
Leveraging Formal to Verify
SoC Register Map

Agenda

• Problem/Background

• Introduction to Solution

• Application and Results

Problem (1)

• Problem
• Comprehensive Register Verification is challenging:

• Register map,
• Default values,
• Access policy, and
• Connectivity: Bus or Bridge configuration.

• Verifying registers requires System Level environment
• System Level testing needs more time to setup, and
• its simulation is slow.

Problem (2)

• Problem
• Simulation based testing is insufficient and not exhaustive

• Hard to hit corner cases at system level.
• Setting up complete coverage requires more engineering resources.

• Bugs in registers are difficult to work around in software

• Documentation is not in sync with the actual design
• Access Policy,
• Bit definitions,
• Default values,

Solution
• Solution

• Using Formal to Verify Registers

• Benefit
• Easy to Setup.

• We can start early, as soon as documentation is ready.
• Using input directly from documentation. Verification and documentation

share the same source of data
• Minimal setup is required.
• Maintenance is easy. No bench to modify or tests to rewrite.

– Traditional simulation uses directed tests written in C-language,
– Test updates are needed when the design or register definition is changed

• Inputs: IPXACT, interface protocol information and design rtl

Solution
• Benefit

• Exhaustive checking of access policy.
• No need to spend efforts creating advanced testbench.
• Automatically handles corner cases.

• Assertions can be ported and used by simulation

Agenda

• Problem/Background

• Introduction to Solution

• Application and Results

Check Generation

IP-XACT
Register

Description

User form
including
protocol

specific info

IP-XACT

(w/ BFM
ext)

User specified or
templates

provided for
common protocols

WRITE_SEQ

RESET_SEQ

READ_SEQ

Merge
Utility

Register
Generator

Incisive
Enterprise

Verifier

Formal
BFM +
checks

Used to build the checks

RTL

Debug waveforms

Check
failures

Register
Description

Documentation

Read and Write Sequences
• APB Read Sequence

PCLK

PSEL

PENABLE

PWRITE

PADDR

PSEL && !PENABLE && !PWRITE
&& (PADDR == REG_chk_addr)

PSEL && PENABLE && !PWRITE
&& (PADDR == REG_chk_addr) ##1

Pre-defined variable that can take on any address defined in IP-Xact

REG_chk_addr

Read and Write Sequences
• APB Write Sequence

PCLK

PSEL

PENABLE

PWRITE

PADDR

PSEL && !PENABLE && PWRITE
&& (PADDR == REG_chk_addr) &&
PWDATA == REG_chk_data

PSEL && PENABLE && PWRITE
&& (PADDR == REG_chk_addr) &&
PWDATA == REG_chk_data

##1

Pre-defined variable: Can assume ALL data values

PWDATA REG_chk_data

REG_chk_addr

Read-Write Check
• Back door check

• Front door check
read_seq

Start
(Initialized)

Check
(via protocol)

Start
(Initialized)

Check
(at register)

write_seq

write_seq

ALL activity
EXCEPT writing to

the address it is
checking

ALL activity

Controllable via command
line arguments

Activity region
enables detection

of inter-register
issues

Read-Write Check

• RW check property

• Check for address 0x10

property rw_fd_chk;
(… write_seq ##1
!(_start_read_after_write | REG_initiate_write)[*] ##1
read_seq |->
chk_data(REG_act_fd_data, REG_chk_data, REG_exp_rw_mask)

);
endproperty

d_reg_0x10_SPI_CTRL_rw_fd_chk : assert property
(disable iff (reset_expression ||
(REG_chk_addr != `REG_ADDR_WIDTH'h10))

rw_fd_chk);

Control existence of activity region

Data check

Read-write property

Ensures check only occurs for
the register address and not in
reset state

Reset and Read-Only Checks

• Reset Check

• Read-Only Check

read_seq

Check
(via protocol)

Start
(Initialized)

read_seq

Sample Data
(via protocol)

Controllable via command
line arguments

reset_seq

Check
(via protocol)

read_seq

Start
(Uninitialized)

ALL activity
EXCEPT writing to

the address it is
checkingALL activity

ALL activity

Agenda

• Problem/Background

• Introduction to Register Solution

• Application and Results

IP Configurations

IP
Reg1 (0x00)
Reg2 (0x01)

...

Interface

Formal BFM
+ checks

Front door

Back door access

Marvell IP under test

Capability not utilized
IP 1

Reg0 (0x00)
Reg1 (0x01)

...

BFM +
checks

Interface

BU
S

FA
BR

IC

Interface
IP 2

Reg10 (0x10)
Reg11 (0x11)

...

Interface

IP 3
Reg21 (0x21)
Reg22 (0x22)

...

Interface

Front door

Faster to Setup More Comprehensive

Results

• ½ day to bring up environment
– Leverage existing user form containing APB

Read/Write sequences
• Mapping APB interface signals

– Compiling design

• 2-3 hour runs per IP
• Register maps for 5 IPs on two separate APB

busses were validated using this flow

Bugs Found

• Many design versus specification mismatches
– Field attribute: read-write vs. read-only.
– Default Value,
– Register Address Encoding
– Duplicate register address error detected

• 2 read-write registers at the same address (in IPXACT file) but
with different reset values

• Read from the address only reads one register
• Reset check for one of the registers failed
• Easily caught by the flow without the need to create stimulus

reset_seq

Reset Check detects design issue

• Reset Check for addr 0x00 (Register 1)
– Expected data 0x00

• Reset Check for addr 0x00 (Register 2)
– Expected data OxFF

read_seq

Check
(via protocol)

Start
(Initialized)

reset_seq

Check
(via protocol)

read_seq

Start
(Uninitialized)

Check Fails: Data read = 0x00

Check Passes: Data read = 0x00

Summary

• Flow met goals in terms of efforts, speed , and
quality:
– Setup speed – Pre-existing APB Write Read

sequences
– Fast Formal tool execution - 2 to 3 hour runs
– Automatic check generation from IPXACT

description
– Completeness

• Found many design vs specification errors
• Found bugs missed by directed tests on previous designs.

	Slide Number 1
	Agenda
	Problem (1)
	Problem (2)
	Solution
	Solution
	Agenda
	Slide Number 8
	Read and Write Sequences
	Read and Write Sequences
	Read-Write Check
	Read-Write Check
	Reset and Read-Only Checks
	Agenda
	IP Configurations
	Results
	Bugs Found
	Reset Check detects design issue
	Summary

