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Abstract- Low power (LP) design verification is an emerging technology, and almost every chip design today 

incorporates UPF (IEEE-1801 standard) based power dissipation and reduction techniques to manage and control the 

power on chip. Coverage data from LP verification in general originates from UPF and relevant HDL objects, i.e. 

power domains, power supplies, power states, different power strategies, control signals and ports of the power 

strategies. Obviously the nature of power states and their transitions are quite different from non-LP state machines. In 

addition, the industry lacks in semantic references for formation of power state machines or power states and state-

transition to develop a complete LP coverage computation models, as well an adaptable database with application 

programming interface (API) to collect, access and represent the computed LP coverage. In order to fulfill these missing 

pieces, we first identified all the resources of the LP coverage contributors and categorized them as UPF cover-bins. We 

also identified UPF cross-cover-bins for interdependent power states in a complex hierarchical UPF flow and proposed a 

simplified dependency graph to represent interdependent power states coverage computation models. Through real 

design examples and case studies, we demonstrate how to achieve comprehensive LP design verification closure with all 

possible sources of power states, their transition coverage and cross-coverage of power domains of interdependent 

states. As well the paper also proposes the mechanism to combine and represent LP and non-LP coverage in a unified 

and adaptable database with API accessibility. 

 

I.   INTRODUCTION 

Dynamic simulation results are inconclusive in nature and often need to be quantified with definitive metrics 

that possibly denote verification coverage closure through numeric values (in percentages) in conjunction with 

appropriate design parameters. Coverage provides meaningful insight into design verification completeness. The 

coverage metric in dynamic simulation is a system or standard of measurement used to describe the degree to 

which the design is exercised with certain design objects or parameters for a particular test suite or testplan 

execution. Even the testplan is subject to measurement as a weighted metric and recapitulated to contribute to the 

total resultant coverage metric for the design. The resultant metrics from such diversified objects or parameters are 

stored in a common, unified coverage database (UCDB). UCDB provides accessibility to further enhance the 

coverage metrics with new coverage results from different new sources through coverage merging, as well as a 

mechanism to analyze and generate the coverage reports through API, such as the industry standard Accellera 

UCIS API. 

Unlike non-LP coverage, LP coverage data solely originates from the abstraction of UPF and relevant 

HDL objects. Moreover, in low power dynamic simulation state space, the UPF power states and their transitions 

are asynchronous in nature and may refer or depend on other power states. Even more than one power state can 

remain true at a time, while it is possible to mark any power state as illegal anytime. These unique but 

contradictory features of power states with respect to non-LP state machines make it difficult to formulate LP 

coverage computation models and coordinate with UCDB. Obviously the coverage information extraction from 

power states and their transitions are difficult and must rely on an exhaustive process. The characteristics of a 

power state are diversified in nature and can be best summarized as follows. 

  

List 1: Characteristics of Power States 

- Power states are abstract at higher levels and physical (supply port and nets) at lower levels of design 

abstraction, 

- They are applicable for different UPF objects that include rudimentary parts of supply networks and 

design elements; e.g. power supplies, power domains, design groups, design models, and design 

instances, 

- Power states may reference descendant power domains or power supply states from the scope of top 

domains, 
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- Power states denote different operation modes based on different combinations of power domains and 

their power supplies,  

- They are subject to interdependency between different UPF objects; e.g. power domain and supply set 

- It is possible that power states may be exposed to spontaneous state transitions between interdependent 

objects. 

 

Hence, it is required to comprehend all possible sources of power states and their transitions from the 

above lists for developing a complete LP coverage computation model.  

 

A. Motivation: The Missing Pieces of LP Coverage 

 UPF based Low power verification is now industry standard and mandatory part in the design 

verification and implementation flow (DVIF). Hence LP coverage became attractive topics to the low power 

verification community in recent years. Specifically, several papers have been published in the last few years 

(2015-17), focusing on power state and transition coverage features and other LP coverage functionalities based on 

UPF and HDL objects [3], [4], and [6].  

However the foundation of low power coverage is not focused in a consolidated manner and remains 

detached from non-LP coverage. Because primary sources of LP coverage – the power states are abstractly defined 

in UPF. Consequently there is no pre-defined coverage methodology to capture power states and their transition. 

The UCIS also do not have any standard for low power coverage based on UPF intents at the time when this paper 

is written. Although EDA tools often craft SystemVerilog covergroup to sample different low power signals to 

collect different coverpoints and cover bins [6] with coverage properties — they are just inadequate to cover 

numerous sources of low power states and their transitions, as well accommodation or merging of LP coverage in 

UCDB with non-LP coverage. As a result, the LP coverage remains a missing piece in the entire functional 

verification environment, specifically in dynamic simulation.  

In this paper, we are motivated with the objective to create the foundation of a comprehensive and 

standard LP coverage computation model to fulfill the missing pieces. We demonstrate LP coverage computation 

and representation methodologies with case studies and real examples that are actually incorporated and executed 

through LP dynamic verification tools. We further hope that the proposed methodology, standardization and 

experimental results from our studies will remain as the first source of physical interpretation and implementation 

proof of the complete LP coverage computation models and database. 

