
Lessons from the field – IP/SoC integration

techniques that work

David Murray

CTO

Duolog Technologies

David.Murray@duolog.com

Sean Boylan

Product Manager

Duolog Technologies

Sean.Boylan@duolog.com

Abstract— IP integration is increasingly seen as a key challenge

in SoC development. Many factors combine to compound the

problem of IP integration. Increased system complexity, IP

reuse, IP configurability and tightly-bound schedules have all

combined to break traditional flows and methodologies. The

EDA industry has identified IP integration as one of the next big

challenges and has responded by envisioning a plug-and-play

type of standardized IP that can be treated like Lego blocks when

it comes to IP integration. A solution for this Lego concept that

has been emerging for several years is the use of IP metadata to

describe, standardize and formalize IP interfaces to enable more

efficient IP integration flows. The primary solution put forward

by the industry is IP-XACT (IEEE-1685), a standard that

includes a schema definition for IP metadata. While the usage of

IP-XACT has been growing, the lack of a standard integration

methodology has severely limited vendors’ ability to provide the

fully interoperable IP metadata necessary to enable rapid and

reusable IP integration flows. This paper presents a standards-

based IP integration methodology that aims to solve these

challenges. The solution presented combines the standardization

of IP interfaces with a corresponding rules-based integration

methodology that leverages these interfaces to provide rapid and

high-quality IP integration. The capabilities, benefits and

limitations of using IP-XACT to standardize configurable IP are

explored, as well as how the industry is really using the IP-XACT

standard. This includes an overview of the work being done by

the Accellera Systems Initiative to help with IP interoperability

using standardized bus definitions. This paper also includes a

case study on the integration of a complex ARM IP-based system,

detailing the rules-based approach taken to integrating the

system. Metrics are presented that show an 8-fold schedule

improvement on a first-time project and a potential 20-fold

improvement over traditional methods by adopting the rules-

based approach. This methodology also results in benefits such as

higher quality connectivity and highly reusable design integration

intent. This paper concludes with a list of recommendations for

implementing a highly efficient IP integration flow.

Keywords—IP Reuse; IP Integration; IP-XACT; Rules-based

integration

I. INTRODUCTION

As IP reuse becomes more mainstream in SoC realization,
IP integration is increasingly seen as a key challenge and a
growing contributor to the overall cost of SoC development [1].
There are many factors that combine to compound the problem
of IP integration.

 The increase in SoC design complexity means more IP
blocks and sub-systems to integrate together.

 The constant drive to reduce SoC development schedules
and costs, without impacting on quality, has led to pressure
to reuse internal and third-party IP and to integrate these IP
as quickly and efficiently as possible.

 IPs are becoming more complex and configurable and can
have thousands of ports and hundreds of different
configurations.

 Design teams are not being scaled to the same level as the
problem, and so bigger problems have to be managed by
fewer people.

 The poor adoption of standards and methodologies for IP
integration is making efficient and reusable integration
more difficult.

The result is a poor quality IP integration process that has been
identified as one of the main chip design challenges [2][3][4].

IP integration can touch on many different areas including RTL
assembly and connectivity, HW/SW integration and other
perspectives such as clock, reset, power etc. This paper will
focus on the efficient and rapid creation of the RTL structural
netlist of a system from a set of RTL IP. Whilst many of the
solutions presented in this paper are also applicable to other
integration perspectives, the scope will be limited to RTL IP
integration.

mailto:David.Murray@duolog.com
mailto:Sean.Boylan@duolog.com

II. INTEGRATION EVOLUTION

Traditionally the integration of IP components focused on
the instantiation of blocks/modules and their interconnection
via schematic editors. In terms of the overall chip development,
this integration activity was seen as one of the final design
tasks, close to the end of the development cycle. Blocks with
tens of ports could be connected graphically by simply drawing
wires between the ports. There may have been several
hundreds of connections to make and the task could be
completed in a matter of days.

With the advent of RTL, the integration task was
implemented using both schematic editing and direct editing of
RTL code. However, as designs became more complex, neither
schematic nor RTL-based approaches could scale
appropriately. Specifying and reviewing connectivity in RTL
is a cumbersome process as connections are fragmented
throughout the RTL code.

