
DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

1

Abstract—Power management is a critical feature of today’s

SoCs, almost as important as functionality. IEEE 1801™-2009

UPF enables specification of the intended power management

infrastructure for an SoC to enable early verification and to drive

implementation. Just as the complexity of an SoC demands a

well-structured hierarchical approach to design and verification

of its functional specification, the complexity of the power

management infrastructure for an SoC similarly requires a

hierarchical methodology that enables separation of concerns

and supports partitioning, parallel development, and reuse.

 In this paper, we propose a hierarchical methodology for the

use of IEEE Std 1801™-2009 UPF (aka UPF 2.0) for the

specification of power intent for low power SoCs. This

methodology enables verification at the IP block level,

hierarchical composition of complex system-level power intent

specifications from IP block power intent specifications, and

automatic consistency checking to ensure that IP block

constraints are met by the system in which they are used. The

proposed methodology is illustrated in the context of a complex

SoC design architecture that was used to validate the concepts.

Index Terms — Functional Verification, Hierarchical

composition, IP Reuse, Low Power, Methodology, SoC

Integration, UPF.

I. INTRODUCTION

A. Power Aware Design

Power has become a critical aspect of electronic design.

For mobile systems, each new generation must offer new

features but at the same time must run longer on a single

battery charge. For non-mobile systems, minimizing heat and

therefore cooling costs dictates ever increasing control over

power consumption. The most recent process technologies

require aggressive power management strategies that include

not only clock gating but also power gating and use of

multiple voltages and clock frequencies. These strategies can

Amit Srivastava is a Lead Member Consulting Staff at Mentor Graphics;
(e-mail: amit_srivastava@mentor.com).

Rudra Mukherjee is an Engineering Director at Mentor Graphics;

(e-mail: rudra_mukherjee@mentor.com).
Erich Marschner is a Product Manager at Mentor Graphics;

(e-mail: erich_marschner@mentor.com).

Chuck Seeley is a Verification Technologist at Mentor Graphics;
(e-mail: chuck_seeley@mentor.com).

Sorin Dobre is a Senior Staff Engineer at Qualcomm;

(e-mail: sdobre@qualcomm.com).

affect functionality if not executed correctly, which leads to an

increasing need for power aware verification.

Power aware design involves partitioning a design into

separate regions, or power domains, such that each domain

can have its power supplies managed independently. At any

given time, only a subset of the full system may be powered,

and a given portion may operate at different voltage and

consequent performance levels depending upon the operating

mode of the system. The ability to control power consumption

based on functional requirements of the system enables power

optimization for typical usage scenarios.

Power management is imposed on top of the normal

functionality of the design in a manner that is transparent to

the user. The power management infrastructure can be

thought of as a layer of logic integrated with the design logic

that controls power supplies for each separate power domain,

mediates the interfaces between power domains to ensure that

differences in power state do not interfere with functionality,

and orchestrates the transitions between power states to ensure

that system state information is preserved where required or

reinitialized as needed.

While power management logic historically has been added

to the design late in the flow, the increasing need for power

aware verification has led to methods for specifying power

intent, i.e., the intended power management infrastructure,

much earlier. A power intent specification is essentially a

virtual definition of the power management logic that will be

added in the implementation process, provided in a form that

can be implicitly integrated with an RTL description in order

to verify the RTL specification together with the planned

power management infrastructure.

B. Power Intent Specification

IEEE Standard 1801
TM

-2009 Unified Power Format (UPF)

[2] enables specification of power intent. Based on Tcl, UPF

defines concepts and commands required to describe power

management requirements for IP blocks, the architecture of

the power management infrastructure for a complete system,

and even the implementation of power distribution networks.

It is used both for early verification of power intent and to

drive implementation of the power management infrastructure.

UPF defines the following concepts and terminology for

specification of power intent:

Low Power SoC Verification: IP Reuse and

Hierarchical Composition using UPF

Amit Srivastava, Rudra Mukherjee, Erich Marschner, Chuck Seeley, Mentor Graphics,

Sorin Dobre, Qualcomm

mailto:amit_srivastava@mentor.com
mailto:rudra_mukherjee@mentor.com
mailto:erich_marschner@mentor.com
mailto:chuck_seeley@mentor.com
mailto:sdobre@qualcomm.com

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

2

 Power domain: a collection of library cells and/or

HDL module instances that typically share a common

primary supply and typically are all in the same power

state at a given time. This collection of instances is

referred to as extent of a power domain.

 Power state: an abstract representation of the voltage

characteristics of a power supply, and also an abstract

representation of the operating mode of the elements of

a power domain or of a module instance (e.g., on, off,

sleep).

 Isolation: logic that mediates the interaction between

logic elements that are in different power states, to

protect elements that are powered up from being

adversely affected by elements that are powered down.

 Level shifting: logic that mediates the interaction

between logic elements that are powered up at different

voltage levels, to ensure that logic values generated by

one element at one voltage level are correctly

translated to the appropriate voltage level of the other

element.

 Retentionlogic that enables the state of selected state

elements to be saved when a domain is powered down

and restored when the domain is powered up again.

 Supply net: an abstraction of a power rail that provides

power to elements of a domain.

 Supply set: an abstraction of a collection of supply

nets that, in aggregate, provide all the supply

connections required by a given logic element. The

individual nets are referred to as functions of a supply

set.

 Simstate: the simulation behavior associated with a

state added on the supply set. This behavior is one of

the simstate values specified in UPF and semantics

associated with those simstate values are applied

during simulation, when the power state having that

simstate behavior is active. This behavior is applicable

to design instances which are connected to the supply

set.

 Switch: a power management element that controls

whether a supply net is connected to a supply source.

 Logic net: an abstraction of a control signal that

controls the operation of isolation, retention, or power

switching logic.

 Driver supply: the supply set providing power to the

logic that is the ultimate source (driver) of a net.

 Receiver supply: the supply set providing power to the

logic that is the ultimate sink (receiver) of a net.

A UPF specification defines the power domains, supply sets

and power states of a design and specifies strategies for

inserting isolation, level-shifting, and retention logic between

and within power domains to ensure that the design will

function correctly in all of its operating modes in the context

of the power management infrastructure.

C. The Importance of Methodology

The concepts, capabilities, and features provided by any

standard language for electronic design, whether it be Verilog,

VHDL, SystemVerilog, or UPF, are necessary but not

sufficient. The way in which those concepts, capabilities, and

features are used in practice is just as important, if not more.