 

B. Organization of This Paper 

This paper is organized in the following structure. In Section II, we conduct exhaustive studies to identify 

every possible contributor that forms the foundation of low power coverage. This section also explains the LP 

coverage methodologies with specific examples that are defined and as well that are missing in the UPF language 

reference manual (LRM) [1], [2]. The next section explains the comprehensive LP coverage computation models 

through case studies. The proposed LP coverage computation models — an adaptive coverage database to fulfill 

the missing pieces are explained in Section III. The final Sections IV shows the prospect of further research and 

shares concluding remarks. References are shown at the end. 

 

II.   FOUNDATION OF LP COVERAGE 

In order to propose a complete LP coverage solution, at first we will explain the fundamental concept of 

UPF intents on a simple design. Then we find out the primary contributors of LP coverage from the characteristics 

of power states as extracted from UPF methodologies and as explained in Section I.  

Let us consider a simple CPU core design to apply UPF intent on it. Figure 1 explains multiple power 

domains (PD) on the CPU core (like PD_top, PD_sub1 through PD_sub5 etc.) which confines different portions of 

the design. For simplicity, the examples and explanations used throughout this paper, we will only consider the 

default PD_top, PD_sub1 and PD_sub2 power domains, which are for the cpu_top module and uALU_top and 

uALU_sub instances of the design respectively. Here, the PD_top has only one- ON power state, while PD_sub1 

and PD_sub2 both have ON and OFF power states. In addition, PD_sub1 also possesses state retention registers 

(RFF) to store the states and data during power OFF. In addition, the Figure 1 also shows most of the special LP 

or multi-voltage (MV) cells, like isolation (ISO) cells, enable-level-shifter (ELS) cells (which are combined with 

ISO and LS ), power-switch (PSW) cells and level-shifter (LS) cells. 
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Figure 1 Concepts of UPF, Power Domain and UPF Strategies (ISO, ELS, PSW, RFF) on a Design  

 

Regardless of UPF versions and releases (UPF 1.0/2/2.1/3/3.1), we identified that the power-state 

machines (power states and their transitions) in an LP simulation (LP-SIM) or coverage analysis environment can 

originate from one or a combination of the UPF constructs, UPF commands and their relevant options shown in 

List 2. 

 

C. Contributors of LP Coverage  

 List 2: The Source of Power States and Their Transitions from UPF Constructs 

- Supply Port States from add_port_state, 

- Supply Net States from Power State Table (PST), 

- PST States from add_pst_state, 

- Power Domain States from add_power_state, 

- Supply Port, Supply Net, and Supply Set Function States from add_supply_state,  

- Power States of the Power Supply Sets from add_power_state, etc. 

 

It is evident that the power states originating from these different types of UPF constructs directly affect 

the requirements and placement of special power management cells, often known as multi-voltage (MV) or LP 

cells, such as ISO, ELS, PSW, and RFF in the design. Hence it is also required to collect coverage information 

from these MV cells. However, for dynamic simulation, the coverage information for MV cells, apart from PSW, 

may be collected only from the different states and transitions of their controls and acknowledgement signals. 

Specifically the signals can be listed as shown below. 

 

List 3: The Source of Power States and Their Transitions from UPF Strategies 

- Isolation “Enable” Signal,  

- Retention “Save and Restore” Signals,  

- Power Switch States and Transitions, 

- Power Switch “Control Port”, 

- Power Switch “Ack Port” 

 

Recalling the syntax and example of ISO, RFF, and PSW from [2], it is evident that all of the above 

mentioned control and acknowledgement signals have the following transitions: 

 

 List 4: Transitions of Control Signals for UPF Strategies 

- High-to-Low and  

- Low-to-High Transitions.  

 

As well, during simulation, the status of these signals may remain in one of the following states: 

 

List 5: States of Control Signals for UPF Strategies 

- Active through presenting a value (level sensitive) or transition (edge sensitive), 

- Inactive (opposite to the active) 
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- Active x (driving unknown) 

- Active z (remain floating or un-driven)  

 

In addition, apart from the control and acknowledgement signals, the functionality of the PSW itself 

allows the following state values and their possible combination of transitions as defined in the IEEE 1801 

specification: 

 

List 6: State Values of Power Switch, Control, and Acknowledge Ports  

- ON state,  

- OFF state,  

- Partial ON state and 

- UNDETERMINED (ERROR) state. 

 

Here, at any given time, the ON or the partial ON state contributes a value to the output port of the PSW. 

The UNDETERMINED status comes into existence only when the ON or partial-ON state Boolean expression for 

a given input supply port, which is not in the OFF state, refers to an object with an unknown (X or Z) value, then 

the contributed value at the output of PSW remains {UNDETERMINED, unspecified}.  

