
Low Power Apps
(Shaping the Future of Low Power Verification)

Awashesh Kumar, Mentor, A Siemens Business
(awashesh_kumar@mentor.com)

Madhur Bhargava, Mentor, A Siemens Business
(madhur_bhargava@mentor.com)

Vinay Kumar Singh, Mentor, A Siemens Business
(vinay_singh@mentor.com)

Pankaj Gairola, Mentor, A Siemens Business
(pankaj_gairola@mentor.com),

Agenda
• Introduction
• Motivation for paper
• UPF 3.0 Information model
• Low-Power Apps
• UPF 3.0 HDL Package Functions

– Examples & Case Studies
• UPF 3.0 TCL APIs

– Example & Case Studies
• Benefits over conventional approaches
• Conclusion

Introduction

Low-Power
Defacto

Debug
Problem

Reporting
Problem

Coverage
Problem

Checking
Problem

Complex
SOC’s • Complex SOC’s

• Low-Power increases complexities
– Sophisticated power management

• Lot’s of time & effort goes into debugging
low-power issues

• Low-Power Reports > Too huge
• Verify the power management

– Coverage
– Checks

Unified Power Format (UPF) based
Low-Power Verification

• RTL is augmented with a UPF specification
– To define the power architecture for a given

implementation

• RTL + UPF drives implementation tools
– Synthesis, place & route, etc.

• RTL + UPF also drives power-aware verification
– Ensures that verification

matches implementation

IEEE Std 1801™-2013 IEEE Std 1801™-2015

© Accellera
Systems Initiative

Motivation
• Low-Power is now de-facto in the industry and all the designs are

power-aware
– Research says “majority of verification time & effort is spent in debug”
– Catching low power bugs early is important

• Intelligent ways of doing coverage & checks
• Problems

– Designers/Verifications engineers capabilities > Verification tools
– Users cannot access and manipulate the low-power objects in the same

way as they do for RTL
• Need for mechanism to do selective reporting of a part of design is

needed

UPF 3.0 Information Model
• Introduced in UPF 1801-2015
• Abstract data model to represents low power objects

created in UPF
– E.g. Power Domain, Power State, Supply Set etc.

• Provides access to properties of low power objects
• API interface; to allow access of objects and

properties
– Tcl Interface:

• To access objects/properties in a Tcl script or UPF file
– HDL Interface:

• to access/manipulate objects/properties in a testbench or
simulation model

UPF
Database

(IMDB)

Read
Write

Access

TCL/
HDL

UPF 3.0 Information Model Cont.
• Native HDL representation

– For object with dynamic properties e.g. power domain
– Represented by struct/record in HDL containing two fields

• A value field – dynamic property value
• A handle/reference to UPF object – to access other properties of the object

Type Name SV Representation

upfPdSsObjT struct {
upfHandleT handle;
upfPowerStateObjT current_state;

} upfPdSsObjT

Low-Power Apps
• Low-Power Applications

– Set of “UPF 3.0 information model HDL package functions and Tcl query
functions”

• User can write their own apps and run in simulators
• Innovative ways of writing PA apps

– Debug, Reporting, Coverage, Checking .. Many more ideas

Tool
APIs

UPF
3.0

APIs

Verification
Tool

Environment

Debug
Reporting
Checking
Coverage

…

Design
+

Wavedata

PA App

TCL APIs
• UPF 3.0 information model defines a number of Tcl query command to access the

low-power objects
• To get various attributes on a given object

– upf_query_object_attributes obj –property <attr_name> -detailed

• To get the type of the object
– upf_query_object_type obj

• To check if an object belongs to a particular group
– upf_object_in_class obj –class <class_id>

• To get the full hier path of an object relative to given scope
– upf_query_object_pathname obj –relative_to <object_handle

Building Apps with TCL APIs
UPF
set_scope /tb/chip_top
create_power_domain PD_CAMERA -include_scope
create_supply_net pd_pwr -domain PD_CAMERA
create_supply_set ss -function {power pd_pwr} \

-function {ground G_pd_net}
associate_supply_set ss -handle PD_CAMERA.primary
…

Issue:
/tb/chip_top/c shows ‘x’ (corrupted at time 50 ns)

Debug:
Find the source of corruption of this signal

Step 1: Get the properties of the signal examine
tb/chip_top/c
1’bx query tb/chip_top/c
{ {upf_name c} {upf_parent /tb/chip_top} {upf_cell_info #UPFCELL0_71653#}
{upf_port_dir UPF_DIR_OUT} }