To counter this, many companies have evolved internal
solutions involving the use of connectivity specifications
and/or scripts. Many such solutions rely on using Excel as a
front end to capture connectivity information and the actual
connections are then made using CSV and Perl or VBA
macros. [5]

The advantage of these solutions is that they provide an
optimization of the connectivity process and they are easier to
use than pure RTL entry. However this approach no longer
caters for a flow where hundreds of IPs and sub-systems need
to configured, instantiated, connected and continuously refined
within a compressed timeframe.

A. EDA Industry Response

The EDA industry has acknowledged the rising cost of IP
integration and has identified IP integration as one of the next
big industry challenges. The industry has envisioned a plug-
and-play type of standardized IP that can be treated like Lego
blocks. Standards such as IP-XACT [6] were developed to
enable sharing of standard component descriptions from
multiple component vendors. IP-XACT is a ‘Standard
Structure for Packaging, Integrating, and Reusing IP within
Tool Flows’. While the potential was good, the initial adoption
of IP-XACT was slower than anticipated as it struggled to meet
industry needs. Sperling [2] states that ‘people thought we
would go with a Lego [assembly] approach, but it doesn't go
together that easily’.

IP-XACT provides a schema for the definition of IP
component and design metadata and has a mechanism to
standardize the view of an IP by mapping hardware ports to
standard bus definitions using bus interface definitions. This
would enable IP to be more ‘integration-ready’, a concept that
would, according to Glaser, result in a 30% improvement in the
time and cost of SoC integration [1].

However, while IP-XACT provides the definition for the
schema, it doesn’t offer a standardized methodology. IP-XACT
has the ability to map port names to bus definitions and thereby
standardize interfaces, but if the bus definitions themselves are
not standardized then true industry-wide interoperability
suffers. With increased use and reuse of third-party IP, this can

become a real problem. For example, it is possible to have a
memory management IP block supplied by one IP provider
(internal or external) and a bus interconnect fabric IP from
another provider. While both may be described using valid IP-
XACT, their interfaces may not be compatible because they
use different bus definitions. What is needed is something
analogous to the relationship between SystemVerilog and
UVM. SystemVerilog provides the grammar for the language,
whereas UVM provides a reusable, interoperable methodology.
For best-in-class integration solutions it is essential to
standardize common interfaces.

IP-XACT can be very beneficial for communicating
connectivity implementation. The following example shows an
interconnection (interface-level connection) between two
component instances. This interconnection, interconnect1,
connects the interface apb on instance i_uart to the interface
uart_apb on a bus interconnect instance called i_bus.

<spirit:interconnection>

<spirit:name>interconnect1</spirit:name>

<spirit:activeInterface spirit:componentRef="i_uart"

spirit:busRef="apb"/>

<spirit:activeInterface spirit:componentRef="i_bus"

spirit:busRef="uart_apb"/>

</spirit:interconnection>

Similarly, the example below shows an ad-hoc (port-level)
connection between two component instances. This connects
instance i_uart, port int(0) to instance i_intc, port intvector(7).

<spirit:adHocConnection>

 </spirit:internalPortReference componentRef="i_uart"

portRef="int"

left="0" right="0">

 </spirit:internalPortReferencenal componentRef="i_intc"

portRef="intvector"

left="7" right="7">

</spirit:adHocConnection>

While this is useful to communicate realized connectivity, it
is not an efficient way to specify connectivity intent. For
example, in order to express the connection of a top-level
scan_enable signal to all scan_enable signals of all instances in
a design, each unique connection would need to be defined in
an XML format, either using interconnections or ad-hoc
connections. Similarly, if certain signal types such as interrupts
need to be routed from an IP instance to a component
boundary, then each interrupt interface/port would need to be
first defined on the boundary and then connected. This requires
a highly verbose XML definition.

So, while IP-XACT is beneficial for communicating
component/IP data in an interoperable format, and can be used
to define interface connectivity, it lacks the level of abstraction
required for defining how a full system should be constructed
and connected.

III. IP INTEGRATION SOLUTIONS

Considering the problems outlined previously, a possible
recipe for an effective IP integration solution is a methodology
that:

1. Promotes the standardization of IP interfaces across the
industry.

2. Provides powerful system assembly and connectivity
capabilities by:

a. Enabling the full utilization of the industry-
standard IP interfaces in the integration process.

b. Providing users with the ability to very efficiently
define full system assembly, connectivity and
configurability.

c. Offering flexibility when it comes to creating
configurable systems.

d. Ensuring a high level of reusability and easy
maintenance.

e. Enabling interoperability with other integration
processes via IP-XACT.

f. Ensuring that the methodology is instantly usable
by people familiar with the domain.

