
Leveraging Virtual Platform ESL and TLM

SystemVerification in RTL using UVM
Improving the Quality of RTL with Existing System Level Verification

Ashok Mehta

Senior Manager, Design Methodology Department

TSMC

San Jose, U.S.A.

Albert Chiang, Wei-Hua Han

Verification Group

Synopsys, Inc.

Mountain View, U.S.A.

Abstract— The RTL design verification process is a fairly well

understood one, but it is routinely tedious and laborious. One

way to improve the efficiency of RTL design verification is to

reuse as many pre-existing verification components as possible.

One possible source of reuse is from the verification environment

that was already deployed on a virtual platform. This paper will

focus on reducing the effort in RTL design verification by reusing

the verification environment created from the virtual platform.

Keywords- ESL, UVM, TLM, RTL Verification, Virtual

Platform, SystemVerilog, SystemC

I. INTRODUCTION

As software became a key product differentiator in system-on-

chip (SOC) designs, virtual platforming has become a

necessity to ensure that the complex interaction between both

software and hardware can be validated and verified. Virtual

platforming enables modeling a system-on-chip using a high

abstraction language such as SystemC, so that building and

simulation of the model can be done relatively quickly

compared to using RTL code for hardware. Building a virtual

platform involves piecing together SystemC TLM2

components that mimic their real world counterparts, followed

by running simulations to validate if architectural assumptions

were correct.

II. VIRTUAL PLATFORM

At the onset of designing a System-On-Chip (SOC), which is

comprised of both hardware and software, an early prototype

of the SOC is developed by the system or architecture team.

This early prototype, or virtual platform, is modeled using

high level language such as C, C++, SystemC. The benefit of

using these high abstraction languages for moedeling is that

development can be faster because details of the

implementation can be bypassed for now. SystemC TLM 2.0

allows blocks within the virtual to communicate very quickly

and in a standard fashion. 3rd party SystemC IP providers sell

pre-made SystemC TLM 2.0 models to allow virtual

platformer to focus on building SOC. Algorithmic

explorations can be performed quickly to test out the latest de-

compression algorithm. Architectural trades-offs between

FIFO depths or lowering operating to reduce power

consumption can be examined.

As the virtual platform, a high abstraction model of the

hardware is finalized; the software team can start to integrate

an OS, device drivers, firmware, and application code, months

before the design is available as hardware. The verification

team will also start to verify the virtual platform IPs,

connectivity, and basic block to block system level tests. Let’s

look more closely at how the verification environment

interacts with the virtual platform.

III. VIRUTAL PLATFORM VERIFICATION

Verification is an important step in the virtual platform

environment. It ensures that the individual blocks within the

virtual prototype work standalone. Once the virtual prototype

is assembled using the pre-verified blocks, verification can

focus on connectivity. Once connectivity is verified,

verification can focus on real world system interations. Much

effort is expended to understand the system architecture, the

block functionality, and the interaction between the blocks at

the system level. These virtual platform tests can be native

application C/C++ code, with a processor model fetching and

performing reads or writes to the system. The test can also be

SystemC TLM2 transactions.

The software application based verification usually exercises

the SOC in the normal manner. On the other hand, the hand

crafted stimulus using SytemC TLM 2.0 transactions can

provide interesting traffic not possible with C/C++ stimulus.

For example, if the verification engineer want to recreate a

scenario where the SOC is in the midst of a DMA transaction,

and at the point the transfer buffer is about full, a critical

interrupt needs to be fired to verify the latency of the response.

This level of transaction granularity and control is possible

with precise SystemC TLM 2.0 transaction.

Once these interesting tests employing SystemC 2.0 TLM are

written for the virtual platform, would it be nice if these tests

can be reused in the RTL, leaving time to write more complex

RTL tests that might not have been written. But how can one

reuse tests, originally targeted for virtual platform, on a RTL

design?

IV. VIRTUAL PLATFORM VERIFICATION REUSE VIA UVM &

TLI

In order to reuse the verification environment originally

deployed on the virtual platform in the RTL environment, a

mechanism is needed to translate the SystemC TLM 2.0

stimulus into pin level signals of an RTL design. This

translation is achieved via the Transaction Level Interface

(TLI) and Universal Verification Methodology (UVM).

Transaction Level Interface (TLI) is a mechanism in Synopsys

VCS that allows SystemC and SystemVerilog to pass data to

each other. In the ESL verification environment, the stimuli

are TLM 2.0 generic payload transaction object, so TLI needs

to be able to handle passing transaction objectrs. In addition

to passing TLM 2.0 generic payload, the TLI mechanism also

needs to support the various ways objets are cpassed, inclidng

TLM 2.0 concepts of blocking and non-blocking.

UVM was recently approved by Accellera, an electronics

industry organization body comprised of industry experts, to

create a common and open verification methodology. UVM

will allow engineers to build scalable, extensible, and reusable

verification environment that will improve productivity of the

design verification community. Because UVM is written in

SystemVerilog, UVM employs key SystemVerilog language

features ideal for verification, including constrained random

sequence generation, functional coverage, temporal assertions,

and data structures such as class and smart queues. Of key

interest is the reuse aspect of UVM to apply the same

verification environment to both a SystemC and RTL version

of the same design block, allow for all the verification effort

on the SystemC verification to be reused on the RTL, thereby

saving time and effort.

TLI, combined with UVM, allows for the ESL verification

environment to be reused for RTL verification. Either the

application code, or the SC TLM stimulus, can now be used

on the RTL design The TLI and the UVM communicate via

TLM sockets as well. In addition to allowing SystemC TLM

2.0 object to be passed to SystemVerilog through the standard

TLM 2.0 socket methods such as blocking and non-blocking

calls, TLI needs to also allow the SystemC TLM 2.0 initiator

socket to be mapped to a SystemVerilog TLM 2.0 target

socket. The TLI fully supports this and it will be demonstrated

in a later example.

