the two. A methodology that supports 

hierarchical composition and reuse of power intent along with 

functionality is required. Automation of tedious tasks involved 

in IP integration is also important to minimize human 

interaction and chances of human error.  

In this paper, we have shown how designers can express 

their power intent using UPF 2.0 capabilities in the context of 

a hierarchical methodology that helps ensure correctness at 

both IP and system levels.  The methodology addresses the 

power management requirements of both soft IP and hard IP 

blocks. The methods presented in the paper enable tools to 

automate connection and routing of supplies to the appropriate 

domains as well as verification of power constraints as each IP 

block is integrated, to ensure coherency of the power intent at 

various levels of the SoC development.  

X. FUTURE WORK 

Although the methodology described in this paper can be 

used effectively with UPF 2.0, some improvements may 

become possible as UPF continues to evolve.   

One area of potential improvement is in the use of the 

add_power_state command.  In UPF 2.0, this command 

can be used to define power states of supply sets or power 

domains.  However, there is no syntax to indicate which of the 

two uses is involved in a given command.  Furthermore, there 

are two uses of power domains in this methodology: one to 

model real power domains in the design, the other to model 

the interface to an IP block, so that supply sets can be passed 

into the UPF specification for the interface of that block.  Here 

again there is no syntactic differentiation between these two 

cases.  A possible enhancement to UPF would be to add a 
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qualifier to distinguish these three applications.  With such a 

qualifier, additional automation or constraint checking would 

become possible, and supply expressions used to define some 

power states could potentially be simplified. 

Another area of potential improvement is in the handling of 

control signals.  Supply set parameters to a UPF interface 

specification are defined as supply set handles associated with 

the top-level power domain, but this approach does not work 

for control signals, which instead must be defined as logic 

ports on the top-level module of the IP block.  Since the top-

level power domain is functioning as the power interface to 

the IP block, it would be convenient to be able to associate 

control inputs with that interface as well, and refer to them in 

much the same way that supply set handles are referred to.  

Unifying the power interface to include both supply sets and 

control signals would help streamline the methodology and 

make it more consistent.  

These are only two areas in which enhancements to UPF 

could help improve the hierarchical methodology presented in 

this paper.  As users gain experience with application of this 

methodology to large complex SoC designs, additional areas 

of potential improvement will likely be identified. 

XI. APPENDIX – TEMPLATE UPFS 

 

While working on the case study example we found that 

using the following template UPFs helped in creating power 

intent using this methodology by guiding the user to address 

each successive step in the methodology.  The template UPF is 

a plain UPF file containing a set of comments indicating 

different steps for the methodology. The user can fill the 

relevant sections of the template UPF with UPF commands as 

described in section VIII. Listed below are three template 

UPFs corresponding to three major categories of the 

methodology. 

1) Interface template UPF 

UPF Code 
# ********************************* 

# ******    INTERFACE UPF    ****** 

# ********************************* 

# **------------------------------- 

# ** INTERFACE: Top level system PD 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: INPUT Supply Set  

# **            Handles 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: INPUT logic port 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: INPUT Supply Set  

# **            CONSTRAINTS 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: INTEGRATE Internal 

# **            SUPPLY interface 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: OUTPUT Supply Set  

# **            Handles 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: OUTPUT System STATES 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: PORT Constraints 

# **------------------------------- 

# **------------------------------- 

# ** INTERFACE: Isolation/Level  

# **            Shifter/Retention 

# **            of INTERFACE PD 

# **------------------------------- 

2) Integrate template UPF 

UPF Code 
# ********************************* 

# ******    INTEGRATE UPF    ****** 

# ********************************* 

# **------------------------------- 

# ** INTEGRATE: LOAD Interface UPF 

# **------------------------------- 

# **------------------------------- 

# ** INTEGRATE: UPDATE Extents 

# **------------------------------- 

# **------------------------------- 

# ** INTEGRATE: CONNECT Supplies 

# **------------------------------- 

# **------------------------------- 

# ** INTEGRATE: UPDATE Supplies  

# **            Constraints 

# **------------------------------- 

# **------------------------------- 

# ** INTEGRATE: CONNECT Logic  

# **            Controls 

# **------------------------------- 

3) Body template UPF 

UPF Code 
# ********************************* 

# ******      BODY UPF       ****** 

# ********************************* 

# **------------------------------- 

# ** BODY: DEFINE Internal Power  

# **       Domains 

# **------------------------------- 

# **------------------------------- 

# ** BODY: INTEGRATE Sub-component 

# **       IP and Internal Supplies 

# **------------------------------- 

# **------------------------------- 

# ** BODY: LOAD BODY of sub-component 

# **       IP and Internal Supplies 

# **------------------------------- 

# **------------------------------- 

# ** BODY: DEFINE SIMSTATE BEHAVIOR 

# **       for Internal and INTERFACE 

# **       PDs 

# **------------------------------- 

# **------------------------------- 

# ** BODY: Specify ISOLATION,   

# **       LEVEL SHIFTER and Retention 

# **       with controls connected 

# **------------------------------- 

# **------------------------------- 

# ** BODY: Automatic connections 

# **       for hard macros 

# **------------------------------- 
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# **------------------------------- 

# ** BODY: Update SYSTEM STATES  

# **       based on sub-component IP 

# **------------------------------- 
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