This paper will proceed to explore a solution that offers such a
methodology through a combination of standards such as IP-
XACT and a new and innovative rules-based integration
methodology. A current implementation of this methodology is
demonstrated by Socrates Weaver [7].

A. IP standardization Methodology

It is important to employ an IP standardization methodology to

ensure that IP is ‘integration-ready’. One of the problems

highlighted previously is a lack of industry-standard bus

definitions for common interfaces. The Spirit consortium

developed an initial set of bus definitions that are now

available under the Accellera Systems Initiatives website [9].

Also, within Accellera, an IP-XACT Best Practice group is

working to develop bus definitions that can be used across the

industry as well as creating guidelines aimed at ensuring that

bus definitions are more standardized and interoperable. Some

common bus definitions are provided by the owners of the

protocol standard. For instance, in the case of ARM IP, ARM

provide bus definitions for the AMBA®
1
 protocol. [8]

The IP standardization process, also known as ‘IP Packaging’,

has a number of elements:

 It provides a mechanism to aggregate ports into interfaces

to ease integration and verification.

 It provides the ability to standardize the hardware view of

an IP. This can be considered a standardization overlay,

as it doesn’t affect RTL port names. Where there are

1 AMBA is the registered trademark of ARM Limited in the EU and other
countries

multiple sources of an IP, this can provide a standardized

view across all sources that further facilitates integration.

The creation of this standardized view can be done by

manually creating the IP-XACT XML or through the use of

metadata entry tools such as Socrates.

B. Rules-Based Integration

The solution explored in this paper outlines a novel
approach to integration. Rules-based integration is a
methodology that promotes a formal and flexible method for
creating and connecting systems. An integration specification
comprises a set of rules that contain powerful integration
instructions that define the composition and connectivity of a
system. This mechanism is illustrated in Figure 1.

Figure 1 : An integration specification contains rules

The integration specification, or rule-set, is then
synthesized to create the actual connectivity (interface/port-
level), which can be rendered in multiple formats
(Documentation, RTL/SystemC etc.). This flow is illustrated in
Figure 2.

Figure 2 : A set of rules is synthesized into an RTL netlist

Socrates Weaver implements a rules-based integration

methodology with the following characteristics:

 The ability to define rules that can be synthesized to

create system connectivity.

 A powerful set of integration instructions for creating and

connecting systems.

 High-level integration macros that combine instructions

into libraries that can be reused across designs and

between design derivatives.

 The ability to render the connectivity information into

multiple formats such as IP-XACT, VHDL/Verilog RTL,

SystemVerilog, SystemC, Excel, Word etc.

 The ability to extract integration metrics from the system,

including connectivity progress, complexity profiling etc.

 The ability to split rules into different files to enable

concurrent development.

Using rules, IPs can be integrated to create systems/sub-

systems using a powerful set of instructions that instantiate

and connect the component instances. A simple example of a

rule is shown below:

#This rule will export all ports with a port definition (IP-XACT) of INTERRUPT. This

creates a port on the boundary with original naming/packaging and the corresponding

connection.

rule(“Export Interrupts”) {

 export instances.ports{definition “INTERRUPT”}

}

Instructions typically work on component, interface and/or

port information. Commonly used interfaces can have the

same integration patterns repeated across the project, so

instruction reuse can typically lead to high levels of

connectivity before any system-specific instructions are

written. For example the “Export Interrupts” rule above could

be reused in every sub-system that is being integrated. The

standardization of IP, along with reusable instructions that

utilize this formal data, forms the basis of a robust, efficient

and highly reusable integration flow.

Instruction(s) Category

Create & Delete Creation

Connect & Disconnect Connectivity

Export & Import Connectivity

Tie-off Connectivity

Reflect Connectivity

Group, Split, Move Hierarchy manipulation

Table 1 : Integration Instructions

Weaver instructions (Table 1) are effectively a Domain-

Specific Language (DSL) comprising eleven intuitive

instructions for system assembly scenarios such as creation,

connection and hierarchy manipulation. The recommended

ordering of instructions in Weaver starts with creating

elements (e.g. instances), then connecting elements together

using the connectivity instructions, and finally performing

hierarchy manipulation on the fully-connected system.