In addition to the features of UPF, a well-defined

methodology for power intent specification using UPF is also

needed to ensure efficient development, interoperable tools,

and reliable results from a low power design and verification

flow.

A key consideration in the use of UPF is how to structure

the power intent specification to leverage the hierarchical

structure of the design. While it is possible to describe the

power intent for a complete system in a flat manner, all in one

file, a hierarchical approach allows for partitioning of a power

intent specification so that different portions can be

constructed at different times, or by different engineers or

teams. Hierarchical structuring also leads to reuse of

components of the power intent specification.

The IEEE 1801
TM

-2009 UPF specification defines language

features that can be used to support a variety of

methodologies. However, the specification does not define

any one methodology in detail. Users have been left to work

out for themselves what methodology to adopt when using

UPF. In this paper, we propose a particular methodology that

supports hierarchical specification of power intent and reuse

of IP-level power intent specifications.

II. REQUIREMENTS

A. General Motivation

Chips today are highly complex and application specific.

Ever-increasing design complexity and shrinking process

nodes demand complex power management strategies. This

increased design effort coupled with strict time-to-market

requirements require a proper hierarchical approach, one

that supports separation of concerns, parallel development,

and reuse of previously designed, optimized and verified

design components.

There is a well-defined methodology prevalent in the design

industry which is widely used as SoC methodology. This

addresses the functional aspect of a system, but the

complexity, variety and impact of power management on the

functionality of a system demands a similar methodology for

specifying, verifying, and implementing Power Intent.

Formats for expressing power intent have been available for

some time now, but there seems to be a general lack of

methodology for the use of those formats.

The methodology for expressing power intent needs to

inherit the benefits of SoC methodology, which are –

reusability and hierarchical composition. Along with that

they need to be general enough to cater to a variety of power

management demands for different sub-components.

It is also important for the methodology for Power Intent

specification to empower tools to automate a lot of redundant

tasks, perform efficient integration and provide consistency

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

3

checks, hence reducing the chances of design bugs and

functional failures related to power management.

B. IP based development [1]

Intellectual Property (IP) is a critical component for SoC

based design methodology. In order to achieve lesser time to

market it becomes necessary to reuse an existing IP by

integrating it in their chip and hence improving the overall

productivity. An IP block is a predesigned component that can

be used in a larger design. There are two major kinds of IP.

Hard IP is a predesigned layout with all power

management functionality built into the IP itself. A large

number of memories are delivered as hard IPs. Another

example of hard IPs is analog and mixed signal components

which are directly integrated in SoCs, e.g. low-dropout

regulators (LDOs), DDR PHYs, USB PHYs, PLLs etc.

Soft IP comes as a synthesizable module in hardware

description languages (HDL) such as SystemVerilog or

VHDL. Soft IP is designed to be implemented using logic

synthesis and place-and-route tools. As such, it is more easily

targeted to a new manufacturing process, perhaps at some cost

in performance, power, and area. A surprising number of large

blocks, including CPUs, DSPs and specialized hardware

accelerators are delivered only as soft IP.

C. Verification Models for IP

In order to verify the functionality of IP blocks, vendors

provide verification models for their IPs. The verification

models allow simulation tools to simulate the IP in the SoC

environment. The verification models come in different

flavors.

Behavioral verification models describe functional

behavior in a way that is simulatable but not synthesizable.

They are typically expressed in a hardware description

language and may include the power intent behavior. In some

cases, the behavior can also be expressed in other languages

such as C/C++ or analog hardware description languages such

as Verilog-AMS, VHDL-AMS, and Spice. In such cases, they

also provide an HDL interface to allow integration of these

models into the SoC environment. These models are

associated with Hard IP blocks.

Synthesizable verification models describe the

functionality of IP in terms of synthesizable HDL. The power

intent is typically not present in the verification model but is

expressed in terms of a UPF specification. This allows

designers to use the same verification model at different

technology nodes with different power management. These

models are associated with Soft IP blocks.

D. Power Intent Specification

The power intent of a System on Chip (SoC is typically

expressed separately in terms of Unified Power Format (UPF),

an IEEE standard for the specification of power intent [2].

UPF provides a consistent, comprehensive way to express the

power intent without modifying the HDL description, thus

enabling independent verification of the design’s power

management architecture separate from verification of the

design’s functionality. Because SoCs are implemented at

various technology nodes and each node may have its own

unique power management requirements, it is important to

express power intent in a way that allows the power intent to

change without modifying the functional behavior of the SoC.

This is easily achieved by UPF.

In the absence of any well-defined methodology, the power

intent is expressed for the full SoC as a flattened view.

Considering the complexity of an SoC design with different

IPs, which can be hard or soft, the task of expressing power

intent can be very tedious and error prone. Also, in the case of

hard IPs, the designer has to make some assumptions of the

power intent of the IP and rely on the complete integrated

simulation for verifying the correctness of power intent.

E. Methodology for Power Intent Specification

Considering the benefits of SoC methodology and IP based

development, it becomes important to express power intent in

such a way that it is aligned with the overall methodology.

The methodology should cater to the following:

Reuse of power intent during the SoC development.

Hierarchical composition of power intent of IPs is easily

achieved with effective integration in the SoC environment.

Module based development of IPs is possible, without the

knowledge of how the IP will be integrated. This allows for a

potential reuse of power intent during development and across

all variants of the IP – hard or soft implementations.

Automatic checking of constraints during integration of IPs

should be possible.

The present UPF standard is powerful enough to pave the

way for such kinds of methodology to exist for power intent

specification. The standard provides various commands,

which when used properly, allow tremendous flexibility in

development of IPs and integration in SoCs. In this paper we

will describe and demonstrate a methodology for Power Intent

Specification and highlight the capabilities of UPF used in this

methodology.

III. THE METHODOLOGY

The power intent specification for an IP block is divided

into two components.

The Power Intent Interface contains information about the

power management interface of the IP. This includes supply

interface, control interface and the constraints related to IP

block power management that are checked during integration.

The power intent interface is the same for different models of

the same IP block (e.g., hard or soft IP).

The power intent interface packages the power intent for an

IP block in a way that makes it easily reusable in a larger

system. Integration of an IP block into a larger system

involves loading and connecting parts of its power intent

interface.

The Power intent body contains information about the

actual implementation of the IP block’s power management.

The power intent body may be different for different models

of the same IP block (e.g., hard or soft IP). The power intent

body content may also depend on whether a behavioral model

of the IP block or a synthesizable model is being used.