 

ON
PARTIAL 

ON

OFF UNDETERMIND

ERROR  
 

Figure 2 Power state-Transition Diagram of PSW 

 

However, in LP-SIM, the UNDETERMINED states are interpreted as ERROR states. Hence the PSW 

itself also has the states as shown in List 6. The coverage metric required to cover all possible transitions between 

these states for a PSW is best represented in Figure 2.  

Hence, from the above extractions and observations of UPF methodologies, objects, strategies and state 

values, we realized that the foundation of an LP coverage information model can be developed from power states 

and their transitions based on fundamental aspects of different UPF constructs from add_port_state, 

add_pst_state, add_power_state and add_supply_state. We define these set of UPF commands as UPF 

coverage constructs. Whenever a design encounters these UPF coverage constructs, the LP-SIM or coverage 

analytical engine will generate UPF cover-bins. We define UPF cover-bins, as shown below, as a combination of 

coveritem and coverpoint, based on UCIS models [7].  

 

UPF cover-bins: This is a counter construct with specific decorated items. These items are generalized and based 

on UPF coverage constructs, i.e. name of state, status (legal/illegal), scope (design scope), attribute (ports or 

nets) etc. The UPF cover-bins represents LP coverage data collected from corresponding UPF coverage 

constructs.  

  

Obviously the items in List 3 through List 6, which are the sources of additional power states and their 

transitions from power strategies, as well as transitions, states and state values of control (and acknowledge) 

signals of these strategies will also generate additional UPF cover-bins accordingly.  

From the above discussion, it is apparent that designing a complete LP coverage computation model is 

complicated and has to rely intensely on various nonstandard and nontraditional aspects of coverage 

measurements. Specifically, explicitly decorating the items within an UPF cover-bin, for example, legality status, 

scope of coverage contribution in terms of design hierarchy, as well as some implicit features listed in List 1, such 
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as different operation modes of power states based on different combinations of power domains and their power-

supplies, interdependency between different UPF objects; e.g. power domain and supply set and the possibility of 

power states to spontaneous state transitions between interdependent objects. 

However, through a comprehensive and coherent analytical model, tool, and methodology augmentation; 

it is possible to completely enumerate the coverage collection, analysis, and results representation through UPF 

cover-bins. The entire LP coverage metric computation model mostly relies on the characteristics of power states 

shown in List 1 through List 6. We further updated the list of LP coverage contributors to a new list based on the 

analytical discussions in the previous two sections and also considering few non-LP coverage features, like code 

coverage in LP environment. 

 

List 7: Updated List for the Complete Sources of LP Coverage Computation Model 
(1). Coverage information from LP Dynamic Checks based on; 

- LP testbench and LP augmented RTL (Code Coverage),  

- Automated LP Sequence Checkers and  
- Custom LP Checkers, 

(2). Coverage Information from Power States and Power State Transitions based on; 

- Design controls, 

- Supply ports and nets created in the UPF and design, 
- Power domains and their power states, 

- Supply sets and their states, 

- Power Switch States and their Transitions, 
- State transitions for ISO, RFF, PSW Control and Acknowledgement signals, 

(3). Coverage Information from Cross-Power Domain Power States Dependency based on; 

- All possible combinations of interdependent power states, 

- As well as their possible spontaneous transitions. 

 

 We will  discuss each of the subheader categories mentioned in the List 7, in succedding subsections. 

 

D. Coverage Information from LP Dynamic Checks 

The common assumption about custom LP checkers and automated LP sequence checkers are that they 

generally contribute to coverage when they have never failed and have passed at least once during dynamic 

simulation. Their coverage computation models are primarily based on either a SystemVerilog covergroup or its 

extension. However the LP or UPF augmented code coverage is not straightforward. UPF adds power artifacts and 

instruments initial begin blocks, always@ blocks sensitivity lists, and it changes the structures of design instances, 

branches and conditions. Hence, generating UPF cover-bins for UPF instrumented RTL code to compute LP code 

coverage and merging it later with non-LP code coverage is impractical. However, toggle coverage may still be 

applied on the UPF instrumented RTL code since it looks only for HDL objects with values such as variables and 

nets and tracks the changes in those values. 

Hence for a complete RTL code coverage model, we propose that RTL code coverage must be 

accomplished in a non-LP environment and merge only LP toggle coverage data from UPF instrumented RTL 

code to non-LP code coverage results. Neverthless we also need to make sure that the other code coverage data 

models — specifically, branch, statement, blocks, condition, expressions etc. — for both UPF instrumented RTL 

and non-LP RTL remain formally or logically equivalent. However, formulating the code coverage data models 

equivalency checks are out of the scope of this paper and will be discussed in a different platform.    