V. MULTI-MEDIA SOC EXAMPLE

Image processing is a common component in most of today’s

consumer electronics. It is the hardware (and software)

component that decompresses pictures (such as JPEG) to be

displayed on your tablet or smart phone. Of interest in this

example is the Discrete Cosine Transform (DCT) block. The

multi-media SOC was prototyped virtually using SystemC,

with other SystemC TLM 2.0 models. The SOC sits on an

ARM AMBA bus as a slave with mastering capabilities to

output the processed image to memory or display. In the

system below, there are two masters that drive the SOC : an

ARM model, and a stimulus block. The ARM model

communicates with the SOC through SystemC TLM 2.0

interface. This interface allows for high abstraction, fast speed

communication between the ARM model and the SOC.

The stimulus block, written in SystemC, interfaces with the

SOC via TLM 2.0 as well. The stimulus block can both data

and control centric stimulus. For data, the stimulus block can

read from an external file (such as a .jpg of Mona Lisa), to

creating raw “patterned” images to create complex raw

images, to purposely introducing noise into an image. Control

stimulus that can be varied by the stimulus block includes

overflow and underflow conditions.

In SystemC, the stimulus generator will create instances of

“tlm_generic_payload” and populate it with image data such

as one from a picture or noise. In this example, the SystemC

class “producer” will create an instance of a SystemC TLM

generic payload “trans” and populate it with the desired

transaction; in this case, the populated command will be to

perform an AXI write transaction. Once the “trans” is

populated, the SystemC TLM generic payload will be passed

over to SystemVerilog-UVM via the “init_socket-

>nb_transport_fw” call. How is SystemC TLM socket

“init_socket” connected to a SV port

“producer_sc_inst_export” ? They are connected via TLI

SystemC system method called “tli_tlm_bind_initiator” to

bind the SystemC socket “init_socket” to the SystemVerilog

TLM socket “producer_sc_inst_export”.

1. Passing TLM 2.0 generic payload from SC to SV

2. SV UVM socket receiving TLM 2.0 generic payload

Once the sockets are established on the SystemC verification

environment as the TLM 2.0 initiator socket and UVM

SystemVerilog as the TLM 2.0 target socket, the TLI need to

be able to bind the two connected (map) these two sockets.

These is done from a top level file from both SystemC and

SystemVerilog.

1. Example of binding a SC TLM2 initiator socket to a

SV-UVM target socket

2. Example of binding a SC TLM2 initiator socket to a

SV-UVM target socket

class ScVerif : public sc_module,

public

tlm::tlm_bw_transport_if<my_payload_typ

es>

{

 void main {

 trans = new generic_payload;

 trans->addr = dma_config_reg;

 initiator_socket-

>b_transport(*axiTrans, delay);

 if (trans->response != 1) {

fail(); }

 } // main

};

class sv_uvm extends uvm_component;

 task b_transport(payload t,

uvm_tlm_time delay);

 // decode SC TLM payload

 // drive RTL

 endtask

endclass

class ScVerif : public_sc_module {

 public:

 SC_CTOR(ScVerif) … {

uvm_tlm2_bind_sc_initiator(i.initiator_

socket.

 UVM_TLM_B, “sc_2_sv_socket”,

true);

 }

};

class SocEnv extends uvm_env;

 function void connect_phase(uvm_phase

phase);

uvm_tlm2_sv_bind#(payload)::connect(tar

get1.socket,

 UVM_TLM_B_INITIATOR,

 “sc_2_sv_socket”)

 endfunction

endclass // SocEnv

Once these are bound, the SystemC verification environment

is ready to send TLM 2.0 transactions. In our SOC, the main

interface bus is an ARM AXI3 bus, so the transactions will be

address, data, and command.

1. Stimulus from SystemC using TLM 2.0:

2. Component in SystemVerilog-UVM

VI. RESULTS

TLI coverts the SystemC TLM 2.0 transactions into

SystemVerilog TLM 2.0 tranactions, and UVM decodes the

transactions into RTL signal. Using the the TLI and UVM

mechanisms, we were able to reuse original C/C++/SystemC

image processing verification environment on the RTL. These

tests produced ARM AXI TLM 2.0 transactions, and through

TLI and UVM, the transactions were converted to RTL pin

signals. Additionally, application code written for the ARM

processor were also reusable on the RTL as well. The

application code eventually culminated in a typical configure-

write-read-compare sequences, which were translated from

TLM 2.0 transactions to ultimately RTL pins signals as well.

The verification already built for the virtual platform is reused

on RTL and gate level netlist simulation. The time saved on

VII. CONCLUSION

With TLI and UVM, SystemC ESL verification environment

can be reused on RTL simulations. Reusing tests that were

already passing in SystemC ESL on the RTL verification

increases confidence of the RTL design. As a bonus, RTL

verification centric tools such as coverage, planning, and

debug can augment the ESL tests to gain higher confidence

and further insights into the not only the completeness of RTL

verification, but on the ESL verification as well.

class producer: public

sc_core::sc_module, …{

 tlm_tlm_initiator_socket<>

init_socket;

tlm::tlm_generic_payload* trans;

producer::initial_thread() {

 trans->set_command(WRITE); //

create stimulu

 trans->set_address(addr);

 ret=init_socket-

>nb_transport_fw(*trans,phase,delay);

 }

};

class sv_uvm_comp extends

uvm_component;

 task b_transport(payload t,

uvm_tlme_time delay);

 // decode SC TLM payload drive

RTL

 @(posedge intf.mclk);

 intf.maddr = t.addr;

 endtask

endclass