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

4

The clean and intuitive interface, well-defined integration

process, and variable power intent body result in an effective

methodology that is scalable and reusable in a complex SoC

environment.

IV. POWER INTENT INTERFACE

The Interface is a critical part of any IP. It provides linkage

of the IP with the external environment and hides the internal

workings of the IP. A proper interface definition is the key to

good integration of the IP in a larger System.

An important characteristic of an interface is that it is

constant for a particular IP throughout the design flow.

Traditional HDLs have a well-defined syntax and mechanism

to define the interface of an IP in terms of module ports.

Because the power intent of the IP is not modeled in HDLs, it

is necessary to define the power interface of an IP in UPF. For

consistency with the HDL definition, an IP’s power intent

interface must not depend on anything not in the HDL

interface definition.

The power intent interface of the IP is defined in terms of

the following information:

A. Top-level Power Domain

The first part of defining the interface is to define a top-

level power domain that represents the entire IP block. This

power domain becomes the starting point of the interface to

the larger system. All the other sub-components of the

interface are contained within this power domain.

B. Input Supplies

Defining the supply interface is the major and most

important part of defining the power interface of the IP. Every

IP requires power supply connections. In current designs, the

IPs exhibit complex power management and hence require

multiple kinds of supplies. Traditionally, this information is

provided at a very late stage just before the implementation in

the form of supply ports. However, the need for early

verification of power management requires this information to

be present at the RTL phase or even at the design phase. UPF

provides an ability to abstract out the supply interface in the

form of supply sets. This results in less burden on integration

and fewer chances of incorrect supply connections, especially

in cases where a lot of supply ports are connected to an IP.

Supply sets simplify the interface of the system in several

ways. First, it is easier to make connections explicitly using a

supply set rather than making connections for each individual

supply port. Also, using supply sets allows tools to make

connections automatically without a need to create explicit

supply ports/nets. Supply set definitions also enable

specification of supply constraints, which a tool can validate

while making connections. This allows tools to catch any

connectivity related errors early in the design cycle.

UPF also defines supply set handles, which are effectively

local parameters of an object (e.g. a power domain). These

supply set handles allow a designer to defer creation of actual

objects and work with just abstract objects without worrying

about the actual details of the implementation. The successive

refinement concept of UPF allows easy implementation of

supply connectivity. Tools can ensure that the implementation

step does not violate the power intent specified during the

design phase. In our methodology, we use these handles to

refer to input/output supply sets for interface power domain.

One of the benefits of using these handles is that they are

defined in the namespace of the power domain to which they

belong, hence avoiding any possible chance of name clashes.

C. Input Supply Constraints

An IP block will operate correctly only if each of its input

supplies provides power in a specific voltage range. It is a

good practice to capture these voltage requirements in the

form of constraints on the input supplies, so the constraints

can be checked by tools during integration. Specifying voltage

constraints also provides better documentation for the IP

interface and ensures that the designers can develop the IP

independently without worrying about the global picture.

Supply constraints are expressed in UPF by using supply

expressions to define power states of each input supply set.

D. Control Inputs for Power Management

Some of the power management cells in the IP require

inputs to control their operation. These include the control

signals for power switches, isolation control signals, and

retention control signals. Since the HDL description is

typically written without power management and therefore

does not contain these special cells, their control inputs often

need to be added via the UPF specification. It is appropriate

to define these control inputs as part of the power interface.

E. Internal Supply Constraints

Many IPs contain embedded power supply generators.

These generators modify an input supply to cater to the

specific power demands of the IP. One type of generator is a

logical switch that gates power to the IP. Another type is a

special cell called a low dropout regulator (LDO) that scales

the input voltage to various levels. This type is typically

required for Dynamic Voltage and Frequency Scaling (DVFS)

techniques. The operation of these internal supply generators

may have an effect on the state of the system containing this

IP. Also, there could be ports on HDL interfaces which are

powered by these supplies and hence the IP integrator may

require these supplies. As a result, the constraints and supply

set corresponding to these internal supplies are a part of the

Power Interface of the IP.

F. Output Supplies

If the internal supplies need to be output outside of the IP,

then they are connected to supply set handles on the top-level

power domain so that they are visible to the external

environment. Connecting these supplies to power domain

supply set handles provide a consistent mechanism for the IP

integrator to connect output supply sets in the same way as is

done for input supplies.

G. Output Power States

Power states of the IP block as a whole are an important

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

5

part of the power intent specification. They indicate how the

functionality of the IP is related to the power management and

how they are affected by it. In a SoC environment, IPs interact

with other IPs and play a role in determining the overall state

of the SoC. As a result, defining the power states of an IP as a

part of power interface is necessary for the composition of the

overall system states. It is also important to determine the

inter-dependencies between the power management of

different IPs and the supplies connected to them. Another

advantage of defining IP block power states as part of the

power interface is that it encapsulates and hides the internal

details of the IP’s power management yet presents sufficient

constraints at the interface to allow tools to perform checking

during the IP integration.

In the power intent interface, the output system states are

defined in terms of input and internal supply constraints

providing an abstract representation of the power management

of the IP. This is later updated in the body specification with

additional details.

H. Interface Logic Port Constraints

The ports on the HDL interface are connected to logic that

is powered by one of the supplies defined in the power intent

interface of the IP (including the internal supply generators).

IP designers need to ensure that a particular port on the

interface of the IP is powered by the specific supply. This can

be specified in the form of logic port constraints identifying

the related supplies. UPF has ways to express the driver and

receiver supply information for any port on the interface of the

IP. This constraint provides a consistency check when the

power management behavior of the IP is modeled. Moreover,

when a non-power aware behavioral verification model is used

in simulation then the tools can use this constraint information

to apply simstate behavior just at the interface to provide

approximate power aware behavior. UPF also provides ability

to specify clamping requirements when the interface port will

be isolated, which can also be put into the power intent

interface specification.

I. Interface Port power management cell requirements

In some cases, the IP requires isolation and/or level shifting

logic on its ports, to ensure that it will work correctly when

integrated with other IP blocks in a system. Hence, it is

important to have isolation/level shifter and retention

strategies specified in the power interface, so that the handles

are available to the external environment for additional

refinements. These strategies also relate logic control ports to

cells that are a result of these strategies.

