
Lies, Damned Lies, and Coverage

Mark Litterick, Verilab, Germany

Introduction

•  Overview of functional coverage & flow
•  The problem – “lies, damned lies, and coverage”
•  Provide examples

–  transaction coverage
–  temporal coverage
–  register models

•  Discuss solutions
–  methodology and reviews
–  hit analysis and cross-referencing
–  automatic coverage validation using UCIS

04/03/15 Mark Litterick, Verilab 2

Functional Coverage

•  Key metric in establishing verification completeness
–  essential for constrained random, beneficial for directed testing

•  Implement covergroups, coverpoints, bins, assert/cover
–  record all important artifacts of stimulus, configuration & checks

04/03/15 Mark Litterick, Verilab 3

DUT
IN

TE
R

FA
C

E

ENV

SB

UVC
S	
 D	

M	
 C	

IN

TE
R

FA
C

E

UVC
S	
 D	

M	
 C	

S

VA
 S

VA

REG
... C	
 M	

SEEDS

TESTS
COVER

DB

functional coverage definitions

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

CODE
COVER

Coverage Flow

•  Manually specified items identify important concerns
•  Coverage holes analyzed to achieve closure

–  execute more tests and/or more seeds
–  improve stimulus and/or coverage implementation
–  ...repeat until done! (or tape-out with known risk)

04/03/15 Mark Litterick, Verilab 4

PLAN IMPLEMENT EXECUTE ANALYZE
START DONE

CLOSURE

+ STIMULUS

+ CHECKS
¤  bin X
¤  bin Y
¤  bin Z

u point P
q  group G

The Truth, The Whole Truth,
and Nothing But The Truth...

•  Empirical evidence suggests coverage models are:
–  inaccurate
–  misleading
–  incomplete

•  ...all the symptoms of a pack of lies:

04/03/15 Mark Litterick, Verilab 5

DECEPTION OMISSION FABRICATION

CONTENT
ERRORS

MISSING
COVERAGE

INCORRECT
SAMPLING

Observations based on:
•  many projects
•  different clients
•  diverse applications
•  various languages

The Problem...

•  Lies in the coverage model are a major problem, since:
–  coverage closure focuses on holes in report
–  positive hits are taken as fact and get little attention

•  If coverage does not stand up to cross examination
–  destroy credibility of verification environment
–  harm reputation of verification team

•  If coverage lies remain undetected...
–  key device features could remain unverified
–  significant risk to project quality

04/03/15 Mark Litterick, Verilab 6

COVERAGE ERRORS
CAN GO UNNOTICED

Non-Malicious Behavior

•  Clarification (in general):

–  errors, omissions and fabrications are not deliberately introduced
–  we are not trying to trick others or fool ourselves!

•  ...it is possible to manipulate code to get 100% coverage
–  remove hard-to-reach coverpoints, introduce extra sampling events,

manipulate ranges to absorb corner cases, etc.
–  malicious behavior, but technically straightforward...

•  ...empirical evidence suggests false 100% coverage!
–  missing coverage, incorrect sampling, bad ranges,...
–  accidental root cause, but same miraculous result!

04/03/15 Mark Litterick, Verilab 7

LIES IN THE COVERAGE MODEL ARE NOT
A RESULT OF MALICIOUS BEHAVIOR

NEVER BEEN
OBSERVED ☺

COMMON
PROBLEM

Transaction Coverage

04/03/15 Mark Litterick, Verilab 8

DUT

 I/

F

ENV

UVC

C	

S	
 D	

M	

SB
packet transaction:
 HEADER
 ID 0x12
 FC NP
 LEN 256
 PAYLOAD
 EXT FALSE
 DATA {34,..,AB}
 CRC
 OK TRUE
 VALUE 0x5678

¤ 
u 
q 
config

¤ 
u 
q 

¤ 
u 
q 

content relationships

•  required operations performed under all configurations?
•  all transaction kinds observed at each DUT interface?
•  all relevant (to DUT) field values, ranges and special cases?
•  every possible transaction relationship and order observed?
•  all appropriate testbench error injection and detection by DUT?

Example Transaction Lies

04/03/15 Mark Litterick, Verilab 9

ASPECT	
 OBSERVATION	
 LIE	

Ranges	
 Incorrect	
 range	
 that	
 hides	
 key	
 corner	
 values	
 Decep:on	

Condi:onal	
 Field	
 values	
 with	
 incorrect	
 condi:onal	
 filtering	
 Fabrica:on	

Configura:on	
 Sample	
 config	
 fields	
 when	
 value	
 is	
 set	
 or	
 changed	
 Fabrica:on	

Rela:onships	
 Only	
 single	
 transac:on	
 coverage,	
 no	
 rela:onships	
 Omission	

Error	
 Injec:on	
 Inaccurate	
 recording	
 of	
 all	
 error	
 injec:on	
 scenarios	
 Decep:on	

Irrelevant	
 Data	
 Too	
 much	
 data	
 looks	
 like	
 lots	
 of	
 interes:ng	
 stuff	
 Exaggera:on	

...	
 ...	
 ...	

