
Learning From Advanced Hardware Verification
for Hardware Dependent Software

Simond Davidmann, Duncan Graham
Imperas Software, Ltd

www.imperas.com

Abstract— We present a new perspective for embedded
software verification for generalized multicore processor
platforms, somewhat analogous to simulation-centric
hardware verification solutions. A spatial, temporal, and
abstract multi-dimensional framework for software
verification, profiling, analysis, and debug is proposed that
leverages a specialized simulation core. The simulator enables
key services for the verification solution while providing a
degree of separation from both the hardware models and
software under test, to ensure accurate behavioral
representation as well as customization and performance
advantages. We include two real world examples of the use of
this framework.

Keywords—software, hardware, debug, verification, analysis,
profiling, simulator, simulation, multicore, processor, OVP

I. INTRODUCTION
Modern multicore platforms present a range of new challenges
to embedded software developers. The most significant of
these occur at the hardware software boundary, namely the
Operating System, Drivers and other code that interacts
directly with the hardware. We term this “Hardware
Dependent Software” or HDS.

HDS code verification requires a range of analysis and debug
solutions that combines techniques from classic software
development with methods utilized for hardware test. A
verification perspective that encompasses the complexity
introduced by multicore processor device sharing, intricate
operating system execution, and the nature of generalist
hardware platforms running specific software applications is
key for a rigorous test of the entire system.

II. EMBEDDED PLATFORMS AND SOFTWARE
ARCHITECTURAL TRENDS

Standardized multicore processor platforms, with embedded
software utilized to drive specific application functionality, are
now commonplace in modern electronic devices. This has
resulted in a dramatic increase in the amount of embedded
software in a device, and its complexity. Platforms often
include multicore processors, signal processors, accelerators,
memory configurations, security infrastructure and a broad
range of peripherals [1].

Many modern platforms employ a “Symmetric Multi-
Processing” (SMP) multiprocessing architecture [2]. In this
configuration, near identical processing cores communicate
through shared memory, and a single operating system, such
as Linux, will schedule tasks across the cores. Platforms also
leverage Asymmetric Multi-Processing (AMP) architectures,
where the processor cores are typically different and usually
dedicated to specific jobs, for example, a DSP executing
dedicated algorithms.

All of these architectures have a significant impact on the
embedded software stack, particularly that code that interacts
directly with the hardware.

The software solutions that drive the functionality of these
devices can be equally complex. For some platforms a “bare-
metal” software configuration with no OS or a Real-Time
Operating System (RTOS) supporting a single application is
sufficient. However, more elaborate software architectures
that are based on the Linux Operating System (OS) are
become more common.

These solutions may include a large number of drivers,
hypervisors to support virtualization, middleware libraries to
provide application functions, and a range of applications that
leverage a comprehensive common user interface. Figure 1
shows an example Android-based software stack.

Fig 1: An Android (Linux) software stack example (courtesy Promate, Inc.).

Obvious examples of HDS are operating systems and drivers,
but can also include hypervisors that make use of a platform’s

Memory Management Unit (MMU) to create virtual compute
environments, or specific middleware code that works in
conjunction with hardware accelerators or DSPs.

In general, HDS code has specific development requirements
that relate to its interaction with the hardware. The verification
of HDS software is inevitably more rigorous than general
applications as it is often harder to change post-production and
has a greater influence on the entire system. Problems in this
code are also often harder to find, as their effects can manifest
themselves elsewhere in the system. Issues created by unusual,
corner case scenarios involving both hardware and software
states can occur more easily. The performance of HDS code
and its interaction with hardware components can have a
greater impact on the entire system.

III. TRADITIONAL EMBEDDED SOFTWARE DEVELOPMENT
SOLUTIONS

Embedded software verification has traditionally leveraged
hardware prototypes, using unwieldy interfaces, such as
JTAG, to extract signal information. This limits signal
visibility and system controllability. In addition, software test
must wait for a prototype to become available. Emulation and
FPGA-based hardware prototypes mitigate these issues,
providing greater visibility and controllability, and earlier
availability. However, these are often expensive alternatives,
low in number and so availability, do not have the
performance of final hardware, and require additional
engineering.

