
Leveraging Formal to Verify SoC Register Map

Abdul Elaydi
Marvell, Inc
5488 Marvell Ln,
Santa Clara, CA 95054
aelaydi@marvell.com

Jose Barandiaran
Cadence Design Systems
12515-7 Research Blvd
Austin, TX 78759
joseb@cadence.com

Abstract
Today’s SoCs are built up of many IPs

and subsystems. The inability to

properly control or receive status from

these components can cause significant

issues and even result in a dead chip.

Unfortunately, issues around the control

and status registers (CSRs) are fairly

common and cannot typically be “fixed

in software” as this is the layer that

interacts with the software. Historically

people have used simulation-based

approaches to validate CSR functionality

but these methods are insufficient as

they are not fully exhaustive.

Exhaustive verification of an SOC

register map is one of the verification

goals at Marvell. Traditionally,

verification has been done using directed

tests issuing read and write cycles

targeting the register to verify the

register access policies and reset values,

based on functional description in the

design documentation. While this

approach can verify the register map to a

certain degree, it is not exhaustive with

regards to providing comprehensive data

pattern and address aliasing testing

capabilities. The effort required for a

user to define all the possible

permutations of data patterns and

register accesses is simply prohibitive.

Formal analysis addresses this

verification challenge. Using an IP-

XACT description of the register map

generated from the register

documentation, assertions can be created

automatically to verify the register

access policies. Using formal analysis to

prove the assertions provides exhaustive

verification, without the need for

testbench, with a typical turnaround time

on the order of minutes or less per

check. Additionally, since formal

analysis can prove assertions

independently of each other, compute

farms can be leveraged to allow many

assertions to be verified in parallel,

greatly reducing total turnaround time.

Debugging assertion failures from

formal analysis is typically easier than

with simulation approaches, since formal

will automatically find the shortest path

to the failure, and can provide a

waveform counterexample showing the

failure.

The paper reviews the results of using

this approach on Marvell designs, and

specifically highlights a problem that

was missed by simulation but caught by

this technique.

Keywords—register validation, formal

verification, formal techniques

mailto:anandl@marvell.com
mailto:joseb@cadence.com

1. Introduction

The number and complexity of design
components like registers used in an
IP are growing with each subsequent
version of a system-on-chip (SoC)
design. The inability to properly control

or receive status from these components

can cause significant issues and even

result in a dead chip. Unfortunately,

issues around the control and status

registers (CSRs) are fairly common in

today’s SoC designs and cannot

typically be “fixed in software” as this is

the layer that provides the interface

between the hardware and the software.

Historically people have used

simulation-based approaches to validate

CSR functionality but these methods are

insufficient as they are not fully

exhaustive. A flow which can automate
the task to validate the use of specified
registers is a key requirement for IP
developers and verification engineers.

This paper describes a register
validation flow which addresses the
register map validation requirement.
The flow leverages formal verification
to exhaustively check SoC Register
Maps, which are specified using IP-
XACT descriptions of the register
database. The flow converts register
documentation into IP-XACT format
using in-house scripts, then a new
commercially-available formal
verification application is used to
generate assertions, to fully verify
register access methods.

2. Background and Motivation

At Marvell, we had experienced
problems with the time needed to
setup and execute simulation-based

register verification, which not only
took too long but failed to provide
conclusive evidence that verification
was fully achieved for the entire
register map. This led to requirements
for both speed-up and completeness.
We wanted to have a complete
verification environment, capable of
testing at the SoC level, that would
verify all the SoC and IP-Level
registers against latest specification
updates without need for elaborate
setup.

3. Pre-existing Solutions and their
Limitations

The previous verification environment
for register map utilized directed tests
written in a C-language environment
for all SoC Registers. We found it very
difficult to create C-based directed
tests to verify every situation we
needed to test, and in particular, we
were not able to resolve issues related
to register duplication, over-lapping
or out-of-range addresses. We did not
consider using UVM_REG (the base
class for the register modeling layer in
UVM) due to the environment setup
and ramp time involved, especially
since UVM in general is not yet fully
adopted by our team.