V. IP INTEGRATION

The integration of power intent of an IP into a larger system

is similar to that involved for HDL instantiations and port

connections. The difference lies in the fact that here the

connections are made for power supplies and power

management control signals. Additionally, relationships are

defined between the power states at various levels, and

constraints are checked for consistency.

The typical steps are as follows:

A. Load Power Intent Interface of IP

The UPF language defines commands which allow another

UPF file to be loaded in the current context and results in all

the commands in the loaded UPF file to be executed in the

context where the command is called. This allows the designer

to partition the power intent so that it is manageable and

reusable. The interface of the IP is loaded by the UPF of the

larger system for an instance of the IP in that system. This

creates the necessary power domain handles and defines the

power constraints for that instance.

B. Update the Extent information for IP

Once the interface is loaded, then the scope information of

the IP needs to be updated with the power domain of the IP.

This is referred to as ‘updating the extent’. There are different

ways of creating interface level power domains; this will be

highlighted in later sections. Depending on the kind of

methodology used, this step is typically combined with the

first step and is performed in conjunction with “loading the

interface of IP”.

C. Connect Supplies

Thereafter, the connection is made between the supply sets

present in the parent IP and the supply set handles present in

the interface PD of the IP.

D. Update supply constraints

After making supply set connections, the power states of an

input supply set (which defines constraints) and the power

states of the supply set associated with that input supply set

are correlated. A tool can automatically correlate power states

with the same name. The user can explicitly specify

correlation between differently named power states.

This step enables consistency checks to ensure that supplies

provided to an IP block satisfy the constraints defined for

those supplies. Any potential error between the connections

can be caught at this stage. For example, if a supply set

operates at 1.2 Volts in a given power state, and that power

state is correlated with an IP supply set handle power state that

is constrained to 0.8V, this situation will be flagged as an

error.

E. Connect Control Inputs

Lastly, the control signals in the larger system are

connected to IP control ports or added to isolation/retention

strategies of the IP block.

VI. POWER INTENT BODY

The power intent body contains the specification of the

power aware behavior of the IP. The described behavior will

be used in verification and implementation of the IP. It can be

possible to have different power intent bodies for a single

power intent interface. One possible scenario could be a

different power intent body for hard and soft macro

implementations of the same IP. In this case, the power intent

interface remains the same and only the power intent body

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

6

changes depending on the kind of verification model provided.

In order to completely encapsulate the power intent body, it is

necessary to restrict the body specification to refer to objects

created in the power intent interface of the IP. This ensures

that the IP is self-contained.

A. Internal Power Domains

The first step in creating a power intent body is to define

each of the power domains that comprise the IP block.

B. Load and Integrate Sub-component IPs and internal

supplies

It could be possible that IP contains some instances which

are themselves IP components. Hence, these IPs are integrated

as described in the IP integration step. In this step, the power

interfaces for internal supplies that are local to the IP block

and not imported from the larger system are also loaded.

C. Load the Body of Sub-component IPs and internal

supplies

Load the power intent bodies of the sub-system IPs and

internal supplies to ensure that the power aware behaviors of

these IPs are specified.

D. Define simstate behavior of Internal Power Domains

After loading all the sub-component IPs’ UPF files, define

simstates for each power state of each supply set of each of the

internal and interface power domains of this IP. These

simstates define how simulation behavior should be affected

by the state of power supplies at any given time. This also

describes the operating capabilities of different states of the

supply sets and power domains.

E. Specify Isolation/Retention and Level Shifter

Requirements

Specify the different strategies for isolation, level shifting

and retention for the interface power domain of each sub-

component IP instance in this block and for each internal

power domain within this block.

F. Specify Automatic connection semantics

This step is specific to hard IP components with behavioral

verification models that are power aware. These models have

supply pins in the HDL interface itself and hence need to be

explicitly connected with the supplies defined in the power

intent interface. UPF’s automatic connection semantics is

based on pg_type attributes on model ports, resulting in a

fairly simple specification.

G. Update Output Power States with Sub-component IP’s

states

Lastly, update the output power states of the interface

power domain with the power states of sub-component IP

instances. This is a crucial step in composition of IP in the

sense that it links the power aware behavior of subordinate

instances to the power aware behavior of the containing block.

A number of consistency checks can be performed at this

stage and potential problems in power intent specification can

be flagged here.

VII. CASE STUDY

In order to validate this methodology, we applied it to a

complex SoC design with the following characteristics:

 Multiple levels of hierarchy

 Multiple levels of integration

o SoC level integration

o Sub-System Level integration

o Functional block (hard/soft)

implementation

o Internal supplies

A. Example

1) Introduction

The SoC presented in Fig. 1 incorporates low power design

features and techniques that are used extensively in mobile

devices such as smart phones, tablets and notebooks. We have

chosen this example to exemplify the need and value

proposition of hierarchical UPF 2.0/2.1 methodology for

power intent definition and integration. This methodology

should follow the typical development verification and

integration flow of an SoC, in which complex designs are

defined by an architecture that integrates multiple functional

subsystems, advanced connectivity, and an array of custom

IPs and peripherals.

Figure 1. Example SoC

Defining a flat UPF power intent file to be used for

verification and implementation of an SoC is impractical,

extremely expensive, and error prone. It is desirable to have an

SoC system-level UPF that integrates subsystem UPF files,

which can be developed independently in parallel, following

the UPF system level power intent specification but defining

subsystem specific low power strategies and techniques that

can be abstracted from the SoC system-level UPF. This

provides flexibility to subsystem design teams to implement

independently the best low power strategies customized for

each specific subsystem, eliminating the complexity of

defining lower level low power strategies at the SoC UPF

system level.

The UPF hierarchical methodology addresses both soft IP

and hard IP power intent modeling and integration

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

7

requirements. For complex hard IPs such as PLLs, IO Pads,

LPDDR Phys, LDOs, SATA, and memories, it is desirable to

have complete UPF power intent models that describe all the

low power features implemented in the IP block. This goes

beyond the capabilities provided by Liberty files. Complete

definition of supply sets and power states, isolation and level

shifter strategies applied to the boundary ports, feed-throughs

and analog ports specification, internally generated supply

sets, and internal power gating can be described using hard IP

UPF models. It is required that the UPF model of a hard IP to

be a superset of the corresponding Liberty file with respect to

the power intent description.

The UPF model of a soft IP block is defined by the interface

and body UPF file. The system level UPF can use the UPF

interface definitions for each of the subsystems very early in

the design process before those subsystems are actually

implemented. This provides the flexibility to perform power

aware verification of the SoC very early in the design stage

with a simplified model and then later update the UPF body of

the subsystems when the subsystem development is

completed. In this way much more efficient divide and

conquer verification strategies can be employed.

