
Lets be Formal While Talking

About Verification Quality: A

Novel Approach Of Qualifying

Assertion Based IPs

Surinder Sood, Sachin Scaria, Erik Seligman

AGENDA

• Introduction: VIP & The 3 Cs

• Checking Consistency : Self-FPV

• Checking Completeness : Fault Injection + FPV

• Conclusions and Future Work

AGENDA

• Introduction: VIP & The 3 Cs

• Checking Consistency : Self-FPV

• Checking Completeness : Fault Injection + FPV

• Conclusions and Future Work

Introduction: VIP & The 3 Cs

• Verification IP (VIP) is increasingly critical

– Ideally supports both formal & simulation

– Our emphasis in on formal

• Major requirements for VIP:

– Correctness: VIP == spec?
» Beyond the scope of this talk

– Consistency: VIP fits together & allows good behaviors?

– Completeness: VIP flags all bad behaviors?

• Consistency & Completeness: Use Formal Property Verification (FPV)

Assertion-Based VIP Structure

• Assumptions/Constraints : limit allowable input activity

• Assertions : conditions that must be true

– Failing assertion flags error (in simulation or formal)

• Covers : conditions that must be tested

– Missed cover in simulation == need more testing

– Missed cover in formal == overconstrained

… + modeling code (queues, scoreboards, …)

AGENDA

• Introduction: VIP & The 3 Cs

• Checking Consistency : Self-FPV

• Checking Completeness : Fault Injection + FPV

• Conclusions and Future Work

Checking Consistency: Self-FPV

Assumptions/Constraints must allow known legal behaviors

Covers == core concepts, spec waveforms, known corner cases

AGENDA

• Introduction: VIP & The 3 Cs

• Checking Consistency : Self-FPV

• Checking Completeness : Fault Injection + FPV

• Conclusions and Future Work

Fault Injection + Formal Property

Verification

– Core intuition: Test the testbench

– Fault injection: insert common faults in RTL + verify

• Stuck-at, inversion, etc.

• Does testbench detect the fault?

– Commonly used in simulation

• Well-known solutions on market for years

• Insert faults, check if simulation detects

– Use with Formal Property Verification less mature

• But it’s the same concept! (Sim checkers == FPV assertions)

The Fault Injection Flow

FPV

Get RTL

Inject Faults

Review Fails

Debug

Scenarios

Property Wrong

Fix Property

Property Missing

Add Property

Consistency

Check

Consistency

Check

AGENDA

• Introduction: VIP & The 3 Cs

• Checking Consistency : Self-FPV

• Checking Completeness : Fault Injection + FPV

• Conclusions and Future Work

Completeness & Consistency:

Do Both With FPV!

Completeness: Fault Injection + FPV Consistency: FPV

Need one good RTL model No RTL needed, just VIP

Focus == unchecked conditions Focus == overconstraint

Discover new properties Focus on written properties

Not available at early stages of VIP Always available

Useful coverage measurement Relies on hand-coded coverage

Very general– all classes of VIPs Best for protocols/bridges

Issues Found

• Consistency: 2 bogus waveforms in protocol spec

– Text not consistent with pictures, due to various edits since 1.0

– Potentially major source of designer confusion

• Completeness: 1500+ faults injected

– 140 “non-activated” or “non-detected”

– Numerous behaviors not monitored in VIP: added assertions!

– Some reset-related assertions not quite correct

Conclusions

• Consistency thru FPV: great for early VIP checking

– Very low cost since just requires light layer on VIP

– Cover points (not just asserts/assumes) are important enabler

– Can’t address correctness or completeness

• Don’t be over-exuberant about ‘FPV passing’

• Completeness thru fault injection + FPV: powerful followup

– Can’t do early: need at least one RTL customer model

– Finds critical omissions in VIP design

– Finds holes in your user-written coverage

– More usable than ‘real’ formal completeness

Future Work

• Flow Improvements

– Injection of faults followed by FPV: a bit clunky

– Opportunities for more integrated tools?

• Comparison of various forms of “Completeness”

– Fault-injection : intuitively easy, straightforward debug

– Formal coverage: possibly more powerful, usability improving

• In practice, will these be redundant, or complimentary?

• What about new, advanced tools?

