

1

Leveraging IEEE 1800.2-2017 UVM for improved

RAL modelling

Vikas Sharma, Mentor, A Siemens Business (vikas_sharma@mentor.com)

Manoj Manu, Mentor, A Siemens Business (manoj_manu@mentor.com)

Ankit Garg, Mentor, A Siemens Business (ankit_garg2@mentor.com)

Abstract — The implementation of UVM-RAL [1] verification environment which contains multiple processors or

masters, and access the same registers (uvm_reg_block) with dynamic address mapping is a challenging task, especially

when no standard solution is available in the traditional UVM. Until now, the industry was solving such challenges by

implementing home-grown techniques that involved less efficient codes and low reusable quotients. A year ago,

Accellera introduced new reference implementations aligned with the IEEE 1800.2-2017 standard for UVM with many

improvements and new features. This paper aims to provide IEEE 1800.2 UVM-based solutions to complex register

blocks or structures that cannot be modelled statically and require multiple mapping and remapping of registers

(uvm_reg) dynamically. The proposed solution also tries to accommodate any potential vertical reuse and future

expansions of dynamic address mapping.

Keywords— System Verilog; UVM; IEEE 1800.2-2017; Register Abstract Layer RAL; uvm_reg; uvm_reg_block;

multiple address mapping; dynamic address mapping;

I. INTRODUCTION

Before discussing paper intent and its schema, let’s delve into SystemVerilog [2], which is a powerful language

primarily developed to facilitate effective verification of hardware designs. The SystemVerilog language standard

includes hardware descriptions, test bench construction, assertions, coverage, constrained randomization, and

object-oriented programming features. Although SystemVerilog includes a plethora of features for hardware design

verification, building a verification environment using SystemVerilog is challenging for anyone especially the

beginners. This is due to the absence of a standard verification architecture for creating SystemVerilog test benches.

The Universal Verification Methodology (UVM) addresses this gap and helps in overcoming the verification-

related challenges.

UVM [1] provides one of the best verification architectures for creating SystemVerilog-based test benches,

thereby eliminating the effort and time spent in creating complex test benches. To facilitate the development of

efficient verification environments, UVM provides various building blocks that include a set of base classes,

reusable components, and steps to create a test bench from reusable components.

UVM [1] also provides an abstraction layer known as the register abstraction layer (RAL) for conveniently

accessing registers and their contents and memory locations within a DUT. The UVM-RAL provides a base library

for modelling the register space and abstracting the read and write operations to the corresponding mapped register

space in the DUT. It not only helps in tracking the register content of the DUT, but also helps in mirroring them

with the ones which are modelled inside UVM register model. The traditional UVM-RAL meets most verification

requirements upfront except some exceptions, such as static locking and registration of a register model. To support

dynamic address remapping, the IEEE 1800.2 UVM [3] offers new APIs and methods.

The IEEE 1800.2 UVM-RAL [3] allows register blocks and mappings to be unlocked, unregistered, and

remapped at different addresses before relocking them again. This paper aims to address the challenges faced in

dynamic address remapping and multiple mapping of shared registers and their applications using the IEEE 1800.2

UVM-RAL. The techniques described in this paper cover remapping of registers along with new IEEE 1800.2

UVM [3] references that are described with their advantages and potential use cases.

II. TRADITIONAL UVM-RAL

A typical register model consists of a hierarchy of blocks which contain sub-blocks, registers, register files,

memories, and register map. The register model data structure must be organized in a way that it completely reflects

mailto:vikas_sharma@mentor.com
mailto:manoj_manu@mentor.com
mailto:ankit_garg2@mentor.com

2

the DUT hierarchy and aids in the writing of abstract modelling. After its integration, the register model is used by

a test bench user to create reusable sequences that can access hardware blocks and memory. In the case of a block-

level register model, the register block is most likely to be mapped to a single address map. The register map defines

the address space offsets of one or more registers or memories as specified by the specific agent or bus interface.

There is no mechanism of changing the address map once it is built and locked.

Presently, CPU subsystems/interconnect require additional capabilities in their register models that include

dynamic address mapping of shared registers. There could be multiple register blocks containing other register

model blocks for each of the subcomponents in the subsystem, and their register maps might be associated with

different address maps during runtime. Therefore, it is a challenge to fulfil such conditions because it requires

locking and unlocking of the register models. The traditional UVM-RAL modelling is static, and does not provide

any standard API or recommended guidelines to address the aforesaid challenges. Further, the traditional UVM-

RAL modelling is often coded ineffectively to meet verification requirements. In addition, the traditional UVM-

RAL offers only the static lock_model() API and allows static locking and registration of the register model at the

build time. This makes it harder to unlock the register mappings, which could be required in an advanced

verification plan. Attempting to reuse register mappings in the subsystem level or in multiple mapping

environments becomes difficult because of unavailability of relevant APIs. Currently, no standard method is

available to unlock the register mappings and implement them for further vertical reuse. This is also true for the

verification environments with multiple processors or masters that access the same registers or memories with

different register maps.

III. IEEE-1800.2-2017 UVM-RAL

Several online forums [4] promoting UVM education and discussions are witnessing an increasing number of

queries on dynamic and multiple address mapping. The solutions [6] for such queries propose different

implementations that involve the same set of steps, which include extending the base class and using APIs which

do not check whether the register model is locked or not.