 

E. Coverage Information from Cross-Power Domain Power States Dependency 

 Since we have already discussed on coverage information from power states and power state-transitions in Section II-

C, hence we will focus our discussion on coverage information from power domain power state dependency. In order to 

understand the dependency we need to clarify the UPF LRM semantics responsible for such dependency. UPF defines a power 

state for a power domain and its associated supply networks through add_power_state command. The definition further 

allows referencing the port state of any supply port or supply net in the descendant subtree from the scope of the top power 

domain. The UPF add_power_state syntax is shown below: 

  

 Example 1 UPF Syntax for add_power_state 

add_power_state 

[-supply | -domain | -group | -model | -instance] object_name 
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[-update] 

[-state {state_name [-logic_expr {boolean_expression}] [-supply_expr {boolean_expression}] 

[-simstate simstate] 

[-legal | -illegal]}] [-complete] 

 

The add_power_state command provides the capability to augment power states to different UPF objects 

through the <object_name>. The <state_name> represents the user specified name for a power state that is just 

defined or updated for the <object_name>. The –logic_expr is used to define the power states for either supply 

sets or power domains. The expressions are constructed by referencing control conditions, clock frequencies, and 

power states of the domain supply sets. On the other hand -supply_expr is used only for power states of supply 

sets; it refers to the functions of supply states of the supply set. Each of these expressions can be further defined as 

either legal or illegal. 

Hence it is distinctive that the logic and supply expressions in the add_power_state definition are based 

on various conditions through Boolean expressions. These Boolean expressions may contain control conditions, 

design parameters as well as power state information from different power domains including hierarchically lower 

level domains. Though such subtree power state referencing from top, allows symmetrical hierarchical 

representations of power domains, supply network, and their corresponding power states, but they may also 

impose inter-state dependency that is often difficult to track. The following simple example shows the power states 

of the PD_top domain in terms of logic expression. 

 

 Example 2 UPF add_power_state Sample Example with -logic_expr 

add_power_state PD_top -state SYS_ON {-logic_expr {PD_sub1 == SUBSYS1_ON && PD_sub2 == 

SUBSYS2_ON}} 

add_power_state PD_top -state SYS_OFF {-logic_expr {PD_sub1 == SUBSYS1_OFF && PD_sub1== 

SUBSYS1_RET && PD_sub2 == SUBSYS2_OFF}} 
 

PD_top

PD_sub1

PD_sub2

ON

OFF ON

OFF ON

D
ep

th
: 1

D
ep

th
:2

D
ep

th
: 1

RET

OFF ON
 

 

Figure 3 Power state Dependency Diagram 

 

These examples are proof of dependency of power states among power domains from PD_top to subtree 

domains, PD_sub1 and PD_sub2, and it is further clarified in Figure 3.  

Since these power states and transitions are highly interdependent in a hierarchical UPF flow, we define a 

new UPF cross-cover-bins for such dependent power states coverage. All though cross-cover-bins are just 

extensions of previously defined UPF cover-bins, they possess additional decoration items to determine the depth 

of hierarchical crossings. 

The UPF 1801-2013 LRM (UPF 2.1) and 1801-2015 LRM (UPF 3.0) defines two semantically identical 

commands for monitoring the legality of power state transitions from one named power state to another; namely 

describe_state_transition and add_state_transition; but their semantics do not comply with the context and 

requirements to decorate the UPF cross-cover-bins. 

Hence we propose an extension of the UPF methodology for computing cross-coverage power states and 

their transitions. We also developed an internal mechanism to decorate the cross-cover-bin to compute coverage 

for hierarchically dependent power domains. For simplicity, let us first explain the cross-cover-bin computing flow 

and then the extension of the methodology. The computation model of cross-cover-bins can be best represented by 

a simple dependency graph (Figure 4). The nodes of the graph are based on power state logic and supply 

expressions, where the nodes represent power states, and their edges represent transitions between the nodes. A 

path between the nodes denote a sequence of nodes and edges, connecting a node with its descendant and (or) 

dependent. 
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Figure 4 Dependency Graph for Cross-Coverage Computation Model for Power Domains Group PD_top-

>PD_sub1->PD_sub2. 

 

The LP-SIM or coverage analytical engine are required to monitor and capture the transitions from the 

edges of the graph. The path provides the depth for a group of interdependent nodes and helps to untie the 

dependency among these nodes. Now the proposed UPF semantic, as shown and explained below, facilitates the 

coverage analytical tool to decorate the cross-cover-bins. 

 

Example 3 Methodology Extension for UPF Cross-Cover-Bin   
describe_state_cross_coverage   

    [-domains domains_list] 

    [-depth cross_coverage_depth] 

  

The describe_state_cross_coverage command is an augmentation of current UPF intent to supplement 

the missing cross-coverage power state-transition monitoring and coverage computation semantic model. The 

-domain defines the list of power domains for which cross-coverage needs to be computed. The -depth is the 

number of power domains that are involved in the cross-hierarchy and are interdependent. By default, the 

computation starts with depth one; however the coverage analytical tool will figure out the list of dependent power 

domains of a particular top or adjacent domains. These dependent power domains together with the specified top 

domain will form a domain group. Then the tool computes the cross-cover-bins or cross-coverage results for this 

particular group of power domains. Hence for the -logic_expr example of add_power_state, shown above, and 

from the theory shown in Figure 4, the cross-cover-bins will decorate accordingly for PD_top->PD_sub1-

>PD_sub2 power domain group as follows. 

