
Lies, Damned Lies, and Coverage

Mark Litterick, Verilab, Germany

Introduction

•  Overview of functional coverage & flow
•  The problem – “lies, damned lies, and coverage”
•  Provide examples

–  transaction coverage
–  temporal coverage
–  register models

•  Discuss solutions
–  methodology and reviews
–  hit analysis and cross-referencing
–  automatic coverage validation using UCIS

04/03/15 Mark Litterick, Verilab 2

Functional Coverage

•  Key metric in establishing verification completeness
–  essential for constrained random, beneficial for directed testing

•  Implement covergroups, coverpoints, bins, assert/cover
–  record all important artifacts of stimulus, configuration & checks

04/03/15 Mark Litterick, Verilab 3

DUT
IN

TE
R

FA
C

E

ENV

SB

UVC
S	 D	

M	 C	
IN

TE
R

FA
C

E

UVC
S	 D	

M	 C	
S

VA
 S

VA

REG
... C	 M	

SEEDS

TESTS
COVER

DB

functional coverage definitions

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

¤ 
u 
q 

CODE
COVER

Coverage Flow

•  Manually specified items identify important concerns
•  Coverage holes analyzed to achieve closure

–  execute more tests and/or more seeds
–  improve stimulus and/or coverage implementation
–  ...repeat until done! (or tape-out with known risk)

04/03/15 Mark Litterick, Verilab 4

PLAN IMPLEMENT EXECUTE ANALYZE
START DONE

CLOSURE

+ STIMULUS

+ CHECKS
¤  bin X
¤  bin Y
¤  bin Z

u point P
q  group G

The Truth, The Whole Truth,
and Nothing But The Truth...

•  Empirical evidence suggests coverage models are:
–  inaccurate
–  misleading
–  incomplete

•  ...all the symptoms of a pack of lies:

04/03/15 Mark Litterick, Verilab 5

DECEPTION OMISSION FABRICATION

CONTENT
ERRORS

MISSING
COVERAGE

INCORRECT
SAMPLING

Observations based on:
•  many projects
•  different clients
•  diverse applications
•  various languages

The Problem...

•  Lies in the coverage model are a major problem, since:
–  coverage closure focuses on holes in report
–  positive hits are taken as fact and get little attention

•  If coverage does not stand up to cross examination
–  destroy credibility of verification environment
–  harm reputation of verification team

•  If coverage lies remain undetected...
–  key device features could remain unverified
–  significant risk to project quality

04/03/15 Mark Litterick, Verilab 6

COVERAGE ERRORS
CAN GO UNNOTICED

Non-Malicious Behavior

•  Clarification (in general):

–  errors, omissions and fabrications are not deliberately introduced
–  we are not trying to trick others or fool ourselves!

•  ...it is possible to manipulate code to get 100% coverage
–  remove hard-to-reach coverpoints, introduce extra sampling events,

manipulate ranges to absorb corner cases, etc.
–  malicious behavior, but technically straightforward...

•  ...empirical evidence suggests false 100% coverage!
–  missing coverage, incorrect sampling, bad ranges,...
–  accidental root cause, but same miraculous result!

04/03/15 Mark Litterick, Verilab 7

LIES IN THE COVERAGE MODEL ARE NOT
A RESULT OF MALICIOUS BEHAVIOR

NEVER BEEN
OBSERVED ☺

COMMON
PROBLEM

Transaction Coverage

04/03/15 Mark Litterick, Verilab 8

DUT

 I/

F

ENV

UVC

C	
S	 D	

M	

SB
packet transaction:
 HEADER
 ID 0x12
 FC NP
 LEN 256
 PAYLOAD
 EXT FALSE
 DATA {34,..,AB}
 CRC
 OK TRUE
 VALUE 0x5678

¤ 
u 
q 
config

¤ 
u 
q 

¤ 
u 
q 

content relationships

•  required operations performed under all configurations?
•  all transaction kinds observed at each DUT interface?
•  all relevant (to DUT) field values, ranges and special cases?
•  every possible transaction relationship and order observed?
•  all appropriate testbench error injection and detection by DUT?

Example Transaction Lies

04/03/15 Mark Litterick, Verilab 9

ASPECT	 OBSERVATION	 LIE	

Ranges	 Incorrect	 range	 that	 hides	 key	 corner	 values	 Decep:on	

Condi:onal	 Field	 values	 with	 incorrect	 condi:onal	 filtering	 Fabrica:on	

Configura:on	 Sample	 config	 fields	 when	 value	 is	 set	 or	 changed	 Fabrica:on	

Rela:onships	 Only	 single	 transac:on	 coverage,	 no	 rela:onships	 Omission	

Error	 Injec:on	 Inaccurate	 recording	 of	 all	 error	 injec:on	 scenarios	 Decep:on	

Irrelevant	 Data	 Too	 much	 data	 looks	 like	 lots	 of	 interes:ng	 stuff	 Exaggera:on	

...	 	

