

Leveraging more from GLS: Using metric driven GLS stimuli to boost timing verification

Sowmya Ega, Richardson Jeyapaul, Kunal Jani

AHEAD OF WHAT'S POSSIBLE™

- I. Traditional GLS Stimuli
- II. Brief introduction on Multi cycle paths, False paths and Timing critical paths.
- III. Need for GLS Stimuli to complement STA
- IV. Functional coverage model GLS.
- V. Limitations
- VI. Conclusion

Traditional GLS Stimuli

Fewer system level tests are run on GLS, owing to following reasons

- Complex Designs
- Lengthy Regression runs
- Enormous test-list
- Schedule

Traditional GLS Stimuli (cntd) ..

Generally, GLS test-list would comprise of

- Reset scenarios
- Critical functional paths at the system level

Is the GLS Stimuli Complete ???

Does the tests cover critical timing paths, Multi cycle paths, False paths?

Multi cycle path

Timing path in which the data launched from one flop is allowed to take more than one clock cycle to reach the destination flop.

- Multi cycle paths are mostly implemented using the following approaches
 - Clock gated : Clock at the capturing flop is enabled only when the data has to be captured

• Data gated : Data is gated at the capturing flop, and toggles only when it is to be captured.

Static False Path

- Timing paths where the change in source registers are not expected to get captured at the destination register within a particular time interval
- These are the paths which exist in the design but those are logically/functionally incorrect

D1->D4 can be treated as a false path. path

Critical Timing path

2018

Timing paths whose timing is met marginally by STA tool, and are reported as such by STA tool. These timing paths can be critical on either setup, hold or both.

Setup critical timing path : Critical paths where the delay in the data path is greater than the delay in clock path.

Hold critical timing path: Critical paths where the delay in the clock path is greater than the delay in data path.

GLS stimuli to complement STA

When Static Timing Analysis is run:

- There is no explicit timing verification done on Multi cycle paths, false paths
 - If a Path is wrongly defined as an multi cycle path/false path & whose timing is closed accordingly, is not an multi cycle path/false path – results in a silicon bug.
- The timing critical paths are verified only on Static stimuli.
 - No check to understand the behavior of timing critical paths with real functional stimuli (Dynamic)

GLS stimuli to complement STA (cntd..)

- Hence, to boost timing verification, a need arises to check if the GLS test-list covers Timing critical paths, multi cycle paths and false paths.
- But, how can we check if the GLS test-list covers the timing paths of interest??
 - Develop a Functional Coverage model on Timing paths of interest

How Functional coverage model on Timing paths of interest helps ??

- Functional cover property monitors if a particular timing path gets triggered in a simulation or not.
- Integrate these Functional cover properties in GLS testbench environment.
- Run a regression using GLS testlist on full design.
- Coverage achieved on the Functional Cover properties defines if GLS Stimuli exercises the timing paths of interest, and thus complements the STA by boosting the verification on timing paths of interest.

Automating the generation of Functional cover properties :

Zero-in on the timing paths of interest with the help of Design & Implementation team.

Get the launch-flop (Begin Point) and capture-flop (End Point) of the timing paths of interest.

Based on the timing path (Timing critical / Multi cycle / False path), the construct of the Functional cover property differs.

Develop a script which takes the list of Begin-Points & End-Points of timing paths and automate the generation of Functional cover properties

Functional cover property for a Timing critical path :

Sample Construct :

Wait for change in Data at EndPoint at the nearest edge of EndPoint clock after BeginPoint clock edge

Example for a Critical Timing path:

`define Begin_Point

microglue_tb.u_muska.u_muskaDigital_top.u_muskaDigital.u_digital_top_lv.u_dig_pwr_gate.u_dig_core.u_subsys.u_apb32_perip h_top.pmg_clk_regs.hfoscdivsyn_gen_reg

`define End_Point

microglue_tb.u_muska.u_muskaDigital_top.u_muskaDigital.u_digital_top_lv.u_dig_pwr_gate.u_dig_core.u_subsys.u_apb32_perip h_top.pmg_clk_regs.hfoscdivsyn_gen_d_reg

property Hold_265;

bit ep_val; time lead_time; time trail_time; bit ep_val_capture;