The instructions are detailed as follows:

 The create instruction allows for the efficient creation of

a range of design elements, including components,

instances, interfaces, ports, parameters and associated

properties, on specified elements. The delete instruction

allows for the deletion of these same elements.

 The connect instruction is used to create port or interface

connections (interconnections) between instances, or

between instances and the component periphery. The

disconnect instruction can be used to disconnect already

existing connections.

 The tieoff instruction allows ports to be tied off to

specified values. Source ports (boundary inputs and

instance outputs) can be tied open, while target ports

(boundary outputs, and instance inputs) can be tied off to

specified logical values, including high, low,

hexadecimal, binary or octal values.

 The export and import instructions allow ports to be

exported to the boundary from instances or imported from

the boundary onto instances. The destination ports are

created (if they don’t already exist) on the boundary

during export, and on the instance during import. The

source ports are connected to the newly-created ports and

any port or interface definition existing on the source port

is replicated on the created port.

 The reflect instruction allows ports to be reflected from

one instance to another. Again, the destination ports are

created if they don’t already exist. The reflect instruction

is extremely useful for automatically creating the

boundary of infrastructure components such as NIC,

bridge components or glue logic.

 The group instruction enables hierarchy manipulation by

grouping specified instances into a new layer of hierarchy

while maintaining connectivity. A new component is

created to contain the specified instances. The split

instruction is the opposite of group. In this case, a layer of

hierarchy containing instances is removed, bringing the

instances contained within it up to the current level.

Again, full connectivity is maintained.

Each of these instructions operates on specified design

elements such as components, instances, ports or interfaces. A

key requirement is to have a flexible selection mechanism to

be able to specify the exact target(s) for the instruction as well

as being able to control some aspects of the instruction’s

behaviour. For instance, it might be useful to define, in a

single statement, that all AMBA reset signals (presetn,

hresetn, aresetn etc.) are tied to a particular reset source. This

selection mechanism is the subject of the next topic.

1) Weaver Selection Mechanism

All of the Weaver instructions follow the same general format.

They use one or more selection expressions, which provide

powerful filtering & regular expression features.

In the example shown, the connect instruction is followed by

two selection expressions. The selection expressions use

dotted notation format between elements to provide flexible

selection of all component elements combined with powerful

filtering & regular expression support. The selections can also

be filtered or constrained using different attributes such as:

 IP-XACT bus interface and port definitions

 Port direction or interface role

 User-defined properties

 Connectivity status

Some sample instructions and selection expressions are

provided below:

#This will export all unconnected ports on all instances containing ‘uart’. It will create a

corresponding port on the component boundary and a connection to the port.
export instances(“.*uart.*”).ports{connected :false}

#Tieoff all port mapped to CLKEN signal of any bus definition to ‘1’
tieoff instances.ports{definition "CLKEN”}, :HIGH

Within selection expressions, any string value can support

regular expressions and variable substitutions. This allows for

very powerful connectivity intent to be specified. For

instance:

 Export all ports of type ‘INTERRUPT’ to the top level

 Tie-off all ports of type ‘CLKEN’ to high

 Connect reset_l to all ports of type ARESETN or

PRESETn and HRESETn

 Export ports ending in “_pad” from any instance that

contains the text “uart” to the top-level

 Group all components instances that have a property

‘Power_Domain’ called “core” or “PD1” together.

2) Controlling Instruction Behaviour

Many of the instructions have options that refine how the

instruction should operate. For example a :port_name option

allows the name of the created port to be controlled when

exporting, importing or reflecting ports. It is possible to build

up a created port name from source port names, directions,

instance and interface names e.g. “${instance}_{port}” will

prefix an exported port with the name of the instance it comes

from. With this type of flexibility the following examples of

connectivity intent can be realized.

 Export ports ending in “_pad” from all instances to the

top level of a sub-system, prefix the port name with the

instance and suffix it with the port direction.

 Export ports from on SDRAM controller instance to the

top level but remove the “sdram_” from the port name.

Each instruction has its own specific options. For instance,

there is a match_width connectivity option that determines

how connectivity is made if the port widths don’t match.

It is also possible to put conditional statements around rules

and instructions. This is particularly powerful when

constructing highly configurable systems as it allows users to

configure the system composition and resulting connectivity.

This also extremely useful for creating derivative designs.