4. Formal Register Map Validation
Flow

The register validation flow is based
on the following three key
components:

 IP-XACT: An essential
repository of information,
which provides details about

memory maps and registers
that are part of IP.

 Assertions: These are used to
validate the behavior of the
design.

 Verification Using Commercial
Formal Engine: Performs the
RTL block verification. The
formal, assertion-based
approach and exhaustive
analysis ensures verification
and detection of errors.

Figure 1: Register Map Validation

Flow

Figure 1 represents the various
elements of the register validation
flow and their interaction with each
other. These key components are now
explained in detail.

IP-XACT, now a formal IEEE standard
(IEEE 1685-2009), is widely used for
register and memory map
management. IP-XACT provides XML
schema for vendor neutral IP
descriptions, which are used to
conveniently capture details about
interfaces, signals, ports, parameters,
memory maps, registers, files, and also
manage design changes with each
revision. This enables easy design

assembly with different
configurations, reduces development
and verification time and cost, and
leads to simpler data sharing. The IP-
XACT specifications are used to build a
register validation flow to verify the
design.

In addition to the register IP-XACT we
also needed to supply SystemVerilog
Assertion (SVA) sequences for read,
and write sequences in addition to the
design reset sequence. The flow is
extensible and not specific to an
interface protocol. For common
protocols, such as APB used in this
design interface, the read and write
sequences existed in a library, which
we used to run read and write
sequences to the design interface.
The supplied APB SVA Write sequence
(WRITE_SEQ) is:

PSEL && !PENABLE && PWRITE &&

(PADDR == REG_chk_addr) &&

(PWDATA == REG_chk_data)

##1 PSEL && PENABLE && PWRITE &&

PADDR == REG_chk_addr && PWDATA

== REG_chk_data

The supplied APB SVA Read sequence
(READ_SEQ) is:

PSEL && !PENABLE && !PWRITE &&

(PADDR == REG_chk_addr)

##1 PSEL && PENABLE && !PWRITE

&& (PADDR == REG_chk_addr)

REG_chk_addr is a predefined register
that represents the target register
address being tested.
REG_chk_data is a predefined register
that represents all the data patterns
driven on the write data bus on the
interface.

The sequences were combined to
create testing sequences to verify

access policies as shown in the
discussion around read-write access
policy checks below.

The reset sequence (RESET_SEQ) is
specific to each design and for this
design the following SVA sequence
represents the reset sequence for our
design. This design required PRESETn
to be driven low for 20 clocks and
p_rst to be driven high for 20 clocks.
There is a requirement for the reset
sequence to terminate with one clock
of the reset deasserted. The last term
below represents both reset signals
deasserted.

((!PRESETn & p_rst)[*20] ##1

(PRESETn & !p_rst))

The sequences are combined with the
register IP-XACT to create and
extended IP-XACT file as illustrated in
Figure 2.

Figure 2: Extended IP-XACT Creation

Generation of appropriate assertions
is the next step in the register
validation flow as illustrated in Figure
3. The result is a BFM to drive the
design interface along with the checks
for each access policy in the design.
The register generator utility reads
the IP-XACT specifications, and

generates a set of output files which
are compiled and run using Incisive
Enterprise Verifier (IEV) from
Cadence Design Systems. The
generated files include an SVA file
which embodies properties, along
with bus sequences to verify
configuration register policies; .tcl
files for executing each type of access
policy checks (Reset, RW, RO, etc.);
and a text file with information of how
to bind the created SVA file to the top-
level design module.

Figure 3: Assertion Generation and

Execution

By default, all checks run all
sequences back to back. In order to
find all bugs, the concept of gap
activity has been introduced. The gap
activity induces chaos between read
and write sequences in the checks in
the case of the read-write policy
check. It controls the additional free
activity regions where any activity
except writing to the address it is
checking can be done. Checks support
both front and back door accesses.
The front door checking happens
through interface protocol, whereas,
back door checking happens through
direct register access. Figure 4
illustrates the concept of gap activity,
in this example for Read/Write
checks. For this Read/Write example,
no target write is issued during the
gap activity period.
While formal technology by default
can explore all possible sequences of
interface/design behavior the
methodology takes an incremental

approach to controlling this behavior
on the IP register access interface. In
this way you can control the injection
of “chaos” and use the opportunity to
understand a design’s sensitivity to
this chaos. Knobs are provided in the
flow to control the injected chaos.

