IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Lies, Damned Lies, and Coverage

Mark Litterick, Verilab, Germany

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Introduction

* Overview of functional coverage & flow
The problem — “lies, damned lies, and coverage”

* Provide examples
— transaction coverage
— temporal coverage
— register models

* Discuss solutions
— methodology and reviews
— hit analysis and cross-referencing
— automatic coverage validation using UCIS

[|
04/03/15 Mark Litterick, Verilab 2

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Functional Coverage

functional coverage definitions
SEEDS (o m| /o m|/ccm||o cm|| 0 =

+CH ¢CH| +CH|| ¢CHm | *CH| CODE
o || oM oCmm|| oW M| covER

REG | N W
1] SB Gl —
% < m\ COVER
uvC -2 UuvC DB
S|D 0 - DIlsS
Ot Y % -
(CIM]]] g 2 |MIc) /

* Key metric in establishing verification completeness
— essential for constrained random, beneficial for directed testing

* Implement covergroups, coverpoints, bins, assert/cover
— record all important artifacts of stimulus, configuration & checks

04/03/15 Mark Litterick, Verilab 3

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Coverage Flow

CLOSURE

PLAN IMPLEMENT Eb > ay
START DONE

Q group G 1

+ STIMULUS | @ pointP W |
® bin X [

+ CHECKS ® bin Y [N
® binZ W

* Manually specified items identify important concerns

* Coverage holes analyzed to achieve closure
— execute more tests and/or more seeds
— improve stimulus and/or coverage implementation

— ...repeat until done! (or tape-out with known risk)

[|
04/03/15 Mark Litterick, Verilab 4

| 2015

IIIIIIIIIIIIIIIIIIIIIII

DV O The Truth, The Whole Truth,
and Nothing But The Truth...

* Empirical evidence suggests coverage models are:

B m_accur?te \ Observations based on:
— misleading « many projects

— incomplete . d?fferent clie_nts_
» diverse applications

« various languages

* ...all the symptoms of a pack of lies:

DECEPTION | | OMISSION| FABRICATION
a R R

CONTENT MISSING INCORRECT
ERRORS COVERAGE SAMPLING

04/03/15 Mark Litterick, Verilab 5

| 2015

DESIGN AND VERIFICATION™

DVLCIMN
The Problem...

* Lies in the coverage model are a major problem, since:
— coverage closure focuses on holes in report
— positive hits are taken as fact and get little attention

* If coverage does not stand up to cross examination
— destroy credibility of verification environment
— harm reputation of verification team

* If coverage lies remain undetected...

— key device features could remain unverified
— significant risk to project quality

COVERAGE ERRORS
CAN GO UNNOTICED

[|
04/03/15 Mark Litterick, Verilab 6

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Non-Malicious Behavior

* Clarification (in general):

LIES IN THE COVERAGE MODEL ARE NOT
A RESULT OF MALICIOUS BEHAVIOR

— errors, omissions and fabrications are not deliberately introduced

— we are not trying to trick others or fool ourselves!

* ...itis possible to manipulate code to get 100% cov
— remove hard-to-reach coverpoints, introduce extra sampling

erage
events,

manipulate ranges to absorb corner cases, etc. NE
— malicious behavior, but technically straightforward...” | OB

VER BEEN
SERVED ©

* ...empirical evidence suggests false 100% coverage!

— missing coverage, incorrect sampling, bad ranges,...
— accidental root cause, but same miraculous result!

4~ COMMON

PROBLEM

04/03/15 Mark Litterick, Verilab

7

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Transaction Coverage

config content relationships
O =3 o 1= I
W [1 A
O I O O

packet transaction:

ENV SB HEADER
[] ID 0x12
FC NP
LEN 256
|

PAYLOAD

UVC EXT FALSE
S D+ - DATA {34, ..,AB}
— m CRC
C M N — OK TRUE

VALUE 0x5678

* required operations performed under all configurations?

* all transaction kinds observed at each DUT interface?

* all relevant (to DUT) field values, ranges and special cases?

* every possible transaction relationship and order observed?
 all appropriate testbench error injection and detection by DUT?

04/03/15 Mark Litterick, Verilab 8

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Example Transaction Lies

e.g. TXAND RX CONFIG SAMPLED FOR TX-ONLY TEST
(CONFIG SHOULD BE SAMPLED WHEN IT IS USED)

I

e.g. BINS “[1:5],[6:10],[11:20]" USED WHEN 0 AND 1 ARE CRITICAL
(BINS “0,1,[2:19],20" BETTER? ACTUAL APPLICATION MINIMUM?)