EASY TO CREATE LOTS OF USELESS COVERAGE
(HARD TO BE COMPREHENSIVE BUT CONCISE)

e.g. BINS “[1:5],[6:10],[11:20]” USED WHEN 0 AND 1 ARE CRITICAL
(BINS “0,1,[2:19],20” BETTER? ACTUAL APPLICATION MINIMUM?)

e.g. TX AND RX CONFIG SAMPLED FOR TX-ONLY TEST
(CONFIG SHOULD BE SAMPLED WHEN IT IS USED)

Temporal Coverage

04/03/15 Mark Litterick, Verilab 10

DUT

I/
F S

VA

ENV

M	
 clk A
data A

clk B
data B

I/
F

UVC A M	

UVC B M	

S

VA

•  all appropriate clock relationships during observed traffic?
•  behavior of (subsequent) reset under all conditions?
•  relative timing of transactions on different DUT interfaces?
•  timing of interface traffic relative to DUT internal state?
•  occurrence of sub-transaction events that are never published?
•  all required checks happened, how often, under what conditions?

¤ 
u 
q 

¤ 
u 
q 

¤ 
¤ 
¤ 
checks clock relation relative timing

Example Temporal Lies

04/03/15 Mark Litterick, Verilab 11

ASPECT	
 OBSERVATION	
 LIE	

Clock	
 Rela:on	
 Missing	
 or	
 incorrectly	
 sampled	
 clock	
 rela:onships	
 Omission	

Reset	
 Condi:ons	
 Non-­‐zero	
 reset	
 score	
 a@er	
 ini:al	
 reset	
 Fabrica:on	

Temporal	
 Rela:on	
 EnBre	
 model	
 based	
 on	
 transac:on	
 content	
 only	
 Omission	

Check	
 Coverage	
 Missing	
 or	
 incorrectly	
 scoped	
 coverage	
 of	
 checks	
 Omission	

Sub-­‐transac:on	
 Missing	
 sub-­‐transac:on	
 event	
 coverage	
 Omission	

...	
 ...	
 ...	

NEED TO VALIDATE OPERATION WITH ALL CLOCK COMBOS
(e.g. NO BUFFER OVERFLOW, FSM INTERACTION, etc.)

e.g. DUT IS NOT IN A STATE WHEN INITIAL RESET
(CONDITION SAMPLED ON SUBSEQUENT RESET ONLY)

CAN YOU TELL FROM THE COVERAGE WHICH FUNCTIONAL
CHECKS PASSED AND UNDER WHAT CONDITIONS?

UNLIKELY TO BE ADEQUATE FOR DUT WITH MULTIPLE
INTERFACES, STORAGE, PIPELINE OR PROCESS DELAYS

Register Model Coverage

•  use all relevant values and ranges in control and configuration?
•  read all appropriate status responses from the DUT?
•  validate all the reset values from the registers?
•  access all register addresses?
•  validate the access rights for each register?
•  prove all appropriate access policies for the register fields?

04/03/15 Mark Litterick, Verilab 12

MEM	

RN	

...

R1	

R2	

...

CPU	
 F/W

DUT

ENV

BUS
UVC

ADAPTER	

PREDICTOR	

RN	

MEM	

MAP	

REG MODEL

...

R1	

R2	

¤  min
¤  max
¤  others

u  field
q  register

Example Register Model Lies

04/03/15 Mark Litterick, Verilab 13

ASPECT	
 OBSERVATION	
 LIE	

Reg	
 Write	
 Control	
 and	
 config	
 values	
 sampled	
 on	
 write	
 to	
 register	
 Fabrica:on	

Reg	
 Read	
 Status	
 values	
 read	
 from	
 reset	
 condiBons	
 not	
 DUT	
 operaBon	
 Fabrica:on	

Reset	
 Value	
 Incorrectly	
 condi:oned	
 validaBon	
 of	
 reset	
 values	
 Decep:on	

Address	
 Map	
 Register	
 address	
 coverage	
 from	
 backdoor	
 access	
 Decep:on	

Access	
 Right	
 Only	
 legal	
 access	
 rights	
 aLempted	
 for	
 restricted	
 registers	
 Omission	

Access	
 Policy	
 Only	
 legal	
 access	
 policy	
 recorded	
 in	
 coverage	
 model	
 Omission	

...	
 ...	
 ...	

EASY TO GET 100% COVER ON MULTIPLE WRITES
BUT MISLEADING SINCE VALUES NOT USED BY DUT

BACKDOOR DOES NOT VALIDATE ADDRESS DECODE
(EXCLUDE BACKDOOR ACCESS FROM ADDRESS COV)

NEED TO ALSO COVER ALL RELEVANT ACCESS ATTEMPTS
e.g. WRITE 0 AND 1 FOR W1C, WRITE AND READ FOR RO

Lie Detectors

04/03/15 Mark Litterick, Verilab 14

PLAN IMPLEMENT EXECUTE ANALYZE
START DONE

CLOSURE
MISS

ANALYSIS

•  concise & complete?
•  missing, irrelevant or incorrect?
•  trans’, config’, status, checks?
•  conditional & temporal aspects?