 

TABLE 1 Dependent States for Power Domains 
Power Domains PD_top PD_sub1 PD_sub2 

Power States SYS_ON SUBSYS1_ON SUBSYS2_ON 

Power States SYS_ON SUBSYS1_RET SUBSYS2_ON 

Power States SYS_OFF SUBSYS1_OFF SUBSYS2_OFF 

 

TABLE 2 Cross-Coverage Data for -depth=1 (default) for PD_top->PD_sub1->PD_sub2 
SYS_ON -> SUBSYS1_ON -> SUBSYS2_ON 

SYS_ON -> SUBSYS1_RET -> SUBSYS2_ON 

SYS_OFF -> SUBSYS1_OFF -> SUBSYS2_OFF 

 

The coverage analytical tool specific details on coverage collection, analysis, and representation of the 

results for the UPF cross-cover-bin and UPF cover-bin are demonstrated in succeeding sections respectively. 

 

F. Case Study: Coverage Computation for UPF Cross-Cover-Bins 

Recalling Figure 4 and Example 3 in Section II, the dependency graph and extended methodology for 

collecting cross-coverage data through the describe_state_cross_coverage is explained with a specific UPF 

example containing logic expression in add_power_state. 

 

Example 4 Sample example for cross-coverage collection from add_power_state 
add_power_state PD_OUT -state PD_OUT_on {-logic_expr {PD_OUT.primary == PD_OUT_primary_on}} 
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add_power_state PD_OUT -state PD_OUT_off {-logic_expr {PD_OUT.primary == PD_OUT_primary_off}} 

add_power_state PD_OUT -state PD_OUT_ret {-logic_expr {PD_OUT.primary == PD_OUT_primary_off && 
PD_OUT.default_retention == PD_OUT_ret_on}} 

add_power_state PD_OUT2 -state PD_OUT_on {-logic_expr {PD_OUT == PD_OUT_on}} 

add_power_state PD_SUBSYS2 -state PD_SUBSYS2_on \ 

{-logic_expr {PD_SUBSYS2.primary == PD_SUBSYS2_primary_on}} 
add_power_state PD_SUBSYS2 -state PD_SUBSYS2_off \ 

{-logic_expr {PD_SUBSYS2.primary == PD_SUBSYS2_primary_off}} 

add_power_state PD_SUBSYS1 -state PD_SUBSYS1_on \ 

{-logic_expr {PD_SUBSYS1.primary == PD_SUBSYS1_high_volt && PD_OUT2 == PD_OUT_on}} 
add_power_state PD_SYS -state RUN \ 

{-logic_expr {PD_SUBSYS1 == PD_SUBSYS1_on && PD_SUBSYS2 == PD_SUBSYS2_on}} 

add_power_state PD_SYS -state SLEEP \ 

{-logic_expr {PD_SUBSYS1 != PD_SUBSYS1_on && PD_SUBSYS2 != PD_SUBSYS2_on}} 
### configure cross coverage ## 

describe_state_cross_coverage -domains {PD_SYS} -depth 3 

describe_state_cross_coverage -domains {PD_SUBSYS1} -depth 2 

describe_state_cross_coverage -domains {PD_OUT2} 

 

 In the above examples, the describe_state_cross_coverage is given for three different power domains to 

find the cross-coverage data for different depths ranging from none, which is default, and depth 1 for PD_OUT2, 

depth 2 for PD_SUBSYS1, and depth 3 for PD_SYS. The tool will process the dependency graph for each 

category based on the depth information and extract the state transition from the add_power_state logic 

expression components like “{PD_SUBSYS1 != PD_SUBSYS1_on && PD_SUBSYS2 != PD_SUBSYS2_on}”. 

Though the testbench is the actual trigger for a power state to make a transition to another state, the cross-coverage 

collection procedure depends more on unrolling the dependency of these transitions on power states from 

hierarchical paths. Example 5 shows a sample report of cross-coverage. 

 

Example 5 Sample Report for Cross-Coverage based on Example 4. 
----------------------------------------------------------------------------------------------- 

UPF OBJECT                                             Metric       Goal    Status                                                                                                              

----------------------------------------------------------------------------------------------- 

 TYPE : POWER STATE CROSS  

/alu_tester/dut/PD_SYS(ID:PD1),  

/alu_tester/dut/PD_SUBSYS2(ID:PD2),  

/alu_tester/dut/PD_SUBSYS1(ID:PD3),  

/alu_tester/dut/PD_OUT2(ID:PD4),  

/alu_tester/dut/PD_OUT(ID:PD5)  

                                                      100.00%        100    Covered               

 POWER STATE CROSS coverage instance 

\/alu_tester/dut/pa_coverageinfo/PD_SYS/PD_SYS_PS_CROSS/PS_CROSS_PD_SYS   

                                                      100.00%        100    Covered               

    Power State Cross                                 100.00%        100    Covered               

        bin \PD1:SLEEP-PD2:PD_SUBSYS2_off                   2          1    Covered               

        bin \PD1:RUN-PD2:PD_SUBSYS2_on-PD3:PD_SUBSYS1_on-PD4:PD_OUT_on-PD5:PD_OUT_on   

                                                            2          1    Covered    

 

G. Case Study: Coverage Computation for Power State Transitions 

The UPF describe_state_transition or add_state_transition commands, which monitor the legality of 

power state transitions, are the key for decorating UPF cover-bins for power state transition coverage and provide 

fine-grain controllability for collecting power state-transition-only coverage. Recalling the semantics in [2], the 

coverage analytical tool provides the mechanism to include the following coverage information through the 

-object <object_name> options in describe_state_transition or [-supply | -domain | -group | -model | -instance] 

<object_name> options in add_state_transition command. However, any state marked as -illegal or state beyond 

–complete will not be covered.  

