

Low Power Coverage: The Missing Piece in Dynamic Simulation

Progyna Khondkar, Verification Engineer Mentor Graphics, A Siemens Business

Agenda: Part One- Problem Formulation

- Identify the Contributors of Low-Power (LP) Coverage data
 - UPF and relevant HDL objects.
- Discuss LP Coverage Computation Uniqueness
 - Power States and Power State Transitions
 - How they are different from non-LP state machines.
- ☐ The Missing Piece to Complete LP Coverage Computation Models
 - Semantics for formation of Power State Machines/State-Transition
 - Adaptable database with API
 - to collect, access and represent the Computed LP Coverage.

Agenda: Part Two- Proposed Solution

- ☐ To fulfill these missing pieces,
 - First identified all the resources of the LP coverage contributors
 - Categorized them in *UPF cover-bins*
 - Further identified UPF cross-cover-bins in a complex hierarchical UPF flow
 - Proposed Adaptable and Universal Coverage Database
- Bonus Explanation with Examples and Case Studies,

PART ONE: PROBLEM FORMULATION

What is Coverage?

- Coverage Meaningful insight into design verification completeness
- Coverage Metric- Standardize Verification Measurement
 - Describe the degree to which the design is exercised
 - With certain design objects or parameters for a particular test suite / testplan execution
 - Even the test Recapitulated to contribute to the total resultant coverage metric for the design.
 - Resultant metrics are stored in a common, unified coverage database (UCDB).
- UCDB Allows Accessibility to further enhance the Coverage Metrics
 - With new coverage results from different new sources through coverage merging,
 - Mechanism to analyze and generate the coverage reports through API,
 - e.g. Industry standard Accellera UCIS API.

What is Low-Power (LP) Coverage?

- LP Coverage
 - Originates from the abstraction of UPF & Relevant HDL Objects.
- In a LP Dynamic Simulation State Space,
 - Power States and Power State Transitions are asynchronous in nature
 - Power States may refer or depend on other power states
 - Even more than one power state can remain true at a time
 - While it is possible to mark any power state as illegal anytime.
- The Unique & Contradictory nature with non-LP State Machines
 - Make it difficult to formulate LP coverage computation models and
 - Coordinate with standard database like UCDB

Foundations of LP-DV Concepts

- UPF Objects
 - Power Domains
 - Power Supplies
 - Power States
 - Power Strategies, etc.

Characteristics of Power States

- Power states nature
 - Abstract at higher levels and Physical (supply port and nets) at lower levels of designs
- Power States are for
 - Different UPF objects
 - e.g. Power Supplies, Power Domains, Design Groups, design models, and design instances
- Power states may
 - Denote different operation modes based on
 - Different combinations of Power Domains and their Power Supplies,
 - Reference descendant power domains or power supply states
 - Subject to interdependency between different UPF objects

What are the 'Sources of Power States and Their Transitions'?

UPF Constructs like:

- Supply Port States from add_port_state,
- □ Supply Net States from Power State Table (PST),
- PST States from add_pst_state,
- Power Domain States from add_power_state,
- □ Supply Port, Supply Net, and Supply Set Function States from add_supply_state,
- Power States of the Power Supply Sets from add_power_state, etc.

Other Sources of 'Power States and Power State Transitions'?

UPF Strategies

- Isolation "Enable" Signal
- ☐ Retention "Save and Restore" Signals
- Power Switch 'States' and Power Switch 'State Transitions'
- Power Switch "Control Port"
- Power Switch "Ack Port"

Transitions of Control Signals for UPF Strategies

- ☐ High-to-Low &
- Low-to-High Transitions

States of Control Signals for UPF Strategies

- Active
 - Through presenting a value (level sensitive) or
 - Transition (edge sensitive),
- ☐ Inactive (opposite to the active)
- Active x (driving unknown)
- Active z (remain floating or un-driven)

State Values of Power Switch, Control, and Acknowledge Ports

- ON state,
- OFF state,
- Partial ON state and
- ☐ UNDETERMINED (ERROR) state.

PART TWO: PROPOSED SOLUTION

Proposed Foundation on LP Coverage

- Whenever the design encounter the 'Key Contributors'
 - LP-SIM or coverage analytical engine will generate UPF cover-bins.
 - We define *UPF cover-bins*, as shown below

UPF cover-bins: This is a counter construct with specific decorated items. These items are generalized and based on UPF coverage constructs, i.e.

- name of state,
- status (legal/illegal),
- scope (design scope),
- attribute (ports or nets) etc.

The UPF cover-bins represents LP coverage data collected from corresponding UPF coverage constructs.