@(posedge Begin_Point.CP) disable iff (!start_chk || (Begin_Point.Q === 1'bx) || (Begin_Point.CP === 1'bx)) (
\$changed(Begin_Point.Q) && (\$past(Begin_Point.Q) !== 1'bx)) ##0 (1,ep_val = End_Point.D,lead_time = \$time) |=> @(posedge
End_Point.CP) ##0 ((\$changed(End_Point.D) &&End_Point.D !== signed'(ep_val)) && (\$past(End_Point.D) !== 1'bx)) ##0
(1,trail_time = \$time, report_check(lead_time, trail_time,265),ep_val_capture = End_Point.D,
report_capture(ep_val,ep_val_capture,265));

endproperty

Hold_265_cover : cover property(Hold_265) \$display(" 265 : BP is %d, EP is %d, check_x is %d test is %s ", Begin_Point.Q,End_Point.D,samp_fun::check_x(Begin_Point.Q,End_Point.D),getenv("TESTRUN"))

Waveform Snippets :

Baseline ▼ = 0 Cursor-Baseline ▼ = 1,761,571.1199ns		TimeA = 1,761	
Name	Cursor 🗛	,761,550ns 1,761,560ns 1,761,570ns	1,761,580ns 1,761,59 Begin Point
P; [™] Hold265_cover	inactive	inactive	🗾 🗾 clock
⊞ - 🤹 checked_count	'd O	0	Begin Point Q
⊕ 📠 finish_count	'd O	0	
⊕ - 🌆 failure_count	'd O	0	transition
⊕ ¶ disabled_count	'd 1	1	Endpoint Clock
d265_cover contributo	rs	waves::microglue_tb.u_tb_hamess.funchold_cov_u.Hold265_cover.contributors	
 CP	1		Endpoint D
II-) Q	1		transition
	1		
🔁 D	0		
			the transitions

FIGURAND VERIFICATION INITED STATES FUNCtional cover property for a clock gated Multi cycle path :

Example for a clock gated MCP:

`define Launch_Path

proj_tb.u_top.u_projDigital_top.u_projDigital.u_digital_top.aon..edgeDet_clock_dead_edgeDet_syncQ1_reg

`define Capture_Path

proj_tb.u_top.u_projDigital_top.u_projDigital.u_digital_top.aon..edgeDet_clock_dead_edgeDet_syncQ2_reg

property Hold169_MCP_CG;

bit ep_val; time lead_time; time trail_time; bit ep_val_capture;

@(posedge Launch_Path.CP) disable iff (!start_chk || (Launch_Path.Q === 1'bx) || (Launch_Path.CP === 1'bx)) (
\$changed(Launch_Path.Q) && (\$past(Launch_Path.Q) !== 1'bx)) ##0 (1,ep_val =Capture_Path.D,lead_time = \$time) |-> @(posedge
Launch_Path.CP) \$stable(Launch_Path.D) ##1 @(posedge Capture_Path.CP) ##0 (\$changed(Capture_Path.D) &&
(\$past(Capture_Path.D) !== 1'bx));

endproperty

Hold169_MCP_CG_cover : cover property(Hold169_MCP_CG) \$display(" Hold169_MCP_CG : BP is %d, EP is %d, check_x is %d test is %s", Launch_Path.Q,Capture_Path.D,samp_fun::check_x(Launch_Path.Q,Capture_Path.D),getenv("TESTRUN"));

Waveform snippet :

GLS stimuli to complement STA

- But, how do we check if the GLS test-list covers the timing paths of interest??
 - Functional Coverage on Timing paths of interest

GLS stimuli to complement STA

Emphasis on Timing critical paths, Multi cycle paths & False paths :

2018

- Timing critical paths are the paths whose timing is marginally met in STA
 - To understand the behavior of timing critical paths with real functional stimuli (Dynamic)
- Multi cycle paths and False paths are user(Designer) defined
 - If a Path is wrongly defined as an multi cycle path/false path & whose timing is closed accordingly, is not an multi cycle path/false path – results in a silicon bug.