Another major objective of the UPF hierarchical

methodology is to enable portability of UPF files across the

design process from RTL to GDS. We believe that the

proposed methodology creates the framework for a

hierarchical power aware design methodology that can be

further enhanced by future updates of the IEEE 1801 standard.

2) Structure of the design

The SoC architecture comprises of the following:

 SoC top level

o Core_top (Figure 2)

o IO_Sys (Figure 3)

 Sub-Systems

o Communication sub-system

o Multimedia subsystem (Figure 5)

o Application processor

Figure 2. Core top

As shown in Figure 2, the Core_top hierarchy integrates

multiple functional subsystems, each of which has specific

power and functional requirements. Core_top and Multimedia

subsystems share the same primary supply set and contain

memory instances that have dedicated supply sets connected

to the periphery logic and the memory array. Communication

and Application processor subsystems have dedicated external

supply sets that allow independent dynamic voltage and

frequency scaling for different usage scenarios.

Figure 3. IO System

The LDO instantiated in Core_Top generates the internal

supply net vdd3_ldo_int, which is the primary supply for the

power management unit PMU block.

The Communication subsystem integrates multiple soft IP

blocks which are hardened during physical implementation.

Extensive power gating and DCVS techniques together with

isolation and retention strategies are used to optimize the

standby and active power for this subsystem. Similarly the

Multimedia subsystem integrates specific hardware

accelerators such as high definition encoder/decoders and an

encrypted high performance GPU.

Figure 4. Multimedia Subsystem

Figure 5 shows some of the low power techniques that are

implemented in the HD_decoder, such as power gating and

retention flops together with isolation strategies employed for

the output ports when the power gate is in the off state. Feed-

through ports driven by external supply sets and memory

instances with dedicated supply sets for periphery and

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

8

memory array are part of the soft IP implementation.

Figure 5. HD Decoder

B. Application of the Methodology

Using a top down strategy we first defined the system level

supply sets and power states and propagated these

specifications to subsystem level interface UPFs. Then, using

a bottom up approach, we built the subsystem body UPFs and

performed integration. For example, we defined in the UPF

body the power domains and supply sets used in the

HD_decoder block, together with the power states used in the

memory UPF model and the sensor UPF in integrating the

power intent for the corresponding memory and analog sensor

instances. We used the power switch UPF model to generate

the internally collapsible supply net vdd3_int1, and we defined

the isolation and retention strategies. Then we integrated the

HD_decoder UPFs (interface and body) into the Multimedia

subsystem UPF.

 Following the same pattern, we integrated all the

subsystems into the Core_top UPF which in turn was

integrated into the SoC_top UPF. This integration step

included all of the following:

 Top-level glue-logic

 IO pads

 Analog Phys

 PLLs

 On-chip LDOs

Clearly a significant number of hard IPs and soft IPs were

involved in the SoC UPF integration step. This highlights the

need for automation and simplicity (intuitive for the designers

which are building these files) of the integration process.

The subsystems in turn contained a number of elements:

 CPUs

 SRAMs

 On-chip LDOs

 Glue-logic

 Other IPs

The subsystems can be hard IP or soft IPs. Having a

consistent power intent modeling methodology and

specification that works for both hard and soft IP will help the

IP provides to generate consistent power intent models

required for verification and integration.

In order to illustrate the methodology, UPF code snippets

from the example used in this case study are presented in the

following section.

VIII. UPF 2.0 SUPPORT FOR THE METHODOLOGY

In this section, we describe how the specific components of

power intent can be expressed in terms of UPF 2.0 commands.

We also highlight the interactions of UPF commands and

some of the core concepts that enable automation of various

steps. We discuss alternatives for expressing power intent that

give the designer some flexibility in applying the

methodology.

A. Interface UPF

1) Top-level power domain PD

There are three different ways in which the top-level power

domain (PD) interface can be expressed in UPF.

a) Creating PD within the IP scope and including it.

This is typically relevant for modeling IPs containing several

sub-components. The benefit of this is that the whole IP scope

is encapsulated by the interface PD. This allows any UPF

commands executed for this interface PD to have complete

visibility of the IP, hence can be self-contained. This style of

creating the interface power domain allows user to develop IPs

in a module-based approach, where they can refer to top-level

ports for specifying constraints. When this IP is loaded in a

larger context, references to it are qualified with the name of

the instance of the IP.

UPF code
create_power_domain pd_CPU -include_scope

b) Creating PD without adding extent information

This style is used if a large number of IP instantiations are

present in a scope and have similar power management. This

style is suited mainly for modeling Soft IPs in power intent

bodies. In this case, the power domain is created by loading

the interface UPF of the IP but the extent is not populated.

Since the extent is not added during loading interface UPF,

this style requires an additional step of updating extents. This

also allows user to create power domain in the same scope as

the IP integrator and associate multiple instances in the same

scope to that power domain.

The power domain is created in the power intent interface

with an empty element list, which signifies that the extent will

be updated later in parent scope.

UPF Code
create_power_domain pd_MMS -elements {}

c) Interface Supply Sets

This is a special case where instead of creating a power

domain to represent an interface, a supply set is created. This

is typically used in modeling internal supply sources. Because

the supply sources generate additional supplies, supply sets are

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

9

sufficient to model the power intent interface without a need

to create an explicit power domain.

UPF Code
create_supply_set $ldo_op_sset

2) Input supplies

Input supplies are modeled as supply set handles of the top-

level power domain. This allows the designer to symbolically

refer to supply sets imported from higher levels of the design

hierarchy. It also restricts the inputs to the name space of the

interface PD to avoid any problem with name clashes.

UPF Code
create_power_domain pd_MMS -update \

 -supply { gpu_ssh } \

 -supply { sram_ssh }

3) Input supply constraints

These are modeled as supply expressions for named power

states defined on input supply set handles. The specification is

done in terms of symbolic function handles, hence it doesn’t

require any supply nets to be associated with supply sets to

specify constraints. It is also possible to specify voltage ranges

in the constraints.

UPF Code
add_power_state pd_MMS.primary \

 -state ON_1d2V {

 -supply_expr {

 (pd_MMS.primary.power=={FULL_ON, 1.2}) &&

 (pd_MMS.primary.ground==FULL_ON)

 }

 }

4) Input logic control ports

These are modeled using the create_logic_port

command in UPF.

