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Abstract 
Today’s SoCs are built up of many IPs 

and subsystems.  The inability to 

properly control  or receive status from 

these components can cause significant 

issues and even result in a dead chip. 

Unfortunately, issues around the control 

and status registers (CSRs) are fairly 

common and cannot typically be “fixed 

in software” as this is the layer that 

interacts with the software.  Historically 

people have used simulation-based 

approaches to validate CSR functionality 

but these methods are insufficient as 

they are not fully exhaustive. 

Exhaustive verification of an SOC 

register map is one of the verification 

goals at Marvell.  Traditionally, 

verification has been done using directed 

tests issuing read and write cycles 

targeting the register to verify the 

register access policies and reset values, 

based on functional description in the 

design documentation. While this 

approach can verify the register map to a 

certain degree, it is not exhaustive with 

regards to providing comprehensive data 

pattern and address aliasing testing 

capabilities. The effort required for a 

user to define all the possible 

permutations of data patterns and 

register accesses is simply prohibitive. 

Formal analysis addresses this 

verification challenge.  Using an IP-

XACT description of the register map 

generated from the register 

documentation, assertions can be created 

automatically to verify the register 

access policies. Using formal analysis to 

prove the assertions provides exhaustive 

verification, without the need for 

testbench, with a typical turnaround time 

on the order of minutes or less per 

check.  Additionally, since formal 

analysis can prove assertions 

independently of each other, compute 

farms can be leveraged to allow many 

assertions to be verified in parallel, 

greatly reducing total turnaround time. 

Debugging assertion failures from 

formal analysis is typically easier than 

with simulation approaches, since formal 

will automatically find the shortest path 

to the failure, and can provide a 

waveform counterexample showing the 

failure. 

The paper reviews the results of using 

this approach on Marvell designs, and 

specifically highlights a problem that 

was missed by simulation but caught by 

this technique. 
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1. Introduction 
 
The number and complexity of design 
components like registers used in an 
IP are growing with each subsequent 
version of a system-on-chip (SoC) 
design. The inability to properly control 

or receive status from these components 

can cause significant issues and even 

result in a dead chip. Unfortunately, 

issues around the control and status 

registers (CSRs) are fairly common in 

today’s SoC designs and cannot 

typically be “fixed in software” as this is 

the layer that provides the interface 

between the hardware and the software.  

Historically people have used 

simulation-based approaches to validate 

CSR functionality but these methods are 

insufficient as they are not fully 

exhaustive. A flow which can automate 
the task to validate the use of specified 
registers is a key requirement for IP 
developers and verification engineers. 
 
This paper describes a register 
validation flow which addresses the 
register map validation requirement. 
The flow leverages formal verification 
to exhaustively check SoC Register 
Maps, which are specified using IP-
XACT descriptions of the register 
database. The flow converts register 
documentation into IP-XACT format 
using in-house scripts, then a new 
commercially-available formal 
verification application is used to 
generate assertions, to fully verify 
register access methods.  
 

2. Background and Motivation 
 
At Marvell, we had experienced 
problems with the time needed to 
setup and execute simulation-based 

register verification, which not only 
took too long but failed to provide 
conclusive evidence that verification 
was fully achieved for the entire 
register map. This led to requirements 
for both speed-up and completeness. 
We wanted to have a complete 
verification environment, capable of 
testing at the SoC level, that would 
verify all the SoC and IP-Level 
registers against latest specification 
updates without need for elaborate 
setup.    
 

3. Pre-existing Solutions and their 
Limitations  

 
The previous verification environment 
for register map utilized directed tests 
written in a C-language environment 
for all SoC Registers.  We found it very 
difficult to create C-based directed 
tests to verify every situation we 
needed to test, and in particular, we 
were not able to resolve issues related 
to register duplication, over-lapping 
or out-of-range addresses.  We did not 
consider using UVM_REG (the base 
class for the register modeling layer in 
UVM) due to the environment setup 
and ramp time involved, especially 
since UVM in general is not yet fully 
adopted by our team. 
 

4. Formal Register Map Validation 
Flow 

 
The register validation flow is based 
on the following three key 
components: 

 IP-XACT: An essential 
repository of information, 
which provides details about 



memory maps and registers 
that are part of IP.  

 Assertions: These are used to 
validate the behavior of the 
design.  