ASPECT OBSERVATION -! LIE
D

Ranges Incorrect range that hides key corner values eception
Conditional Field values with incorrect conditional filtering Fabrication
Configuration |Sample config fields when value is set or changed Fabrication
Relationships | Only single transaction coverage, no relationships Omission
Error Injection |Inaccurate recording of all error injection scenarios Deception
Irrelevant Data | Too much data looks like lots of interesting stuff Exaggeration

EASY TO CREATE LOTS OF USELESS E)OVERAGE
(HARD TO BE COMPREHENSIVE BUT CONCISE)

[|
04/03/15 Mark Litterick, Verilab 9

| 2015

DESIGN AND VERIFICATION™

DV LOIN

CONFERENCE AND EXHIBITION

Temporal Coverage

checks clock relation relative timing

O I O I3 0 1=
ENV | o mmm N Y-
o]

of | o
\Y 4

clk A nnnnnnpgnnynnannnnnn

data A -< Yy — —
. clk B _nnnnonngnnononnnnn
UVC B w data B —< r—

» all appropriate clock relationships during observed traffic?

* behavior of (subsequent) reset under all conditions?

* relative timing of transactions on different DUT interfaces?

* timing of interface traffic relative to DUT internal state?

* occurrence of sub-transaction events that are never published?
 all required checks happened, how often, under what conditions?

04/03/15 Mark Litterick, Verilab 10

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Example Temporal Lies

e.g. DUT IS NOT IN A STATE WHEN INITIAL RESET
(CONDITION SAMPLED ON SUBSEQUENT RESET ONLY)

NEED TO VALIDATE OPERATION WITH ALL CLOCK COMBOS
(e.g. NO BUFFER OVERFLOW, FSM INTERACTION, etc.)

ASPECT OBSERVATION -V LIE

Clock Relation Missing or incorrectly sampled clock relationships Omission
Reset Conditions | Non-zero reset score after initial reset Fabrication
Temporal Relation | Entire model based on transaction content only Omission
Check Coverage Missing or incorrectly scoped coverage of checks Omission
Sub-transaction Missing sub-transaction event coverage Omission
|| UNLIKELY TO BE ADEQUATE FOR DUT WITH-MULTIPLE —

INTERFACES, STORAGE, PIPELINE OR PROCESS DELAYS

CAN YOU TELL FROM THE COVERAGE WHICH FUN-CTIONAL
CHECKS PASSED AND UNDER WHAT CONDITIONS?

[|
04/03/15 Mark Litterick, Verilab 11

2015

DESIGN AND VERIFICATION™

DVLOIN

CONFERENCE AND EXHIBITION

Register Model Coverage

REG MODEL El r:glijter -
MEM Ri DDDD ® min [
© max [

© others[

MAP
A
|
|
|

ADAPTER P>
! BUS
PREDICTOR uve
* use all relevant values and ranges in control and configuration?

* read all appropriate status responses from the DUT?

* validate all the reset values from the registers?

* access all register addresses?

* validate the access rights for each register?

* prove all appropriate access policies for the register fields?

04/03/15 Mark Litterick, Verilab

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Example Register Model Lies

BACKDOOR DOES NOT VALIDATE ADDRESS DECODE
(EXCLUDE BACKDOOR ACCESS FROM ADDRESS CQV)

EASY TO GET 100% COVER ON MULTIPLE WRITES
BUT MISLEADING SINCE VALUES NOT USED BY DUT

ASPECT OBSERVATION _‘ LIE

Reg Write Control and config values sampled on write to register Fabrication
Reg Read Status values read from reset conditions not DUT operation | Fabrication
Reset Value |Incorrectly conditioned validation of reset values Deception
Address Map | Register address coverage from backdoor access Deception
Access Right | Only legal access rights attempted for restricted registers Omission
Access Policy | Only legal access policy recorded in coverage model Omission

NEED TO ALSO COVER ALL RELEVANT ACCESS A"I-'TEMPTS
e.g. WRITE 0 AND 1 FOR W1C, WRITE AND READ FOR RO

[|
04/03/15 Mark Litterick, Verilab 13

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Lie Detectors

MISS
CLOSURE | ANALYSIS
PLAN IMPLEMENT E>s>a>
START DONE

COVER COVERAGE HIT

PLAN IMPLEMENTATION ANALYSIS
REVIEW REVIEW VALIDATION
A R AUTOMATION
AMISSING STUFF ABAD STUFF ?
/ \
« concise & complete? « all planned items implemented?
* missing, irrelevant or incorrect? | | + correct groups, points, bins & ranges?
« trans’, config’, status, checks? » logical conditions & temporal events?
« conditional & temporal aspects? » coding style, encapsulation, reuse?