 The following examples show the UPF code for power switch power state transition cover-bin decoration 

mechanisms through the add_state_transition command. The tool may generate a coverage report only for the 

specified transition in <object_name> as shown in Example 6.  
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Example 6 Controlling Transition Coverage by UPF add_state_transition Command. 
# PSW example for Collecting State Transition Coverage  

create_power_switch IN_sw \ 

    -domain PD_SUBSYS2 \ 

    -output_supply_port {vout_p VDD_IN_net} \ 
    -input_supply_port {vin_p MAIN_PWR_moderate} \ 

    -control_port {ctrl_p IN_PWR} \ 

    -on_state {normal_working vin_p {ctrl_p}} \ 

    -off_state {off_state {!ctrl_p}} 
# controlling State Transition Coverage by UPF for PSW (IN_sw) shown above 

add_state_transition -model IN_sw \ 

                     -transition {t0 -from {ON} -to {}} \ 

                     -transition {t1 -from {ON} -to {OFF}} \ 

                     -transition {t2 -from {ON} -to {}} \ 

                     -transition {t3 -from {ON} -to {ERROR} -illegal} 

 

 A sample report for the above PSW power state transitions are shown below. 

 

Example 7 Sample Power state Transition Coverage Reports from add_state_transition for PSW.  
-------------------------------------------------------------------------------------- 

UPF OBJECT                                             Metric       Goal    Status                                                                                                               

--------------------------------------------------------------------------------------- 

  TYPE: Power Switch /cpu_tester/dut/IN_sw             50.00%        100    Uncovered             

  Power Switch coverage instance 

\/cpu_tester/dut/pa_coverageinfo/IN_sw/IN_sw_PS/PS_IN_sw   

                                                        50.00%        100    

Uncovered             

     Power State ON                                    100.00%        100    Covered               

         bin ACTIVE                                          4          1    Covered               

     Power State OFF                                   100.00%        100    Covered               

         bin ACTIVE                                          2          1    Covered               

     Power State PARTIAL_ON                              0.00%        100    ZERO                  

         bin ACTIVE                                          0          1    ZERO                  

     Power State ERROR                                   0.00%        100    ZERO                  

         bin ACTIVE                                          0          1    ZERO                  

  TYPE: Power Switch /cpu_tester/dut/IN_sw              0.00%        100    ZERO                  

  Power Switch coverage instance 

\/cpu_tester/dut/pa_coverageinfo/IN_sw/IN_sw_PS/PS_TRANS_IN_sw   

                                                         0.00%        100    ZERO                  

     Power State Transitions                             0.00%        100    ZERO                  

         illegal_bin ON -> ERROR                             0               ZERO                  

         illegal_bin ON -> PARTIAL_ON                        0               ZERO                  

         illegal_bin ON -> OFF                               2               Occurred              

         bin dummy                                           0          1    ZERO                  

  TYPE: Power Switch Control Port /cpu_tester/dut/IN_sw/ctrl_p  

                                                        50.00%        100    

Uncovered             

  Power Switch Control Port coverage instance 

\/cpu_tester/dut/pa_coverageinfo/IN_sw/ctrl_p/PS_ctrl_p   

                                                        50.00%        100    

Uncovered             

     Power State ACTIVE_LEVEL                          100.00%        100    Covered               

         bin ACTIVE                                          4          1    Covered               

     Power State INACTIVE                              100.00%        100    Covered               

         bin ACTIVE                                          2          1    Covered               

     Power State ACTIVE_Z                                0.00%        100    ZERO                  

         bin ACTIVE                                          0          1    ZERO                  

     Power State ACTIVE_X                                0.00%        100    ZERO                  

         bin ACTIVE                                          0          1    ZERO   

  Power Switch Control Port coverage instance 

\/cpu_tester/dut/pa_coverageinfo/IN_sw/ctrl_p/PS_TRANS_ctrl_p   

                                                       100.00%        100    Covered               

     Power State Transitions                           100.00%        100    Covered               

         bin HIGH_TO_LOW                                     2          1    Covered               

         bin LOW_TO_HIGH                                     2          1    Covered        
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It is also worth noting that, during LP-SIM, unlike power states in add_power_state, all of the power 

states originating from add_port_state, add_pst_state, add_power_state may not remain active all the time. In 

general these commands specify predefined and named power states explicitly for UPF objects; such as power 

domain, supply set, supply port, and power state tables. The named state and their transitions allow the UPF cover-

bin to be automatically computed by the coverage analytical tool. However, in a particular verification 

environment, the UPF intent file may not specify all possible power states for all of the above objects. Hence the 

tool specifies the missing power states as “undefined” power states and assigns these states as active when the 

named states are inactive. Hence the coverage data may also include “undefined” power states and transition 

information in the coverage data. However, there are always coverage exclusion mechanisms for unreachable or 

undefined states. 