 Verification Using Commercial 
Formal Engine: Performs the 
RTL block verification. The 
formal, assertion-based 
approach and exhaustive 
analysis ensures verification 
and detection of errors.  

 

 
Figure 1: Register Map Validation 

Flow 
 
Figure 1 represents the various 
elements of the register validation 
flow and their interaction with each 
other. These key components are now 
explained in detail. 
 
IP-XACT, now a formal IEEE standard 
(IEEE 1685-2009), is widely used for 
register and memory map 
management.  IP-XACT provides XML 
schema for vendor neutral IP 
descriptions, which are used to 
conveniently capture details about 
interfaces, signals, ports, parameters, 
memory maps, registers, files, and also 
manage design changes with each 
revision. This enables easy design 

assembly with different 
configurations, reduces development 
and verification time and cost, and 
leads to simpler data sharing. The IP-
XACT specifications are used to build a 
register validation flow to verify the 
design. 
 
In addition to the register IP-XACT we 
also needed to supply SystemVerilog 
Assertion (SVA) sequences for read, 
and write sequences in addition to the 
design reset sequence.  The flow is 
extensible and not specific to an 
interface protocol.  For common 
protocols, such as APB used in this 
design interface, the read and write 
sequences existed in a library, which 
we used to run read and write 
sequences to the design interface. 
The supplied APB SVA Write sequence 
(WRITE_SEQ) is: 
 
PSEL && !PENABLE && PWRITE && 

(PADDR == REG_chk_addr) && 

(PWDATA == REG_chk_data)  

##1 PSEL && PENABLE && PWRITE && 

PADDR == REG_chk_addr && PWDATA 

== REG_chk_data 

 
The supplied APB SVA Read sequence 
(READ_SEQ) is: 
 
PSEL && !PENABLE && !PWRITE && 

(PADDR == REG_chk_addr)  

##1 PSEL && PENABLE && !PWRITE 

&& (PADDR == REG_chk_addr) 

 
REG_chk_addr is a predefined register 
that represents the target register 
address being tested. 
REG_chk_data is a predefined register 
that represents all the data patterns 
driven on the write data bus on the 
interface. 
 
The sequences were combined to 
create testing sequences to verify 



access policies as shown in the 
discussion around read-write access 
policy checks below. 
 
The reset sequence (RESET_SEQ) is 
specific to each design and for this 
design the following SVA sequence 
represents the reset sequence for our 
design.  This design required PRESETn 
to be driven low for 20 clocks and 
p_rst to be driven high for 20 clocks.  
There is a requirement for the reset 
sequence to terminate with one clock 
of the reset deasserted.  The last term 
below represents both reset signals 
deasserted. 
 
((!PRESETn & p_rst)[*20] ##1 

(PRESETn & !p_rst)) 

 

The sequences are combined with the 
register IP-XACT to create and 
extended IP-XACT file as illustrated in 
Figure 2. 

 
Figure 2: Extended IP-XACT Creation 
 
Generation of appropriate assertions 
is the next step in the register 
validation flow as illustrated in Figure 
3.  The result is a BFM to drive the 
design interface along with the checks 
for each access policy in the design. 
The register generator utility reads 
the IP-XACT specifications, and 

generates a set of output files which 
are compiled and run using Incisive 
Enterprise Verifier (IEV) from 
Cadence Design Systems. The 
generated files include an SVA file 
which embodies properties, along 
with bus sequences to verify 
configuration register policies; .tcl 
files for executing each type of access 
policy checks (Reset, RW, RO, etc.); 
and a text file with information of how 
to bind the created SVA file to the top-
level design module. 
 

 
Figure 3: Assertion Generation and 

Execution 
 
By default, all checks run all 
sequences back to back. In order to 
find all bugs, the concept of gap 
activity has been introduced. The gap 
activity induces chaos between read 
and write sequences in the checks in 
the case of the read-write policy 
check. It controls the additional free 
activity regions where any activity 
except writing to the address it is 
checking can be done. Checks support 
both front and back door accesses. 
The front door checking happens 
through interface protocol, whereas, 
back door checking happens through 
direct register access. Figure 4 
illustrates the concept of gap activity, 
in this example for Read/Write 
checks. For this Read/Write example, 
no target write is issued during the 
gap activity period. 
While formal technology by default 
can explore all possible sequences of 
interface/design behavior the 
methodology takes an incremental 



approach to controlling this behavior 
on the IP register access interface.  In 
this way you can control the injection 
of “chaos” and use the opportunity to 
understand a design’s sensitivity to 
this chaos.  Knobs are provided in the 
flow to control the injected chaos.   
 