EASY TO CREATE LOTS OF USELESS COVERAGE
(HARD TO BE COMPREHENSIVE BUT CONCISE)

e.g. BINS “[1:5],[6:10],[11:20]” USED WHEN 0 AND 1 ARE CRITICAL
(BINS “0,1,[2:19],20” BETTER? ACTUAL APPLICATION MINIMUM?)

e.g. TX AND RX CONFIG SAMPLED FOR TX-ONLY TEST
(CONFIG SHOULD BE SAMPLED WHEN IT IS USED)

Temporal Coverage

04/03/15 Mark Litterick, Verilab 10

DUT

I/
F S

VA

ENV

M	 clk A
data A

clk B
data B

I/
F

UVC A M	

UVC B M	
S

VA

•  all appropriate clock relationships during observed traffic?
•  behavior of (subsequent) reset under all conditions?
•  relative timing of transactions on different DUT interfaces?
•  timing of interface traffic relative to DUT internal state?
•  occurrence of sub-transaction events that are never published?
•  all required checks happened, how often, under what conditions?

¤ 
u 
q 

¤ 
u 
q 

¤ 
¤ 
¤ 
checks clock relation relative timing

Example Temporal Lies

04/03/15 Mark Litterick, Verilab 11

ASPECT	 OBSERVATION	 LIE	

Clock	 Rela:on	 Missing	 or	 incorrectly	 sampled	 clock	 rela:onships	 Omission	

Reset	 Condi:ons	 Non-‐zero	 reset	 score	 a@er	 ini:al	 reset	 Fabrica:on	

Temporal	 Rela:on	 EnBre	 model	 based	 on	 transac:on	 content	 only	 Omission	

Check	 Coverage	 Missing	 or	 incorrectly	 scoped	 coverage	 of	 checks	 Omission	

Sub-‐transac:on	 Missing	 sub-‐transac:on	 event	 coverage	 Omission	

...	 	

NEED TO VALIDATE OPERATION WITH ALL CLOCK COMBOS
(e.g. NO BUFFER OVERFLOW, FSM INTERACTION, etc.)

e.g. DUT IS NOT IN A STATE WHEN INITIAL RESET
(CONDITION SAMPLED ON SUBSEQUENT RESET ONLY)

CAN YOU TELL FROM THE COVERAGE WHICH FUNCTIONAL
CHECKS PASSED AND UNDER WHAT CONDITIONS?

UNLIKELY TO BE ADEQUATE FOR DUT WITH MULTIPLE
INTERFACES, STORAGE, PIPELINE OR PROCESS DELAYS

Register Model Coverage

•  use all relevant values and ranges in control and configuration?
•  read all appropriate status responses from the DUT?
•  validate all the reset values from the registers?
•  access all register addresses?
•  validate the access rights for each register?
•  prove all appropriate access policies for the register fields?

04/03/15 Mark Litterick, Verilab 12

MEM	

RN	
...

R1	

R2	
...

CPU	 F/W

DUT

ENV

BUS
UVC

ADAPTER	

PREDICTOR	

RN	

MEM	

MAP	

REG MODEL

...

R1	

R2	
¤  min
¤  max
¤  others

u  field
q  register

Example Register Model Lies

04/03/15 Mark Litterick, Verilab 13

ASPECT	 OBSERVATION	 LIE	

Reg	 Write	 Control	 and	 config	 values	 sampled	 on	 write	 to	 register	 Fabrica:on	

Reg	 Read	 Status	 values	 read	 from	 reset	 condiBons	 not	 DUT	 operaBon	 Fabrica:on	

Reset	 Value	 Incorrectly	 condi:oned	 validaBon	 of	 reset	 values	 Decep:on	

Address	 Map	 Register	 address	 coverage	 from	 backdoor	 access	 Decep:on	

Access	 Right	 Only	 legal	 access	 rights	 aLempted	 for	 restricted	 registers	 Omission	

Access	 Policy	 Only	 legal	 access	 policy	 recorded	 in	 coverage	 model	 Omission	

...	 	

EASY TO GET 100% COVER ON MULTIPLE WRITES
BUT MISLEADING SINCE VALUES NOT USED BY DUT

BACKDOOR DOES NOT VALIDATE ADDRESS DECODE
(EXCLUDE BACKDOOR ACCESS FROM ADDRESS COV)

NEED TO ALSO COVER ALL RELEVANT ACCESS ATTEMPTS
e.g. WRITE 0 AND 1 FOR W1C, WRITE AND READ FOR RO

Lie Detectors

04/03/15 Mark Litterick, Verilab 14

PLAN IMPLEMENT EXECUTE ANALYZE
START DONE

CLOSURE
MISS

ANALYSIS

•  concise & complete?
•  missing, irrelevant or incorrect?
•  trans’, config’, status, checks?
•  conditional & temporal aspects?