Step 2: Get the properties of cell applied on that signal
query #UPFCELL0_71653#
{{upf_cell_kind upf_cell_corrupt} {upf_hdl_cell_kind upf_hdlcell_comb} {upf_cell_origin
upf_origin_inferred} {upf_source_extents {#UPFEXTENT2130711#}} }

Step 3: Get the properties on source extent (extent of power domain, retention strategy
etc.) of the cell
query #UPFEXTENT2130711#
{ {upf_hdl_element tb/chip_top} {upf_object tb/chip_top/PD_CAMERA /*power domain*/} }

Step 4: Get the supplies of the upf_object (power domain, retention strategy etc.)
query /tb/chip_top/PD_CAMERA -property upf_supply_set_handles
{/tb/chip_top/PD_CAMERA.primary /tb/chip_top/PD_CAMERA.default_retention
/tb/chip_top/PD_CAMERA.default_isolation}

Step 5: Get the power (or other relevant function) of the primary supply set
query /tb/chip_top/PD_CAMERA.primary.power
{ {upf_name power} {upf_creation_scope /tb/chip_top/PD_CAMERA} {upf_parent
/tb/chip_top/PD_CAMERA.primary} {upf_ref_kind upf_ref_power} {upf_ref_object
/tb/chip_top/pd_pwr} }

Step 6: Check the value of UPF supply net
examine tb/chip_top/pd_pwr
OFF OV

Write a generic app for this
> pa_app x

Case Studies & Examples
• Tcl Apps – Reporting, Debugging etc..
• Low-Power App 5: (Debugging App) Trace drivers of UPF objects

proc pa_query_drivers {{object} args} {
set fanin $object
set driver ""
append driver $object
while {[query $fanin -property upf_fanin_conn] != ""} {

set driver [concat $driver "[examine $fanin] <-"]
if { [llength [query $fanin -property upf_fanin_conn]] > 1 } {

set resolution [query $fanin -property upf_resolve_type]
set fanin [query $fanin -property upf_fanin_conn]
foreach index $fanin {

set driver [concat $driver "$index [examine $index]"]
}
set driver [concat $driver "\{$resolution\}"]
break

}
set driver [concat $driver "[query $fanin -property upf_fanin_conn]"]
set fanin [query $fanin -property upf_fanin_conn]

}
if {[llength $fanin] < 2 } {

set driver [concat $driver "[examine $fanin]"]
}
return $driver

}

Usage:
pa_query_drivers /tb/t1/m1/b1/vd_bot
Result:
/tb/t1/m1/b1/vd_bot {OFF 0} <-
/tb/t1/m1/b1/vport1_bot {OFF 0}

<- /tb/t1/m1/vd_mid {OFF 0} <-
/tb/t1/m1/vport1_mid {OFF 0}

<- /tb/t1/vd_top {OFF 0} <-
/tb/t1/vport2_top {OFF 0}
/tb/t1/vport1_top {OFF 0} {PARALLEL}

UPF 3.0 HDL Package Functions
• Provides to access low power object and their properties in HDL

– Five different classes of HDL functions
• HDL access functions: basic functions to access the low power objects and properties

– Ex. upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd")

• Immediate read access HDL functions:
– Ex. upfHandleT ps_active_hndl = upf_query_object_properties(ps, UPF_IS_ACTIVE)
– integer ps_on_value = upf_get_value_int(ps_active_hndl)

• Immediate write access HDL functions:
– E.g. supply_on(“/tb/dut_i/vdd_net”, 0.9)

• Continuous access HDL functions: enables continuous monitoring of dynamic values
– E.g. upfSupplyObjT vdd_monitor = upf_create_object_mirror("/top/dut_i/vdd",

"vdd_monitor")

• Utility functions: general utility function to assist users.
– E.g. upfClassIdE upf_query_object_type(upfHandleT handle)

Case Studies & Examples
• HDL Apps – Coverage, Assertions (checking)
• Low-Power App 1: (Coverage App) Coverage of a low-power design using HDL Package Functions

– Coverage app to ensure the full coverage of the simstate property of the primary supply set of all power domains
– Coverage of “NORMAL-> CORRUPT” and “CORRUPT->NORMAL” transitions for each power domain

Step1: Mirror UPF objects to HDL objects
// Native HDL representation for power domains
typedef struct {

upfHandleT handle;
upfSimstateT simstates;