3) Hierarchy

Hierarchical systems can be built up from their component

parts, allowing users to work concurrently within different

levels of hierarchy. It is possible to execute a synthesis from

the top level which will initiate a synthesis of each of the

corresponding sub-systems. This allows very efficient

connectivity handling throughout the hierarchy. This is

outlined in Figure 3.

Figure 3 : Rules to build a full system hierarchy

This essential function allows for a more flexible

implementation of hierarchy. For example, it would be

possible to add a new instance to a sub-system and

immediately additional interrupts would be exported to the

sub-system boundary and be available for top-level

connectivity.

Because of the high level of abstraction and power inherent in

the instruction and selection mechanism, a single rule

containing just a few instructions can result in hundreds, or

even thousands, of individual correct-by-construction

connections. Rules are simple to understand and review and

can be easily shared and reused across teams. Rules can be

combined to create more complex structures and stored in

libraries that can be used and reused across teams or

companies.

IV. CASE-STUDY: ARM-BASED SYSTEM

The system described in this case study is a highly
configurable system that ARM uses to validate a wide range of
different system configurations. The system is outlined in
Figure 4:

Figure 4 - ARM IP Based System

The system contains four processor clusters with a
configurable number of processors and types of processor in
each cluster. These clusters are connected to a Network
Interconnect Component (NIC) sub-system through a Cache
Coherent Interconnect (CCI). The NIC sub-system contains
additional sub-systems such as LCD, DMA, Debug and
Peripheral sub-systems as well as other components such as
interrupt and clock/reset controllers. In all there were 35
independent IPs to be integrated. The AMBA® protocols
within the system included APB™, AHB™, AHB-Lite™,
AXI™, ATP™, LPI™, AXI4™, APB4™, ACE™ and ACE-
Lite™

2

This system in structural Verilog (netlist) format consists of
roughly 12,000 lines of code. Using manual coding this type of
system would typically take two people 6-7 weeks to code in
Verilog.

A. IP Standardization

Using the rules-based methodology, the first step was to
ensure that the IP interfaces were standardized. Roughly half of
the IP blocks had IP-XACT definitions utilizing 109 bus
definitions. The remaining IPs required the creation of an
additional 23 bus definitions. This IP packaging process was a
once-off task for each IP. The packaging of each IP, including
the creation of relevant bus interfaces, took 1-2 hours.

B. Concurrent IP Integration

From an integration perspective, three engineers were
tasked to put the different systems together, working within

2
 APB, AHB, AHB-Lite, AXI, ATP, LPI,, AXI4, APB4, ACE and

ACE-Lite are the trademarks of ARM Limited in the EU and other
countries.

three levels of hierarchy. On some of the systems, they needed
to work concurrently. In order to facilitate this, the integration
activity was split into sub-tasks and delegated among the team.
This meant that some people owned the full integration of
individual sub-systems and some shared a single system. An
example of the task delegation used is as follows:

Integration Focus Sub Task

D
e
si

g
n

e
r

1

D
e
si

g
n

e
r

2

D
e
si

g
n

e
r

3

DMC Subsystem x

SMC Subsystem x

LCD Subsystem x

NIC Subsystem x

Top-Level

Instance Creation x

AMBA Connectivity x

Export Connectivity x

Interrupt Connectivity x

Clock/Reset x

Power Connectivity x

CPU Cluster
Connectivity

 x

Table 2 : Integration Task Breakdown

Each of the sub-systems was assigned an owner who
defined the corresponding integration specification (rules
definition). The typical rules layout for a sub-system followed a
definite structure:

 Creation of the instances

 Clock/Reset/Power connectivity

 Bus interconnect connectivity

 Export connectivity

 Inter-instance connectivity

 Misc connectivity

 Tie-offs

For the top-level integration, the task was split between two
people, each in a different time zone. Different integration sub-
tasks were identified that could be performed independently
and concurrently without creating conflicts. One of these
engineers became the top-level lead and was responsible for
instance creation and the partitioning of the sub-tasks. The
connectivity tasks were partitioned based on connectivity types
e.g. AMBA, exports (signals going to the boundary), interrupts,
clock/reset/power and CPU Cluster. While rules files can
include other rules files, it was decided to define the rules
independently and then do a merge every so often. This merge
was handled by Weaver.

At certain times during this development, the three
designers were working in parallel making changes within
three levels of the hierarchy. In some cases a new sub-system
was introduced, in others an IP required a new version update.