LP Coverage from LP Dynamic Checks

May Based on;

- LP testbench and LP augmented RTL (Code Coverage),
- ☐ Automated LP Sequence Checkers (ISO, Save/Restore Toggle etc.)
- Custom LP Checkers (bind_checker)

LP Coverage from Power States and Power State Transitions

May Based on

- Design controls,
- Supply ports and nets created in the UPF and design,
- Power domains and their power states,
- Supply sets and their states,
- Power Switch States and their Transitions,
- State transitions for ISO, RFF, PSW Control and Ack signals,

Coverage from Cross-Power Domain Power States Dependency

May Based on

- ☐ All possible combinations of interdependent power states,
- ☐ As well as their possible spontaneous transitions.

```
add_power_state PD_top -state SYS_ON {-logic_expr {PD_sub1 == SUBSYS1_ON && PD_sub2 == SUBSYS2_ON}}
```

```
add_power_state PD_top -state SYS_OFF {-logic_expr {PD_sub1 == SUBSYS1_OFF &&
PD_sub1== SUBSYS1_RET && PD_sub2 == SUBSYS2_OFF}}
```


Additional Proposal for the Foundation of LP Coverage

Cross-Power Domain Power States Dependency

- In hierarchical UPF flow
 - Power states and transitions are highly interdependent,
- A new UPF cross-cover-bins are defined
- **UPF** cross-cover-bins
 - Extensions of *UPF cover-bins*,
 - But possess additional decoration items to determine the depth of hierarchical crossings

UPF cross-cover-bins

Semantically Extended

describe_state_cross_coverage [-domains domains_list]

[-depth cross_coverage_depth]

Dependency Unfolded from Graph

Power Domains	PD_top	PD_sub1	PD_sub2
Power States	SYS_ON	SUBSYS1_ON	SUBSYS2_ON
Power States	SYS_ON	SUBSYS1_RET	SUBSYS2_ON
Power States	SYS_OFF	SUBSYS1_OFF	SUBSYS2_OFF

Cross-Coverage Data for -depth=1 (default) for PD_top -to> PD_sub1 -to> PD_sub2

SYS_ON -to > SUBSYS1_ON -to > SUBSYS2_ON SYS_ON -to > SUBSYS1_RET -to > SUBSYS2_ON SYS_OFF -to > SUBSYS1_OFF -to > SUBSYS2_OFF

Case Study: Coverage Computation for **UPF Cross-Cover-Bins**

```
add_power_state PD_OUT -state PD_OUT_on {-logic_expr {PD_OUT.primary == PD_OUT_primary_on}}
add_power_state PD_OUT -state PD_OUT_off {-logic_expr {PD_OUT.primary == PD_OUT_primary_off}}
add_power_state PD_OUT -state PD_OUT_ret {-logic_expr {PD_OUT.primary == PD_OUT_primary_off &&
PD OUT.default retention == PD OUT ret on}}
add_power_state PD_OUT2 -state PD_OUT_on {-logic_expr {PD_OUT == PD_OUT_on}}
add power state PD SUBSYS2 -state PD SUBSYS2 on \
{-logic_expr {PD_SUBSYS2.primary == PD_SUBSYS2_primary_on}}
### configure cross coverage ##
describe_state_cross_coverage -domains {PD_SYS} -depth 3
describe_state_cross_coverage -domains {PD_SUBSYS1} -depth 2
describe_state_cross_coverage -domains {PD_OUT2}
```


Case Study: Coverage Computation for **UPF Cross-Cover-Bins**

```
UPF OBJECT
                                  Metric
                                           Goal Status
TYPE: POWER STATE CROSS
/alu_tester/dut/PD_SYS(ID:PD1),
/alu_tester/dut/PD_SUBSYS2(ID:PD2),
/alu tester/dut/PD SUBSYS1(ID:PD3),
/alu_tester/dut/PD_OUT2(ID:PD4),
/alu tester/dut/PD OUT(ID:PD5)
                                           Covered
                                       100
                           100.00%
POWER STATE CROSS coverage instance
Valu_tester/dut/pa_coverageinfo/PD_SYS/PD_SYS_PS_CROSS/PS_CROSS_PD_SYS
                           100.00%
                                       100 Covered
  Power State Cross
                                  100.00% 100 Covered
    bin \PD1:SLEEP-PD2:PD SUBSYS2 off
                                                     1 Covered
    bin \PD1:RUN-PD2:PD SUBSYS2 on-PD3:PD SUBSYS1 on-PD4:PD OUT on-PD5:PD OUT on
                                     1 Covered
```