UPF Code
create_logic_port iso_ctrl

5) Internal supply constraints

These are defined by loading the interface UPF

corresponding to internal supplies. Refer to B.1 for more

details.

UPF Code
sw_op_sset is the parameter which refers to

output supply set created in

switch_interface.upf

sw_ip_sset is the parameter corresponding to

input supply set connected to switch.

inp_ss_state_list is the list of power

states on input supply set which will be

added on output supply set with additional

constraints

load_upf_protected upf/switch_interface.upf \

 -params { \

 {sw_op_sset ss_cd_MMS_pg_sw} \

 {sw_ip_sset pd_MMS.primary} \

 {inp_ss_state_list {ON_1d2V}} \

 } \

 -hide_globals

6) Output supplies

These are defined in the same way as for input supplies,

except that we must also associate the output supply set of an

internal supply with the appropriate supply set handle.

UPF Code
create_power_domain pd_MMS -update \

 -supply { sw_primary_ssh ss_cd_MMS_pg_sw }

7) Output system states

These are specified by adding power states on the interface

power domain or interface supply sets. The states are added

using the add_power_state command and the

relationship is expressed using a logic expression written in

terms of states of input supplies and internal supplies.

UPF Code
add_power_state pd_MMS \

 -state PD_MMS_ON {

 -logic_expr {

 (pd_MMS.sw_primary_ssh == ON_1d2V) &&

 (pd_MMS.primary == ON_1d2V) &&

 (pd_MMS.gpu_ssh == ON_1d2V) &&

 (pd_MMS.sram_ssh == ON_1d2V)

 }

 }

8) Interface logic port constraints

These constraints are specified using the two options

–driver_supply_set and –receiver_supply_set

of the set_port_attributes command. These

constraints may be specified in different ways depending upon

the style of power domain creation used to define the

interface.

If style A.1.a is used then it is safe to directly refer to

interface ports present on the HDL interface. Since the whole

scope is included, all of the interface ports are visible.

If style A.1.b is used then it is not safe to refer to ports

directly by name when PD is not created in the same scope as

IP, as there is a possibility of multiple scopes being included

in the interface. In this case, designers can use filters and rules

to specify port constraints.

UPF Code
set_port_attributes -ports { out_vdd5 } \

 -driver_supply pd_MMS_GPU.vdd5_ssh

set_port_attributes -domains { pd_MMS } \

 -applies_to inputs \

 -receiver_supply pd_MMS.primary

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

10

9) Interface port power management cell requirements

In some cases, it is important to specify the isolation, level

shifting, and retention requirements for the top-level interface

power domain. This is typically done when there is no need to

create explicit control ports and thus we can avoid having to

explicitly connect them. A similar connection can be achieved

automatically by updating controls in the parent UPF where

control nets are visible. In such cases, the controls will be

automatically routed to the exact place they are used by

implicitly creating ports and nets and connecting them. If

strategies are specified in the interface UPF, their controls are

intentionally left unspecified so that they can be added later

while integrating the IP.

UPF Code
set_isolation pd_iso_op \

 -domain pd_cpu \

 -clamp_value 0 \

 -applies_to outputs \

 -location self

set_isolation pd_iso_ip \

 -domain pd_cpu \

 -clamp_value 0 \

 -applies_to inputs \

 -location self

set_level_shifter pd_ls -domain pd_cpu

set_retention pd_ret -domain pd_cpu

B. IP Integration

1) Loading power intent interfaces

The interface UPF of each subcomponent is loaded by the

parent UPF using the load_upf_protected or

load_upf commands.

The load_upf_protected command provides

additional features such as passing the parameters and

restricting visibility of global names. This is useful when UPF

files are parameterized for reuse using Tcl variables. In such

cases, the –params option of load_upf_protected is

used to specify the value of the variables. It is generally

recommended to use the –hide_globals option when a

UPF file uses global variables and restrict the value

specification through the –params option. This avoids any

un-intended values being assigned to those variables.

For cases where a power domain is created in a subordinate

scope, the –scope option is used to automatically change the

scope to the scope in which the power domain is created.

UPF Code
load_upf_protected upf/ldo_interface.upf \

 -params { \

 {ldo_op_sset ss_cpu0} \

 {ldo_ip_sset pd_app_proc.cpu_ssh} \

 } \

 -hide_globals

load_upf_protected upf/cpu_interface.upf \

 -params { \

 pd_cpu \

 } –scope cpu_i

load_upf upf/app_proc.upf \

 -scope application_processor_i

2) Update the extent information for IP

This is done by invoking the create_power_domain

command with –update and –elements options. The

command must be executed in the scope in which the IP is

integrated as this scope has the visibility of the instance name

of the IP.

UPF Code
create_power_domain pd_GL -update \

 -elements { gl_i }

3) Connecting supplies

Supply connections are accomplished by using the UPF

associate_supply_set command. This command

associates the supply set imported from the parent context

with the IP’s supply set handle.

UPF Code
associate_supply_set pd_app_proc.sw_pri_ssh \

 -handle pd_GL.primary

4) Updating supply constraint

This is also done with the add_power_state command,

using the –update option to add constraints from the IP’s

input supply set.

UPF Code
add_power_state pd_app_proc.sw_pri_ssh \

 -update \

 -state ON_1d2V { \

 -logic_expr { \

 (pd_GL.primary == GL_ON_1d2V) \

 } \

 } \

 -state OFF_STATE { \

 -logic_expr { \

 (pd_GL.primary == GL_OFF_STATE) \

 } \

 }

5) Connecting control signals

There are two ways in which control signals can be

connected during integration of the IP.

Explicit Connection: This is done when the IP interface

contains explicit declarations of logic ports that need to be

connected. It is done using the UPF connect_logic_net

command.

Implicit Connections: This is done by updating the

controls in the strategies. This approach is used when the

strategies are defined in the power interface of the IP.

UPF Code

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

11

Explicit Logic Connection

connect_logic_net iso_ctrl \

 -ports { mms_i/iso_ctrl }

Implicit Logic Connection

set_isolation pd_iso_op -update \

 -domain pd_GL \

 -isolation_signal iso_ctrl \

 -isolation_sense high

C. Body UPF

1) Internal power domains

The internal power domains are created in the same way as

is done for an interface UPF. Power domains that follow

A.1.a/A.1.b are automatically created when their IPs are

loaded in the system.