 

III.   ADAPTABLE COVERAGE DATABASE 

 One of the main reason of LP coverage remained a missing piece in the entire DVIF, or specifically in 

dynamic simulation, because there is no UCIS standard for low power coverage based on UPF intents. Fortunately 

Questa® LP-SIM allows creating automatic LP coverage testplans (or verification plan) during LP-SIM and 

internally links the testplan with LP coverage objects. Moreover, it also allows annotating coverage data in UCDB.  

Mechanisms within the UCDB format allow testplan scopes and coverage scopes to be tagged so that an 

association can be made between them. This allows the LP testplan to be annotated with LP coverage data and 

represent LP coverage results based on queries. Even though it is still an adhoc approach because it only processes 

LP coverage, more specifically UPF cover-bins and UPF cross-cover-bins. In the succeeding sections we will 

demonstrate this adhoc approach of UCDB for LP coverage as a case study and thereafter propose a versatile 

coverage database to adapt both LP and non-LP coverage under the same hood. 

 

H. Case Study: Adhoc Approach  for LP Coverage Database 

As discussed in previous sections, the LP coverage information created from List 7 (which are: 1. LP 

dynamic checks, 2. power states and power state-transitions, and 3. cross-power-domain power-states-dependency-

based coverage) provides an extra level of LP verification confidence in the DVIF. Apart from providing the 

coverage closure metric, their coverage information also facilitates verification productivity by auto generating a 

LP testplan as a constructive derivative in the process as discussed above. The Autotestplan is generated on the 

basis of coverage information from the UPF cover-bins and UPF cross-cover-bins decoration or coverage 

collection procedure discussed so far. Figure 5 explains the procedure of generating an LP-testplan.  

 

PA Coverage 

UCDB

LP-SIM 

Coverage 

Autogenerated

LP-Testplan

 
 

Figure 5 Autotestplan generation during LP-SIM 

 

During the regular LP-SIM, the UCDB data are created with “coverage save -pa pa.ucdb” tool command. 

The LP testplan is generated with “pa autotestplan”, which will create the data file for UCDB; i.e., 

“QuestaPowerAwareTestPlan.ucdb”. Finally, the LP coverage and testplan coverage can be merged in UCDB to 

represent LP coverage results as shown in Figure 6 (a) and (b). 
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Figure 6(a) Autogenerated LP-Testplan 

 

 
 

Figure 6(b) LP-Testplan and LP-Coverage Association 

 

The highlighted sections “1.1.2.3.1” in Figure 6(a) and 6(b) explains how the testplan scopes and 

coverage scopes are tagged within UCDB to associate the testplan to generate coverinstance, coverpoints and 

covergroup bins, which are in fact the UPF cover-bins and cross-cover-bins in the new proposed environment. 

Almost every coverage object within the UCDB can be linked to the testplan. The UCDB’s tagging mechanism 

allows testplan scopes and coverage scopes tagged within the database. Categorically it allows the association of 

testplan and coverage objects when a testplan scope and a coverage scope shares the same tag. This allows a 

consolidated coverage to be calculated and queried based upon the testplan. 

 

I. Proposed Adaptive Coverage Database 

While considering a comprehensive and combined database that will coordinate both the LP and non-LP 

coverage, we emphasized on few aspects like the database must be standard in terms of accessibility and 

adaptability. The recent version of IEEE-1801-2015 or UPF 3.0 provides a concrete model of LP information 

database that consists of power-management objects, which are the results of applying UPF semantics 
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augmentation on HDL designs. Hence the database defines relationship between the design and LP objects, i.e. 

between the HDL and UPF.  

The LP information model database (IMDB) is consists of an LP objects and various information bearing 

properties defined for those objects. It provides a set of well-defined APIs to access and query the low power or 

design information in TCL or in HDL. It also offers users the liberty to develop more complex APIs on the basis 

of fundamental API definitions. The key components of IMBD as discussed so far and defined by the UPF 3.0 

LRM are summarized below. To note, even though IMDB is based on UPF 3.0, it remains compatible with all 

previous versions of UPF, as long the accessibility through API to the model is implicated with HDL.  

 

List 8: Components of IMDB 

Objects: Are primary holders of information 

- They are accessed by handle ID / UPF Handle 

- Objects represent UPF, HDL or a relationship between them 

- So, there are three major classes of objects 

HDL Objects: Models objects that are representing HDL design 

UPF Objects: Models objects that are created by UPF 

Relationship Objects: Objects that model the relationship between UPF and HDL objects.  