•  all planned items implemented?
•  correct groups, points, bins & ranges?
•  logical conditions & temporal events?
•  coding style, encapsulation, reuse?

COVER
PLAN

REVIEW

COVERAGE
IMPLEMENTATION

REVIEW

 MISSING STUFF BAD STUFF
AUTOMATION

?

HIT
ANALYSIS

VALIDATION

Hit Analysis

•  Review of plan and implementation is not enough...
–  we need to validate if actual coverage is correct
–  unique coverage characteristic: errors can go unnoticed

(unlike stimulus and checks – where errors get noticed!)

•  Coverage closure analysis is focused on holes...
–  we also need to look at all of the hits!

•  Select a few specific tests and validate that:
–  all reported coverage is exactly what happened in the test
–  all interesting stimulus and configuration are recorded in coverage
–  all transaction content and relevant relationship are captured
–  all checks that occurred have corresponding coverage reported
–  no additional coverage is reported for events that did not happen

04/03/15 Mark Litterick, Verilab 15

Coverage Analysis Example

•  Important to cross-reference all aspects of operation
–  compare log file messages, waves and assertions with coverage
–  look at the absolute score for each and every bin or assertion

•  For example (input: 9 good packets & 1 bad packet):
–  all aspects of transaction content, timing & relationships covered?
–  does coverage reflect that scoreboard model dropped error packet?
–  how many slices and/or packets were processed in parallel?
–  do observed assertion scores match scoreboard & transactions?

04/03/15 Mark Litterick, Verilab 16

in A
in B

out X
out Y
out Z

?	 ¤ 
¤ 
¤ 

SVA

DUT

SB

A

B

X

Y

Z
?	

¤ 
u 
q 
CLASS

Automation

•  Validation of functional coverage correctness:
–  if a skilled engineer can do it by inspection...
–  ...can we automate the validation process?

•  Should be possible (to a degree):
–  rule-based application of same cross-checks
–  ...but no commercial tools available
–  (note: only validating coverage scores for implemented code!)

•  Ad-hoc proof-of-concept demonstrated using:
–  Unified Coverage Interoperability Standard (UCIS)
–  application-specific rules, PyUCIS & Python script

04/03/15 Mark Litterick, Verilab 17

INDUSTRY-STANDARD
OPEN API

SWIG/Python
WRAPPER

SWIG = Simplified Wrapper and Interface Generator

UCIS Operation

•  Using UCIS we can access and compare:
–  assertion and class-based coverage scores
–  scores for different assertions in an interface
–  different aspects of class-based coverage

04/03/15 Mark Litterick, Verilab 18

SB

REG-M

I/F SVA

UVC M	 UCISDB

UCIS API

¤ 
¤ 
¤ 

SVA

¤ 
u 
q 
CLASS

¤ 

PyUCIS

?	

APPLICATION-
SPECIFIC RULES

PYTHON
SCRIPT þ

ý

e.g. protocol assertion
passing N times "

transaction score = N

e.g. N request phase assertions pass
" response assertion score ≤ N

e.g. transaction content score of N
" temporal relationship score = N

PyUCIS OCP Example
•  UCISDB stores hierarchy (scope) and counts (coveritem)

–  to access info - iterate through scopes for match & extract count
–  PyUCIS provides simple Python API:

•  OCP application-specific examples (Python script):

04/03/15 Mark Litterick, Verilab 19

if (pyucis_get_count(db,”.../monitor/cg_cfg/cp_burstlength/1”)>0)
 if (pyucis_get_count(db,”.../checker/a_request_MBurstLength_0”)
 < pyucis_get_count(db,”.../monitor/cg_req/cp_burst_length”))
 print(“ERROR:...”)

ucis_* methods wrapped with SWIG into Python code
pyucis_scope_itr : iterator using ucis_ScopeIterate/ScopeScan
pyucis_cover_itr : iterator using ucis_CoverIterate/CoverScan
pyucis_find_scope, pyucis_get_cov_count, pyucis_get_count,...

if (pyucis_get_count(db,”.../checker/a_request_hold_MCmd”)
 != pyucis_get_count(db,”.../monitor/cg_req/cp_cmd”))
 print(“ERROR:...”) cmd hold assertion coverage cmd type class coverage

only if cfg this assertion checks on every clk class score per transaction

Conclusion
•  Presented premise that functional coverage does not tell

“the truth, the whole truth, and nothing but the truth”
–  based on empirical evidence, observations & experience

•  Provided examples of what to look out for
–  lies of deception, omission & fabrication in coverage models

•  Discussed how to minimize risk & improve quality
–  plan review, implementation review, hit analysis & raise awareness

•  Demonstrated coverage validation using UCIS
–  proof-of-concept using PyUCIS

https://bitbucket.org/verilab/pyucis
–  sanity check for generic environments?
–  part of unit test for VIP providers!

04/03/15 Mark Litterick, Verilab 20

mark.litterick@verilab.com