•  all planned items implemented?
•  correct groups, points, bins & ranges?
•  logical conditions & temporal events?
•  coding style, encapsulation, reuse?

COVER
PLAN

REVIEW

COVERAGE
IMPLEMENTATION

REVIEW

 MISSING STUFF BAD STUFF
AUTOMATION

?

HIT
ANALYSIS

VALIDATION

Hit Analysis

•  Review of plan and implementation is not enough...
–  we need to validate if actual coverage is correct
–  unique coverage characteristic: errors can go unnoticed

(unlike stimulus and checks – where errors get noticed!)

•  Coverage closure analysis is focused on holes...
–  we also need to look at all of the hits!

•  Select a few specific tests and validate that:
–  all reported coverage is exactly what happened in the test
–  all interesting stimulus and configuration are recorded in coverage
–  all transaction content and relevant relationship are captured
–  all checks that occurred have corresponding coverage reported
–  no additional coverage is reported for events that did not happen

04/03/15 Mark Litterick, Verilab 15

Coverage Analysis Example

•  Important to cross-reference all aspects of operation
–  compare log file messages, waves and assertions with coverage
–  look at the absolute score for each and every bin or assertion

•  For example (input: 9 good packets & 1 bad packet):
–  all aspects of transaction content, timing & relationships covered?
–  does coverage reflect that scoreboard model dropped error packet?
–  how many slices and/or packets were processed in parallel?
–  do observed assertion scores match scoreboard & transactions?

04/03/15 Mark Litterick, Verilab 16

in A
in B

out X
out Y
out Z

?	
 ¤ 
¤ 
¤ 

SVA

DUT

SB

A

B

X

Y

Z
?	

¤ 
u 
q 
CLASS

Automation

•  Validation of functional coverage correctness:
–  if a skilled engineer can do it by inspection...
–  ...can we automate the validation process?

•  Should be possible (to a degree):
–  rule-based application of same cross-checks
–  ...but no commercial tools available
–  (note: only validating coverage scores for implemented code!)

•  Ad-hoc proof-of-concept demonstrated using:
–  Unified Coverage Interoperability Standard (UCIS)
–  application-specific rules, PyUCIS & Python script

04/03/15 Mark Litterick, Verilab 17

INDUSTRY-STANDARD
OPEN API

SWIG/Python
WRAPPER

SWIG = Simplified Wrapper and Interface Generator

UCIS Operation

•  Using UCIS we can access and compare:
–  assertion and class-based coverage scores
–  scores for different assertions in an interface
–  different aspects of class-based coverage

04/03/15 Mark Litterick, Verilab 18

SB

REG-M

I/F SVA

UVC M	
 UCISDB

UCIS API

¤ 
¤ 
¤ 

SVA

¤ 
u 
q 
CLASS

¤ 

PyUCIS

?	

APPLICATION-
SPECIFIC RULES

PYTHON
SCRIPT þ

ý

e.g. protocol assertion
passing N times "

transaction score = N

e.g. N request phase assertions pass
" response assertion score ≤ N

e.g. transaction content score of N
" temporal relationship score = N

PyUCIS OCP Example
•  UCISDB stores hierarchy (scope) and counts (coveritem)

–  to access info - iterate through scopes for match & extract count
–  PyUCIS provides simple Python API:

•  OCP application-specific examples (Python script):

04/03/15 Mark Litterick, Verilab 19

if (pyucis_get_count(db,”.../monitor/cg_cfg/cp_burstlength/1”)>0)
 if (pyucis_get_count(db,”.../checker/a_request_MBurstLength_0”)
 < pyucis_get_count(db,”.../monitor/cg_req/cp_burst_length”))
 print(“ERROR:...”)

ucis_* methods wrapped with SWIG into Python code
pyucis_scope_itr : iterator using ucis_ScopeIterate/ScopeScan
pyucis_cover_itr : iterator using ucis_CoverIterate/CoverScan
pyucis_find_scope, pyucis_get_cov_count, pyucis_get_count,...

if (pyucis_get_count(db,”.../checker/a_request_hold_MCmd”)
 != pyucis_get_count(db,”.../monitor/cg_req/cp_cmd”))
 print(“ERROR:...”) cmd hold assertion coverage cmd type class coverage

only if cfg this assertion checks on every clk class score per transaction

Conclusion
•  Presented premise that functional coverage does not tell

“the truth, the whole truth, and nothing but the truth”
–  based on empirical evidence, observations & experience

•  Provided examples of what to look out for
–  lies of deception, omission & fabrication in coverage models

•  Discussed how to minimize risk & improve quality
–  plan review, implementation review, hit analysis & raise awareness

•  Demonstrated coverage validation using UCIS
–  proof-of-concept using PyUCIS

https://bitbucket.org/verilab/pyucis
–  sanity check for generic environments?
–  part of unit test for VIP providers!

04/03/15 Mark Litterick, Verilab 20

mark.litterick@verilab.com