} upfPdObjT;

Use the mirror function to continuously monitor the
simstate of all the power domain in the design

pd_iter = upf_get_all_power_domains();
pd_hndl = upf_iter_get_next(pd_iter);
while (pd_hndl) begin

pd_obj = "power_domain_objs[";
pd_cnt_str.itoa(pd_cnt);
pd_obj = {pd_obj, pd_cnt_str};
pd_obj = {pd_obj, "]"};
upf_create_object_mirror

(upf_query_object_pathname(pd_hndl), pd_obj);
pd_cnt++;
pd_hndl = upf_iter_get_next(pd_iter);

end

Step 2: Covergroup definition for state and transition
coverage

covergroup PD_STATE_COVERAGE (string pd_name, ref
upfSimstateE simstate) @(simstate);

CORRUPT: coverpoint simstate
{ bins ACTIVE = {CORRUPT}; }

NORMAL: coverpoint simstate
{ bins ACTIVE = {NORMAL}; }

…
endgroup

covergroup PD_TRANS_COVERAGE (string pd_name, ref
upfSimstateE simstate) @(simstate);

TRANSITION_COVERAGE:coverpoint simstate
{

bins OFF_to_ON = (CORRUPT => NORMAL);
bins ON_to_OFF = (NORMAL => CORRUPT);

}
…
endgroup

Step 3: Instantiation of coverage module:
PD_STATE_COVERAGE pd_state_cov [$];
PD_TRANS_COVERAGE pd_trans_cov [$];
initial begin
for (int i = 0; i < pd_cnt; i++) begin

pd_state_cov[i] = new (upf_query_object_pathname(power_domain_objs[i].handle), power_domain_objs[i].simstate);
pd_trans_cov[i] = new (upf_query_object_pathname(power_domain_objs[i].handle), power_domain_objs[i].simstate);

end
end

Monitor the simstates of a power domain: User can also monitor the simstates of one or more power domains of
interest.
always @(power_domain_objs[0].simstate) begin

$display ($time, "%s Power Domain '%s' simstate changed to '%s'", identstr,
upf_query_object_pathname(power_domain_objs[0].handle), get_simstate_str(power_domain_objs[0].simstate));
end

Coverage Data

Benefits
(Over conventional approaches)

• Achieve early low-power verification closure
• Consistent across tool vendors as it is based on

the UPF 3.0 standard
• Flexible & Easy to write low-power apps
• Proposed solution is easily scalable to bigger and

more complex design scenarios
• Allows to write PA Apps for

– Debugging
– Reporting
– Self-checking & Coverage

Conclusion

TCL Apps
UPF 3.0

Information
Model Based

HDL Apps
UPF 3.0

Information
Model HDL
Package
Function

Challenging
LP

Verification

Easy Verification
Low-Power

Designs

• Low-power designs today are incredibly
complex
– Need of a thorough low-power verification

• Discussed the challenges with the current low-
power verification method

• Introduced UPF 3.0 information model
• Low-Power Apps based on UPF 3.0

information model APIs
• Examples & Case studies

– Consistent, robust and scalable platform.
• Benefits of proposed approach over

conventional approaches.

References
• [1] IEEE Std 1801™-2015 for Design and Verification of Low Power Integrated

Circuits. IEEE Computer Society, 05 Dec 2015.
• [2] “Amit Srivastava, Awashesh Kumar”, PA-APIs: Looking beyond power intent

specification formats, DVCon USA 2015
• [3] “Awashesh Kumar, Madhur Bhargava”, Random Directed Low Power Coverage

Methodology: A Smart Approach to Power Aware Verification Closure, DVCon USA
2017

• [4] “Awashesh Kumar, Madhur Bhargava”, Unleashing the Power of UPF 3.0: An
innovative approach for faster and robust Low-power coverage, DVCon India 2017

Q&A
Thank You!

	Low Power Apps�(Shaping the Future of Low Power Verification)
	Agenda
	Introduction
	Unified Power Format (UPF) based�Low-Power Verification
	Motivation
	UPF 3.0 Information Model
	UPF 3.0 Information Model Cont.
	Low-Power Apps
	TCL APIs
	Building Apps with TCL APIs
	Case Studies & Examples
	UPF 3.0 HDL Package Functions
	Case Studies & Examples
	Slide Number 14
	Benefits �(Over conventional approaches)
	Conclusion
	References
	Q&A�Thank You!