04/03/15 Mark Litterick, Verilab 14

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Hit Analysis

* Review of plan and implementation is not enough...
— we need to validate if actual coverage is correct
— unique coverage characteristic: errors can go unnoticed
(unlike stimulus and checks — where errors get noticed!)
* Coverage closure analysis is focused on holes...
— we also need to look at all of the hits!

* Select a few specific tests and validate that:
— all reported coverage is exactly what happened in the test
— all interesting stimulus and configuration are recorded in coverage
— all transaction content and relevant relationship are captured
— all checks that occurred have corresponding coverage reported
— no additional coverage is reported for events that did not happen

[|
04/03/15 Mark Litterick, Verilab 15

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Coverage Analysis Example

in A
SB. ns —

out X —) {) O
outY -

A outZ —) —— S
SVA CLASS

B o 0 W
o) [N
o OF I |

* Important to cross-reference all aspects of operation
— compare log file messages, waves and assertions with coverage
— look at the absolute score for each and every bin or assertion

* For example (input: 9 good packets & 1 bad packet):
— all aspects of transaction content, timing & relationships covered?
— does coverage reflect that scoreboard model dropped error packet?
— how many slices and/or packets were processed in parallel?

— do observed assertion scores match scoreboard & transactions?

[|
04/03/15 Mark Litterick, Verilab 16

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Automation

* Validation of functional coverage correctness:
— if a skilled engineer can do it by inspection...
— ...can we automate the validation process?

* Should be possible (to a degree):
— rule-based application of same cross-checks
— ...but no commercial tools available
— (note: only validating coverage scores for implemented code!)

* Ad-hoc proof-of-concept demonstrated using:
— Unified Coverage Interoperability Standard (UCIS)
— application-specific rulesﬂ, PyUCIS & Python script

SWIG/Python INDUSTRY-STANDARD
WRAPPER OPEN API

SWIG = Simplified Wrapper and Interface Generator

[|
04/03/15 Mark Litterick, Verilab 17

| 2015

DESIGN AND VERIFICATION™

UCIS Operation
I/F = = ucis AP — Y01
L . g E - jm PYTHON
uvVC|m| =

o2

I | O I

I (SE ="

1 oY |

REG-M of . APPLICATION-
SPECIFIC RULES

* Using UCIS we can access and compare:
— assertion and class-based coverage scores .| e.g. protocol assertion

— scores for different assertions in an interface passing N times 2
: transaction score =N
— different aspects of clﬂass-based coverage

e.g. transaction content score of N e.gd. N request phase assertions pass
= temporal relationship score =N =» response assertion score S N

[|
04/03/15 Mark Litterick, Verilab 18

| 2015

DESIGN AND VERIFICATION™

DV

o e NCE Ab SO Py U C I S O C P E Xam p I O

* UCISDB stores hierarchy (scope) and counts (coveritem)
— to access info - iterate through scopes for match & extract count

— PyUCIS provides simple Python API:

ucis_* methods wrapped with SWIG into Python code

pyucis scope itr : iterator using ucis Scopelterate/ScopeScan
pyucis cover itr : iterator using ucis CoverIterate/CoverScan
pyucis_ find scope, pyucis_get cov_count, pyucis_get count,...

* OCP application-specific examples (Python script):

if (pyucis_get count(db,”.../checker/a request hold MCmd”\

!= pyucis_get count (db, ﬂ ../monitor/cg req/cp cmd”))
print (“"ERROR:

cmd type class coverage | cmd hold assertion coverage

if (pyucis get count(db,”.../checker/a request MBurstLength ")
< pyucis_get count (db Z ../monitor/cg_:edﬁgf_burst_length”
class score per transaction F this assertion checks on every clk [{ only if cfg

04/03/15 Mark Litterick, Verilab 19

if (pyucis get count(db,”.../monitor/cg cfg/cp burstlength/17)>0)
N)\

| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Conclusion

Presented premise that functional coverage does not tell
“the truth, the whole truth, and nothing but the truth’

— based on empirical evidence, observations & experience

* Provided examples of what to look out for
— lies of deception, omission & fabrication in coverage models

* Discussed how to minimize risk & improve quality
— plan review, implementation review, hit analysis & raise awareness

* Demonstrated coverage validation using UCIS

— proof-of-concept using PyUCIS
https://bitbucket.org/verilab/pyucis

— sanity check for generic environments?
— part of unit test for VIP providers! ¢

mark_litterick@verilab.com

04/03/15 Mark Litterick, Verilab 20