Figure 4: Read/Write Checks

Showing Gap Activity

The list of checks for which assertions
were generated is given below:

 Reset Checks
 Read-Write Checks
 Read-Only Checks
 Write One Set Checks
 Write One Clear Checks

The following examples illustrate how
the generated checks in the respective
files are executed using IEV. We
specified the IP-XACT Component
description XML file to IEV for
executing the checks as follows:

iev -f ./apb_subsystem.f

+regval+component.xml

+rv_check+<check type>

[+rv_alias_covers]

where:

 +regval option specifies the
component xml file to be
processed. This is a mandatory
option required for running the
register validation flow in IEV.

 +rv_check option specifies
which check to execute. The
<check_type> can be rw,
ro, rst,w1c, or w1s. This
is a mandatory option and a
single check needs to be
specified for execution.

 +rv_alias_covers option
creates read-write check
covers that verify aliasing can
occur in read-write checks
when the middle gap is
enabled.

The component.xml file was
processed and the following output
files were generated by IEV:

 rvf_reg_check.svp

 rvf_ext_bind.txt

 check-specific tcl files will be
generated

5. Results

We ran the Register Map Validation
Flow on multiple different IP blocks in
our storage SoCs. The run time was
around 2-3 hours each for IP blocks
with 200-300 registers. The tests were
run before RTL freeze and results
were fed back to design and
documentation teams for required
updates. We experienced no
limitations in the complexity of
register IP blocks that could be
described using IP-XACT. In fact, as
anyone experienced with formal
analysis might expect, the limit on
complexity is rather set by the
number of states in which the
assertions need to be explored. To
mitigate this, and since the checks are
independent assertions, we could
leverage multiple processors to
evaluate them in parallel. While this
parallel approach is not unique to

formal methods and has been
supported by simulators for a long
time, we found that the tool in this
case supported parallel execution
natively and conveniently. In fact, we
found that the methodology scaled
successfully to a subsystem consisting
of a number of instances of the IP
blocks described earlier, connected on
an APB bus to an APB bridge.

The flow has helped clean up many
design-versus-specification
mismatches and register access policy
(RW vs RO) errors. One example
mismatch we were able to find was a
register duplication issue. Here, two
registers had the same address, and
were located inside the same sub-IP
but the read mux was hooked on to
only one of the two registers at the
SoC level. So a write essentially went
through to both, but the read occurs
from the wrong register. For the
directed test, the read-compare
always passed as the return value is
always correct. However, the formal
test failed in reset value check after
gap-activity was introduced before the
first reset value read cycle. We
realized that we had been reading out
the value from the wrong register all
along in the directed tests.

All other issues found could also be
covered in directed tests but required
specific scenarios to be created to hit
the failure (out-of-range, decoding
errors etc.)

6. Future Work

We plan to extend the environment in
IEV to run a single-shot test that
drives the CPU AXI interface that has

access to all IP level registers. This
saves more time and resolves any
address decoding issues at the lower
levels that are caused by the design
hierarchy of the register blocks.

7. Conclusions

The formal register map validation
flow was able to meet our goals to
accelerate register map verification,
both in terms of setup speed and
execution, and to improve
completeness of verification. Fast
setup was achieved through the
convenience of using IP-XACT for
register specification; through the
availability of pre-existing read and
write protocol libraries for our
interface protocol; and through the
flow’s capability to automatically
create assertions to check the register
access policies. The goal for fast
execution was met with runtimes of 2-
3 hours for our IP blocks.
Achievement of the completeness goal
was demonstrated by finding many
design-versus-specification
mismatches, some of which could
have been found if directed tests had
been created for them, and others that
were missed by existing directed tests.

References
[1] IEEE-Std 1685-2009, IEEE
Standard for IP-XACT, Standard
Structure for Packaging, Integrating,
and Reusing IP within Tool Flows,
IEEE Standards Association, 2010
[2] Verification Apps User Guide,
Product Version 13.1, Cadence Design
Systems Inc., 2013