UPF Code
create_power_domain pd_cpu0 -elements {inst1}

2) Integration of sub-system IPs and supplies

The integration of a sub-system is performed in the same

ways as described in section B.

UPF Code
**---------------------

** INTEGRATE: GlueLogic

**---------------------

**---------------------

** INTEGRATE: LOAD CONSTRAINTS

**---------------------

load_upf upf/glue_logic.upf –scope gl_i

**---------------------

** INTEGRATE: UPDATE Extents

**---------------------

Not required already done in previous step

**---------------------

** INTEGRATE: CONNECT Supplies

**---------------------

associate_supply_set pd_app_proc.sw_pri_ssh \

 -handle gl_i/pd_GL.primary

associate_supply_set pd_app_proc.primary \

 -handle gl_i/pd_GL.default_isolation

associate_supply_set pd_app_proc.primary \

 -handle gl_i/pd_GL.default_retention

**---------------------

** INTEGRATE: UPDATE Supplies Constraints

**---------------------

add_power_state pd_app_proc.sw_pri_ssh \

 -update \

 -state ON_1d2V { \

 -logic_expr { \

 (gl_i/pd_GL.primary == GL_ON_1d2V) \

 } \

 } \

 -state OFF_STATE { \

 -logic_expr { \

 (gl_i/pd_GL.primary == GL_OFF_STATE) \

 } \

 }

add_power_state pd_app_proc.primary \

 -update \

 -state ON_1d2V { \

 -logic_expr { \

 (gl_i/pd_GL.default_isolation==GL_ON_1d2V)&&\

 (gl_i/pd_GL.default_retention==GL_ON_1d2V) \

 } \

 }

**---------------------

** INTEGRATE: CONNECT Logic Controls

**---------------------

set_isolation pd_iso_op -update \

 -domain gl_i/pd_GL \

 -isolation_signal iso_ctrl \

 -isolation_sense high

3) Load the body of sub-component IPs and supplies

The body of the power intent specification for each IP

instance and the body of the power intent specification for all

internal supplies are loaded in a similar way to their power

interface UPF. The difference here is that additional

parameters can be passed to provide the scope information to

the body UPF. Because the body UPF is intended to be loaded

only inside Power intent body of IP, the scopes within the IP

instance are visible to the parent context and can be passed to

the body UPF of the sub-component IP blocks and supplies.

UPF Code
load_upf_protected upf/ldo_body.upf \

 -params { \

 {ldo_ip_sset pd_app_proc.cpu_ssh} \

 ldo_scope \

 ldo_op_sset \

 } \

 -hide_globals

load_upf_protected upf/cpu_body.upf \

 -params { \

 cpu_scope \

 pd_cpu \

 }

4) Defining simstate behavior of power domains

Simstates are added to the definitions of supply set power

states using the add_power_state –update command.

In this step the primary supplies of internal PDs and interface

PD are associated with input or internal supplies present in

Interface UPF before updating the simstate behavior.

UPF Code
add_power_state pd_app_proc.primary \

 -update \

-state ON_1d2V { \

 -simstate NORMAL \

 }

5) Specifying isolation/level shifter and retention

The strategies for isolation, level shifting and retention are

specified for the internal power. These strategies should refer

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

12

to controls defined in the interface or controls of any other

strategies.

UPF Code
set_retention pd_ret \

-domain pd_MMS_pg \

-save_signal { ret_ctrl posedge } \

-restore_signal { ret_ctrl negedge }

set_isolation pd_iso_op \

-domain pd_MMS_pg \

-clamp_value 0 \

-applies_to outputs \

-location parent \

-isolation_signal iso_ctrl \

-isolation_sense high

set_level_shifter pd_ls \

-domain pd_MMS_pg

6) Specifying automatic connection semantics

The automatic connection semantics are specified by the

connect_supply_set command. If the domain contains

multiple supply sets, then multiple connect_supply_set

commands may be needed. Additionally, users can explicitly

associate pg_type attributes to hard macro pins if required.

UPF Code
#Automatic connection semantics for

#Hard Macro Supply Connections

connect_supply_set pd_MMS_GPU.primary \

 -connect { \

 power {primary_power pg_gpu_vdd8} } \

 -connect { \

 ground {primary_ground} }

#Ground is common, so not connected again

connect_supply_set pd_MMS_GPU.vdd5_ssh \

 -connect { power {pg_gpu_vdd5} }

connect_supply_set pd_MMS_GPU.vdd3_ssh \

 -connect { power {pg_gpu_vdd3} }

7) Updating output power states

The system states specified in the interface UPF are now

updated to reflect the sub-component instance states. This

creates the necessary correlation between power states of the

IP block in and power states of its sub-components.

To achieve this, the add_power_state command is

used with the –update option; the power state relationships

are specified with –logic_expr.

Note that the same states are specified in the interface UPF

with logic_expr containing reference to supply sets. These

state definitions are now updated with information about

subcomponent states. This redundancy is necessary to ensure

that the whole system is working properly without violating

any constraints specified in the interface UPF. As UPF

provides an internal self-checking mechanism for the

add_power_state command any logical contradiction is

caught by tools and reported as an error. Hence, any tool

compliant with the UPF standard will catch any such issues in

a power intent specification.

UPF Code
add_power_state pd_MMS -update \

 -state PD_MMS_ON {

 -logic_expr {

 (cd_MMS_pg == PD_MMS_PG_ON)&& \

 (mms_gpu_i/pd_MMS_GPU==PD_MMS_GPU_ON)&&\

 (pd_SRAM == PD_SRAM_ON) \

 } \

 }

IX. SUMMARY

With the increasing complexity of today’s SoCs, power

management has become a critical aspect of the design

process, one that cannot be ignored due to its potential impact

on overall functionality. A typical SoC consists of various IPs

each performing some specific functionality along with its

own power management strategy. In some IPs the power

management can become quite complex involving multiple

power domains with different power requirements. Integrating

multiple IPs into a SoC, while maintaining correctness of the

power management structures, and ensuring that no functional

issues are introduced in the process, can be very challenging.

Reuse and hierarchical composition are an integral part of

any SoC design. It is very difficult to reason clearly about the

interaction of functionality and power management using a

flat model of the two. A methodology that supports

hierarchical composition and reuse of power intent along with

functionality is required. Automation of tedious tasks involved

in IP integration is also important to minimize human

interaction and chances of human error.