 
Figure 4: Read/Write Checks 

Showing Gap Activity 
 
The list of checks for which assertions 
were generated is given below: 

 Reset Checks 
 Read-Write Checks 
 Read-Only Checks 
 Write One Set Checks 
 Write One Clear Checks 

 
The following examples illustrate how 
the generated checks in the respective 
files are executed using IEV. We 
specified the IP-XACT Component 
description XML file to IEV for 
executing the checks as follows: 
 
iev -f ./apb_subsystem.f 

+regval+component.xml 

+rv_check+<check type>  

[+rv_alias_covers] 

 
where: 

 +regval option specifies the 
component xml file to be 
processed. This is a mandatory 
option required for running the 
register validation flow in IEV. 

 +rv_check option specifies 
which check to execute. The 
<check_type> can be rw, 
ro, rst,w1c, or w1s. This 
is a mandatory option and a 
single check needs to be 
specified for execution. 

 +rv_alias_covers option 
creates read-write check 
covers that verify aliasing can 
occur in read-write checks 
when the middle gap is 
enabled. 

The component.xml file was 
processed and the following output 
files were generated by IEV: 

 rvf_reg_check.svp 

 rvf_ext_bind.txt 

 check-specific tcl files will be 
generated 

5. Results 
 
We ran the Register Map Validation 
Flow on multiple different IP blocks in 
our storage SoCs. The run time was 
around 2-3 hours each for IP blocks 
with 200-300 registers. The tests were 
run before RTL freeze and results 
were fed back to design and 
documentation teams for required 
updates. We experienced no 
limitations in the complexity of 
register IP blocks that could be 
described using IP-XACT. In fact, as 
anyone experienced with formal 
analysis might expect, the limit on 
complexity is rather set by the 
number of states in which the 
assertions need to be explored. To 
mitigate this, and since the checks are 
independent assertions, we could 
leverage multiple processors to 
evaluate them in parallel. While this 
parallel approach is not unique to 



formal methods and has been 
supported by simulators for a long 
time, we found that the tool in this 
case supported parallel execution 
natively and conveniently.  In fact, we 
found that the methodology scaled 
successfully to a subsystem consisting 
of a number of instances of the IP 
blocks described earlier, connected on 
an APB bus to an APB bridge. 
 
The flow has helped clean up many 
design-versus-specification 
mismatches and register access policy 
(RW vs RO) errors. One example 
mismatch we were able to find was a 
register duplication issue. Here, two 
registers had the same address, and 
were located inside the same sub-IP 
but the read mux was hooked on to 
only one of the two registers at the 
SoC level. So a write essentially went 
through to both, but the read occurs 
from the wrong register. For the 
directed test, the read-compare 
always passed as the return value is 
always correct. However, the formal 
test failed in reset value check after 
gap-activity was introduced before the 
first reset value read cycle.  We 
realized that we had been reading out 
the value from the wrong register all 
along in the directed tests.  
 
All other issues found could also be 
covered in directed tests but required 
specific scenarios to be created to hit 
the failure (out-of-range, decoding 
errors etc.)  
 

6. Future Work  
 
We plan to extend the environment in 
IEV to run a single-shot test that 
drives the CPU AXI interface that has 

access to all IP level registers. This 
saves more time and resolves any 
address decoding issues at the lower 
levels that are caused by the design 
hierarchy of the register blocks.  
 

7. Conclusions 
 
The formal register map validation 
flow was able to meet our goals to 
accelerate register map verification, 
both in terms of setup speed and 
execution, and to improve 
completeness of verification.  Fast 
setup was achieved through the 
convenience of using IP-XACT for 
register specification; through the 
availability of pre-existing read and 
write protocol libraries for our 
interface protocol; and through the 
flow’s capability to automatically 
create assertions to check the register 
access policies.  The goal for fast 
execution was met with runtimes of 2-
3 hours for our IP blocks. 
Achievement of the completeness goal 
was demonstrated by finding many 
design-versus-specification 
mismatches, some of which could 
have been found if directed tests had 
been created for them, and others that 
were missed by existing directed tests. 
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