Last year, Accellera launched an upgrade to UVM 1.2 in conjunction with IEEE by providing a new 1800.2

UVM [3] standard. As revealed [5], the new standard comes with some bug fixes and new, modified, and deprecated

APIs. The deprecated APIs can be activated again by using +UVM_ENABLE_DEPRECATED_API. Now, all

UVM register base classes are abstract (virtual) classes. A significant feature of the IEEE-1800.2 UVM standard

that differentiates it from the traditional UVM-RAL is its register layer APIs, which allow removal or addition of

registers and memories along with an association to different address maps.

 The lock_model() API checks if a

register model is locked. If the model

is unlocked, the API recursively

locks the entire register model and

builds the address map. When the

model is locked, no further structural

changes can be made. Therefore, all

the sub-blocks, maps, and registers

must be created before the

lock_model() API is called. This API

finalizes the address mappings

3

IV. DYNAMIC ADDRESS MAP

We should look for potential usage of dynamic register map in cases where a system requires to change its

register map on the fly because of many reasons, such as:

 Reconfigurations, wherein an address map has to be reconfigured

 States, wherein different states have different access policies

 Hot-Join, wherein a new host joins the system on the fly

 Access policies, wherein a change is required in access policies of sub-blocks

 Multiple address mapping, wherein a register space is to be accessed by more than one master with different

address offsets

Contrary to the traditional UVM-RAL [1], the IEEE 1800.2 UVM [3] register modelling RAL is dynamic and

provides new functions, unlock_model() and unregister(), to unlock and unregister a register model that is already

locked and registered. The IEEE-1800.2 UVM-RAL allows users to easily rebuild the address hierarchy (maps)

from registers as needed at runtime by locking the register model again in the simulation dynamically.

 The unlock_model() function brings

back the register mode to a state before

locking so that a subsequent

lock_model() API can be issued at any

time during the simulation. It

recursively unlocks the entire register

model and sub-blocks, and moves the

model to a state where the locked bit is

set to 0.

 The unregister() function unregisters

all the content from the map recursively

and removes all knowledge of the map

recursively from other objects, such as

regs, mems, and vregs. This enables the

reuse of the map content and objects

with a fresh map instance by using the

add_** APIs. If this.unregister(map) is

called then a full register map will get

unregistered. When only a specific

register or memory address map needs

to be changed, the

map.unregister(reg/mem) function is

called.

4

V. IMPLEMENTATION

The following block diagrams describe a sample requirement [5] of a system with two states, State-1 and State-

2, and two sets of register maps, Map-A and Map-B.

Let’s suppose that there is a test requirement [5] where:

1. State-1 and State-2 specify different register structures and address maps as explained in the above

figure.

2. The simulation starts from the initial model and moves the system from State-1 to State-2, and after

some time the system returns to State-1 as explained in the figure below.

3. At every stage, user needs to reconfigure the model, but it cannot be done because the system is already

locked during initial model setup.

5

Now, let’s examine the code shown in the figure above. It demonstrates the map_as_per_states() function,

which handles the register mapping based on the states of the system. This function is called every time the system

state changes. In this example code, the function unlocks the register model and unregisters the register maps.

Thereafter, it calls the map_state_1() and map_state_2() functions shown in the figures below. To ensure that the

register model is not altered, the map_as_per_states() function locks the model at the end.

Changing the address map of map_A

from State-1 to State-2

Changing the address map of map_B

from State-1 to State-2

6

Once you consider the above mentioned steps, adopting the IEEE 1800.2 UVM-RAL [3] can significantly

reduce the amount of time it takes to achieve dynamic addressing and multiple mapping. The IEEE 1800.2 UVM-

RAL provides various built-in APIs to handle many of the common to-dos used in the following process. To achieve

a dynamic address map, there is a need to understand some of the basic concepts explained above and perform the

following steps for its development.

1. Build a register model in the same way as in traditional UVM.

2. Register the register map using the add_reg() API.

3. Do not perform any register read or write operation without locking the register model.

4. Lock the model by calling the lock_model() API.

5. Unlock the model during simulation by calling the unlock_model() API.

6. Unregister the register map by calling the unregister() API.

7. Create new maps, add registers, connect into blocks.

8. Unmap existing registers and remap them again.

9. Lock the register model again by calling the lock_model() API.

VI. SUMMARY

The IEEE 1800.2 UVM-based solution proposed in this paper achieves the following objectives:

• Identified the problem of static nature of the RAL model in traditional UVM.

• Introduced new IEEE 1800.2 UVM RAL model.

• Proposed solutions targeting dynamic address mapping.

• Illustrated an example changing the register model dynamically using system states.

• Demonstrated the usage of new APIs provided in the IEEE 1800.2 UVM RAL model.

VII. REFERENCES

[1] Accellea UVM: https://www.accellera.org/downloads/standards/uvm

[2] IEEE 1800-2017: SystemVerilog (SV)

[3] IEEE 1800.2-2017: Universal Verification Methodology (UVM)

[4] Online Forum: https://verificationacademy.com

[5] DVCon US-20I8: IEEE-Compatible UVM Reference Implementation and Verification Components

[6] DVCon INDIA-2015: UVM-RAL: Registers on demand Elimination of the unnecessary