In this paper, we have shown how designers can express

their power intent using UPF 2.0 capabilities in the context of

a hierarchical methodology that helps ensure correctness at

both IP and system levels. The methodology addresses the

power management requirements of both soft IP and hard IP

blocks. The methods presented in the paper enable tools to

automate connection and routing of supplies to the appropriate

domains as well as verification of power constraints as each IP

block is integrated, to ensure coherency of the power intent at

various levels of the SoC development.

X. FUTURE WORK

Although the methodology described in this paper can be

used effectively with UPF 2.0, some improvements may

become possible as UPF continues to evolve.

One area of potential improvement is in the use of the

add_power_state command. In UPF 2.0, this command

can be used to define power states of supply sets or power

domains. However, there is no syntax to indicate which of the

two uses is involved in a given command. Furthermore, there

are two uses of power domains in this methodology: one to

model real power domains in the design, the other to model

the interface to an IP block, so that supply sets can be passed

into the UPF specification for the interface of that block. Here

again there is no syntactic differentiation between these two

cases. A possible enhancement to UPF would be to add a

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

13

qualifier to distinguish these three applications. With such a

qualifier, additional automation or constraint checking would

become possible, and supply expressions used to define some

power states could potentially be simplified.

Another area of potential improvement is in the handling of

control signals. Supply set parameters to a UPF interface

specification are defined as supply set handles associated with

the top-level power domain, but this approach does not work

for control signals, which instead must be defined as logic

ports on the top-level module of the IP block. Since the top-

level power domain is functioning as the power interface to

the IP block, it would be convenient to be able to associate

control inputs with that interface as well, and refer to them in

much the same way that supply set handles are referred to.

Unifying the power interface to include both supply sets and

control signals would help streamline the methodology and

make it more consistent.

These are only two areas in which enhancements to UPF

could help improve the hierarchical methodology presented in

this paper. As users gain experience with application of this

methodology to large complex SoC designs, additional areas

of potential improvement will likely be identified.

XI. APPENDIX – TEMPLATE UPFS

While working on the case study example we found that

using the following template UPFs helped in creating power

intent using this methodology by guiding the user to address

each successive step in the methodology. The template UPF is

a plain UPF file containing a set of comments indicating

different steps for the methodology. The user can fill the

relevant sections of the template UPF with UPF commands as

described in section VIII. Listed below are three template

UPFs corresponding to three major categories of the

methodology.

1) Interface template UPF

UPF Code

****** INTERFACE UPF ******

**-------------------------------

** INTERFACE: Top level system PD

**-------------------------------

**-------------------------------

** INTERFACE: INPUT Supply Set

** Handles

**-------------------------------

**-------------------------------

** INTERFACE: INPUT logic port

**-------------------------------

**-------------------------------

** INTERFACE: INPUT Supply Set

** CONSTRAINTS

**-------------------------------

**-------------------------------

** INTERFACE: INTEGRATE Internal

** SUPPLY interface

**-------------------------------

**-------------------------------

** INTERFACE: OUTPUT Supply Set

** Handles

**-------------------------------

**-------------------------------

** INTERFACE: OUTPUT System STATES

**-------------------------------

**-------------------------------

** INTERFACE: PORT Constraints

**-------------------------------

**-------------------------------

** INTERFACE: Isolation/Level

** Shifter/Retention

** of INTERFACE PD

**-------------------------------

2) Integrate template UPF

UPF Code

****** INTEGRATE UPF ******

**-------------------------------

** INTEGRATE: LOAD Interface UPF

**-------------------------------

**-------------------------------

** INTEGRATE: UPDATE Extents

**-------------------------------

**-------------------------------

** INTEGRATE: CONNECT Supplies

**-------------------------------

**-------------------------------

** INTEGRATE: UPDATE Supplies

** Constraints

**-------------------------------

**-------------------------------

** INTEGRATE: CONNECT Logic

** Controls

**-------------------------------

3) Body template UPF

UPF Code

****** BODY UPF ******

**-------------------------------

** BODY: DEFINE Internal Power

** Domains

**-------------------------------

**-------------------------------

** BODY: INTEGRATE Sub-component

** IP and Internal Supplies

**-------------------------------

**-------------------------------

** BODY: LOAD BODY of sub-component

** IP and Internal Supplies

**-------------------------------

**-------------------------------

** BODY: DEFINE SIMSTATE BEHAVIOR

** for Internal and INTERFACE

** PDs

**-------------------------------

**-------------------------------

** BODY: Specify ISOLATION,

** LEVEL SHIFTER and Retention

** with controls connected

**-------------------------------

**-------------------------------

** BODY: Automatic connections

** for hard macros

**-------------------------------

DVCon 2012: 131-II287: Low Power SoC Verification: IP Reuse and Hierarchical Composition using UPF

14

**-------------------------------

** BODY: Update SYSTEM STATES

** based on sub-component IP

**-------------------------------

ACKNOWLEDGMENTS

The authors wish to acknowledge the valuable input from

many discussions with members of the IEEE P1801 (UPF)

working group regarding the requirements for hierarchical

UPF methodology and the potential methods for supporting

hierarchical power intent specifications. Those discussions

contributed significantly to our understanding of what is

possible in UPF 2.0 and helped lead to the methodology

described herein.

REFERENCES

[1] W. Wolf, Modern VLSI Design: IP-Based Design, Prentice Hall, New

York, NY, USA, 2008.
[2] IEEE Std 1801™-2009 for Design and Verification of Low Power

Integrated Circuits. IEEE Computer Society, 27 March 2009.

[3] Keating, M., Flynn, D., et al. Low Power Methodology Manual for
System on Chip Design. Chapter 2, Standard Low Power Methods.

Springer, 2007.

[4] Svendsen, K., Seeley, C., Marschner, E., Achieving First-Time Success
with a UPF-based Low Power Verification Flow, DVCon 2011,

February 2011.

[5] Yeung, P., and Marschner, E., Power-Aware Verification of ARM-
Based Designs, ARM TechCon 2011.

[6] Freddy Bembaron, Rudra Mukherjee, Amit Srivastava and Sachin

Kakkar : “Low Power Verification Methodology using UPF.”, DVCon
2009.

[7] Rudra Mukherjee, Amit Srivastava, Stephen Bailey: “Static and Formal
Verification of Low Power Designs at RTL using UPF”, DVCon 2008.

[8] Stephen Bailey, Amit Srivastava, Mark Gorrie, Rudra Mukherjee: “To

Retain or Not to Retain: How do I verify the states of my low power

design”, DVCon 2008.