C. Result

The three levels of hierarchy were put together using 41
rules, with a total of 372 instructions. These were synthesized
and netlisted to 12,045 lines of Verilog code as illustrated in
Figure 5:

Figure 5 – ARM IP Integration Synthesis

The average ratio of instructions to lines of Verilog code
was 32:1, which was reasonable as there is always some very
low-level connectivity required (e.g. interrupts to slice of
interrupt vector).

Figure 6 – ARM IP Integration Synthesis - Details

Upon analysis, this graph has some interesting
characteristics. It shows that managing connectivity through
integration instructions is much more effective than managing
through Verilog code. Instructions provide an abstraction and
therefore are easier to define, maintain and reuse. As this
system evolves to the next-generation design, the rules
infrastructure and layout will be more-or-less the same and will
hold up well to incremental changes. For instance, within the
presented integration task, a next-generation version of an
interrupt controller IP was successfully integrated into the
system in less than 30 minutes. This was because the

standardization process provided a decoupling from RTL name
changes and the new IP was therefore very easily integrated. In
terms of task duration, the results were as follows:

Integration Task Duration (Days)

DMC Subsystem 1

SMC Subsystem 1

LCD Subsystem 1

NIC Subsystem 2

Top-level 2

Table 3 : Integration Task Breakdown

Essentially the integration of three sub-systems, one major
sub-system (NIC Subsystem) and the top-level integration was
completed within 4 schedule days. This activity could have
taken up to 35 working days in the past. This therefore
represents an 8x schedule improvement over previous methods
on this first-time project. Some special considerations for first-
time projects include:

 As some members of the team were not familiar with
the target architecture, they needed spend some time to
understand the connectivity by walking through the
legacy Verilog code.

 Some team members were not familiar with Weaver
and the rules-based approach and had to be trained in
the tool and methodology.

 The rules layout had to be developed during the task.

 Some IP packaging had to be performed during the
integration activity. This would not normally be the
case.

 Rules optimizations were performed as the integration
progressed. This included the creation of macros for
commonly repeated tasks.

It is estimated that, once the methodology has been
deployed, it is reasonable to expect a 10x-15x improvement in
schedule for new projects and 20x-30x for derivative projects.
In fact, a noticeable trend is using this methodology to manage
derivatives by creating highly configurable systems.

In terms of quality, the netlist synthesized from the rules
was proven to be equivalent to a netlist that had been
previously manually created. There are a number of factors that
drive the quality higher. The rules-based instructions can utilize
the standardized metadata so there is less room for error. For
example when connecting two AXI Interfaces using a connect
instruction, the AWADDR signal on the master can only
connect to the AWADDR signal on the slave. This is also true
for tying off signals. Another factor that influences quality is
that the instructions are much clearer and easier to review than
Verilog or VHDL code. This correct-by-construction
methodology means that there are fewer connectivity errors

and system verification teams can progress quickly to higher-
value integration verification.

D. Creating Derivative Systems

The metrics detailed in the graphs represent the first IP

integration using a rules-based approach and represented a

specific configuration. As this system is used as a validation

target, that will be used to validate a wide variety of system

configurations, the next stage of the process is to introduce

this configurability at a user level. The goal of this process is

to be able to build complex and correct configurations of the

full system within minutes.

V. SUMMARY

Regardless of the tooling, in order to implement an efficient
IP integration methodology, the following recommendations
apply:

1. Adopt an IP standardization methodology that is
focused on standardization and formalization of IP
interfaces. Using an IP-XACT-based approach is
highly recommended as it promotes interoperability. It
is also important to ensure that industry-standard bus
definitions and guidelines are used.

2. Use integration instructions that can utilize
standardized IP metadata. The instruction set should be
simple to understand and should be at a level of
abstraction above RTL or IP-XACT.

3. Provide the ability to integrate through multiple levels
of hierarchy allowing changes deep within the
hierarchy to be routed efficiently through the hierarchy.
Also, provide the ability to render new functional
hierarchies.

4. Allow concurrent integration through the use of
include files and enable the merging of connectivity
intent.

5. Adopt a format that allows for easy and efficient
review of the resulting connectivity.

6. Provide the ability to be able to handle high levels of
IP and system configurability.

7. Include a mechanism to formally prove that the desired
connectivity has been faithfully created.

8. Provide the ability to seamlessly swap in new variants
of an IP and easily create derivate subsystems whilst
reusing the original integration intent.