 

Properties: Are collection of information about an object 

- They are accessed by property IDs 

- Properties are classified into 

Basic Types: String, Integer, Boolean etc. 

Complex Types: Handle to properties, list of handles to other objects etc. 

Dynamic properties: Accessible only from the HDL package functions 

 

Figure 7 shows the concept of an LP information model database (IMDB). 

 

UPF HDL

Design 

+ 

Power Management

API
HDL

TCL

Information 

Model Database 
 

 

Figure 7 LP Information Model Database (IMDB). 

 

Hence, the IMDB is ideal for extending beyond the low power paradigm. Specifically IMDB can be 

extended to match UCIS standards to analyze, merge and represent LP coverage data on non-LP coverage results. 

Firstly, because the UCIS API can be used to implement the heterogeneous types of a coverage merge [8], which 

basically allows coverage analysis tools to merge coverage data from semantically different verification sources, 

like LP and non-LP sources. UCIS defines that semantically different data need to be stored within the UCDB, but 

they are usually not automatically merged within the database. If a coverage analysis tool has an algorithm for 

merging heterogeneous data, it should submit a new data item with a semantic tag indicating merged data.   

Furthermore, the UCIS standard also implements an HDL specific unique ID to query through HDL 

objects for manipulating and representing HDL code coverage related information. Specifically the predefined 

fields of UCIS composite objects [8] consist of design scopes, coveritems and history nodes that allow relating 

UCDB coverage data through design HDL objects. 
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The proposed adaptive coverage database will impose IMDB components (HDL, UPF and relational 

objects and relevant properties) as a subset of the regular UCIS standard. As a result, we will be able to process 

both UPF cover-bins, UPF cross-cover-bins as well as all the non-LP or regular cover bins under the same hood. 

The coverage data collection, analysis and representation would be possible even from the IMDB as we extend the 

IMDB HDL components to map the relevant UCIS HDL standard components. The next section explains the 

provisions for merging LP and non-LP coverage to provide a consolidated coverage metric from all sources and 

phases of DVIF.      

 

J. Algorithm for Merging LP and Non-LP Coverage 

In this paper we have taken the novel initiatives to fulfill the missing pieces of the entire design 

verification flow — the LP coverage, its standardization and integration with other existing standards for regular 

non-LP coverage computation models. The methodological approach that we have taken so far can be summarized 

as follows: 

 

List 9: Initiatives at a Glance 

- Identify the missing pieces of LP coverage modeling 

- Identify the complete source of LP coverage contributors 

- Define LP cover bins — the UPF cover-bins and UPF cross-cover-bins 

- Identify LP coverage and testplan association mechanism through UCDB 

- Implement standardization mechanism for LP coverage bins through IMDB defined by UPF 3.0  

- Extend LP cover bins in IMDB as subset of UCDB 

- Identify database accessibility through mapping HDL API defined by both UPF 3.0 and UCDB 

standards 

- Propose adaptive coverage database through UPF 3.0 in IMDB and extend it with UCDB standard for 

integrating the non-LP coverage, 

And finally, 

- Identify the requirements of heterogeneous merge algorithms for merging LP and non-LP data in UCDB 

 

So here at the final stage, the algorithm for merging LP and non-LP coverage under extended IMDB 

(UCDB) is possible through a master testplan as shown in Figure 7. A master testplan is a non-LP verification 

plan generated manually based on the verification specification for the same design in terms of hierarchical 

structure and scopes that may be used in both LP and non-LP verification flows. The autogenerated LP testplan 

and master testplan are linked through the coverage objects or test data records to corresponding sections of each 

other (e.g., refer to Figure 6(a) to understand testplan section “1.2.1.3”).  

Once the links between both the testplans are established under IMDB (UCDB), merging of LP with non-

LP cover-bins becomes very procedural, since we already know that UCDB allows testplan scopes and coverage 

scopes to be tagged so that an association can be made between them.  

 

 

PA Coverage 

IMDB (UCDB)

SIM 

Coverage 

Non-PA Coverage 

IMDB (UCDB)

Combined Testplan 

IMDB (UCDB)

Master 

Testplan

Autogenerated

LP-Testplan

Linked

Combined 

IMDB (UCDB)

 

Figure 8 Heterogeneous Merging of LP and non-LP Coverage in IMDB (extension of UCDB) 
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IV.   FUTURE RESEARCH AND CONCLUDING REMARKS 

In this paper, we have completed the initial framework for the LP coverage standardization and 

integration with existing UCIS coverage standards. Further research is required to completely map the 

functionalities of HDL API defined by both UPF 3.0 and UCDB standards. In addition, further research is also 

required on the formalization process on what we have mentioned in Section II-D. For a complete RTL code 

coverage, it is required to make sure that the RTL code coverage data models specifically  branch, statement, 

blocks, condition, expressions etc. for both UPF instrumented RTL and non-LP RTL should be formally or 

logically equivalent. It requires formal tool to understand the consolidated database like LP and non-LP extended 

IMDB and coordinate with UPF semantics to conduct equivalency checks at the design circuit level.  
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