Case Study: Coverage Computation for Power State Transitions

```
# PSW example for Collecting State Transition Coverage
create_power_switch IN_sw \
  -domain PD SUBSYS2 \
  -output_supply_port {vout_p VDD_IN_net} \
  -input_supply_port {vin_p MAIN_PWR_moderate} \
  -control_port {ctrl_p IN_PWR} \
  -on_state {normal_working vin_p {ctrl_p}} \
  -off_state {off_state {!ctrl_p}}
# controlling State Transition Coverage by UPF for PSW (IN_sw) shown above
add state transition -model IN sw \
            -transition {t0 -from {ON} -to {}} \
            -transition {t1 -from {ON} -to {OFF}} \
            -transition {t2 -from {ON} -to {}} \
            -transition {t3 -from {ON} -to {ERROR} -illegal}
```


Case Study: Coverage Computation for Power State Transitions

UPF OBJECT	Metric Goal Status	
TYPE: Power Switch /cpu_tester/dut/l	N sw 0.00% 100 ZERO	
·	u_tester/dut/pa_coverageinfo/IN_sw/IN_sw_PS/PS_TRANS_IN_sw	
	2_tester/adr/pa_esveragerins/in_sw/in_sw_ir_e/r_e_rr/, inve_in_sw 00%	
Power State Transitions	0.00% 100 ZERO	
illegal_bin ON -> ERROR	0 ZERO	
illegal_bin ON -> PARTIAL_ON	0 ZERO	
illegal_bin ON -> OFF	2 Occurred	
bin dummy	0 1 ZERO	
TYPE: Power Switch Control Port /	cpu_tester/dut/IN_sw/ctrl_p	
Power Switch Control Port coverage i	nstance Vcpu_tester/dut/pa_coverageinfo/IN_sw/ctrl_p/PS_ctrl_p	
50.	00% 100 Uncovered	
Power State ACTIVE_LEVEL	100.00% 100 Covered	
bin ACTIVE	4 1 Covered	
Power State INACTIVE	100.00% 100 Covered	
bin ACTIVE	2 1 Covered	
Power State ACTIVE_Z	0.00% 100 ZERO	
bin ACTIVE	0 1 ZERO	
Power State ACTIVE_X	0.00% 100 ZERO	
bin ACTIVE	0 1 ZERO	
Power Switch Control Port coverage instance Vcpu_tester/dut/pa_coverageinfo/IN_sw/ctrl_p/PS_TRANS_ctrl_p		
	.00% 100 Covered	
Power State Transitions	100.00% 100 Covered	
bin HIGH_TO_LOW	2 1 Covered	
bin LOW_TO_HIGH	2 1 Covered	

Case Study: Adhoc Approach for LP Coverage Database

Proposed Adaptive Coverage Database

Objects: Are primary holders of information

- They are accessed by handle ID / UPF Handle
- Objects represent UPF, HDL or a relationship between them
- So, there are three major classes of objects
- HDL Objects: Models objects that are representing HDL design
- UPF Objects: Models objects that are created by UPF
- Relationship Objects: Objects that model the relationship between UPF and HDL objects.

Properties: Are collection of information about an object

- They are accessed by property IDs
- Properties are classified into
- Basic Types: String, Integer, Boolean etc.
- Complex Types: Handle to properties, list of handles to other objects etc.
- Dynamic properties: Accessible only from the HDL package functions

Algorithm for Adaptive Coverage **Database**

Initiatives and Proposals at a Glance

- ✓ Identify the missing pieces of LP coverage modeling
- ✓ Identify the complete source of LP coverage contributors
- ✓ Define LP cover bins the *UPF cover-bins* and *UPF cross-cover-bins*
- ✓ Identify LP coverage and testplan association mechanism through UCDB
- ✓ Implement standardization mechanism for LP coverage bins through IMDB defined by UPF 3.0
- Extend LP cover bins in IMDB as subset of UCDB.
- ✓ Identify database accessibility through mapping HDL API defined by both UPF 3.0 and UCDB standards
- ✓ Propose adaptive coverage database through UPF 3.0 in IMDB and extend it with UCDB standard for integrating the non-LP coverage, And
- ✓ Identify the requirements of heterogeneous merge algorithms for merging LP and non-LP data in UCDB

Heterogeneous Merging of LP and non-LP Coverage in IMDB

Conclusions

- Completed the initial framework for 'A Complete LP coverage'
 Computation Model
- Also Standardization and integration with existing UCIS coverage database

- ☐ Further research is required to completely map
 - The functionalities of HDL API defined by both UPF 3.0 and UCDB standards