VI. CONCLUSION

The case-study highlights that one of the fundamental aspects

of this methodology is the provision of standardized IP

interfaces. Once standardized, it is possible to utilize this

metadata to perform powerful assembly and connectivity

operations. Using a rules-based approach it is possible reduce

the overall SoC integration task by a factor of 15x-20x by

employing a powerful integration methodology that enables

concurrent integration. The rules themselves are specified

using a very small instruction set (DSL) that can be instantly

used by anyone familiar with the integration domain.

This approach is also applicable to enabling more efficient

HW/SW integration. This methodology has also been

successfully utilized as an engine for constructing

configurable and complex IP and has been used in applications

such as crossbar generation, bridge insertion, I/O Fabric

creation, glue-logic insertion, power insertion, and for both

SoC and FPGA-based flows. Another trend is the linkage

between high-level system specifications and this rules-based

capability. As the applications continue to grow, rules-based

integration will continue to have a dramatic impact on

reducing schedule and increasing efficiency and quality.

ACKNOWLEDGMENT

The authors would like to extend thanks to ARM team in
Bangalore, especially Sujatha Sriram, for feedback provided on
this project.

REFERENCES

[1] R. Goering, Cost of IP integration is rising dramatically, 2010:

http://www.cadence.com/Community/blogs/ii/archive/2010/03/29/isqed-
keynote-putting-some-numbers-to-cost-aware-
design.aspx?postID=43255

[2] R. Goering: EDAC- CEOs Identified integration as key challenge in IC
design, 2012

http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-
ceos-speak-out-3d-ics-ip-integration-low-power-and-
more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign
=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insi
ghts+Blog%29&utm_content=Google+Reader

[3] R. Goering, EDA CEOs speak out on IP integration , 2012

http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-
ceos-speak-out-3d-ics-ip-integration-low-power-and-
more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign
=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insi
ghts+Blog%29&utm_content=Google+Reader

[4] R. Wawrzyniak, Integration in the top 9 chip design Challenges, EBN
2012

http://www.ebnonline.com/author.asp?section_id=1102&doc_id=24333
5

[5] J. Dewey, How to enable Microsoft Office and Visio for RTL design;
2007

 http://www.eetimes.com/design/programmable-logic/4015122/How-to-
enable-Microsoft-Office-and-Visio-for-RTL-design

[6] IP-XACT Technical Committee :

http://www.accellera.org/activities/committees/ip-xact

[7] Duolog Technologies, IP Integration & Chip Assembly

http://www.duolog.com/wp-
content/uploads/Socrates_Weaver_Datasheet_US.pdf

[8] ARM, CoreLink System IP & Design Tools for AMBA

http://www.arm.com/products/system-ip/amba/

[9] The SPIRIT Consortium - Reference BusDefs

http://www.accellera.org/BusDefs

http://www.cadence.com/Community/blogs/ii/archive/2010/03/29/isqed-keynote-putting-some-numbers-to-cost-aware-design.aspx?postID=43255
http://www.cadence.com/Community/blogs/ii/archive/2010/03/29/isqed-keynote-putting-some-numbers-to-cost-aware-design.aspx?postID=43255
http://www.cadence.com/Community/blogs/ii/archive/2010/03/29/isqed-keynote-putting-some-numbers-to-cost-aware-design.aspx?postID=43255
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.cadence.com/Community/blogs/ii/archive/2012/03/05/eda-ceos-speak-out-3d-ics-ip-integration-low-power-and-more.aspx?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fii+%28Industry+Insights+Blog%29&utm_content=Google+Reader
http://www.ebnonline.com/author.asp?section_id=1102&doc_id=243335
http://www.ebnonline.com/author.asp?section_id=1102&doc_id=243335
http://www.eetimes.com/design/programmable-logic/4015122/How-to-enable-Microsoft-Office-and-Visio-for-RTL-design
http://www.eetimes.com/design/programmable-logic/4015122/How-to-enable-Microsoft-Office-and-Visio-for-RTL-design
http://www.accellera.org/activities/committees/ip-xact
http://www.duolog.com/wp-content/uploads/Socrates_Weaver_Datasheet_US.pdf
http://www.duolog.com/wp-content/uploads/Socrates_Weaver_Datasheet_US.pdf
http://www.arm.com/products/system-ip/amba/
http://www.accellera.org/BusDefs