Timed, cycle-based models, often derived from the Hardware
Description Language (HDL) code used to create the final
device, have allowed earlier software verification. The issue
with these models becomes one of trading off required
hardware functionality for software performance [3]. As large
portions of the hardware operation are reproduced in the
model, the greatest performance that can be derived is of the
order to 10,000 times slower than final hardware, an
impractical solution for test at all levels of abstraction.
Occasional cycle accurate simulation can be useful for specific
issues.

For software verification, it has proven unnecessary to mimic
either the full timing or operation of the platform. An
“Instruction Accurate” (IA) model eliminates much of the data
processing and abstracts the timing to instruction execution
ordering. With these models it is possible to achieve software
execution rates in the real time range of 100s of MIPS, or
above, while providing the required level of functionality.

A Virtual Platform is an IA software representation of a
processor plus other key platform components required to test
an embedded software stack. Many modern Virtual Platforms
make use of simulation technology and enable the use of
advanced debug and verification tools.

Various standards have evolved to make Virtual Platform
modeling somewhat easier, for example:
1) SystemC [4]: an open source set of classes and macros

that provide a simulation kernel with a C++ API to which
models may be coded.

2) The “Quick EMUlator” (Qemu) [5] is an open source
hypervisor, which provides an emulated API for a host
machine to which models may be coded.

3) Open Virtual Platforms (OVP) [6] is a high-performance
simulation solution with C APIs, to which models may be
coded.

All of these solutions provide simulation style services
eliminating a lot of programming for the modeler. In this
paper we will base our discussion on the OVP solution.

HDS code exists on the boundary between software and
hardware development. As such it requires capability from
both domains. Furthermore, the more stringent requirements
demand enhanced functionality. These debug and verification
requirements may be subdivided by considering the multi-
dimensional nature of the tool suites. We would refer to single
dimensional tooling as a relatively standard examination of
serial software execution, two dimensional tooling that
incorporates the notion of both spatial (looking across the
multicore platform) and temporal (deeper event timing
consideration), and three dimensional tooling where the
software stack abstraction is leveraged to improve insight.

IV. SIMULATION-BASED VIRTUAL PLATFORMS
The notion of using simulation in the software engineering
space is unusual. However, when using a virtual platform to
model a real world system, simulation offers valuable benefits
not dissimilar to those for hardware verification.

The OVP virtual platform architecture, see fig 2, leverages the
simulator as the central component to enable a high-
performance reproduction of the platform. The simulator takes
care of the mechanics of the platform model operation,
including simulation operation, scheduling, and access for tool
controllability and visibility.

Fig. 2. OVP Virtual Platform Simulation Interfaces.

The simulator provides APIs for the modeling of key
processor and platform functions, without concern for detailed

simulation operation, for example the Open Virtual Platforms
(OVP) APIs [7].

A well-architected simulator will accelerate the performance
of a virtual platform model significantly. As has been shown
in the hardware domain, simulation performance level is
directly proportional to the quantity of tests that may be
applied, and therefore vital for rigorous verification. Fig 3
shows some of the performance levels that may be achieved
using the Imperas OVP simulator, as an example. In some
cases the real time performance of the actual device is
exceeded.

Fig. 3. OVP Simulation Performance for Various Processor Types.

Another advantage of simulation is the access that may be
provided for debug and verification. The simulator allows
many aspects of a platform execution to be observed, from
hardware components through to abstract software data
structures. The simulator is also more flexible in terms of
controllability, for example, changing code dynamically,
stopping and starting execution, etc.

A simulator allows some decoupling between a tool suite and
the code on which it is being applied. This can be extremely
useful to preserve execution operation and eliminates the
execution altering behavior present in some other solutions, so
called “Heisenbugs” [8].

For multicore processor platforms, simulation-based solutions
provide further advantages, in the area of increased timing and
support for analysis and debug that operates across all cores
rather than focused on one.

V. SINGLE AND TWO DIMENSIONAL, MULTICORE DEBUG
AND ANALYSIS

It is commonplace now for software debug and analysis
solution to have a full range of single dimensional capabilities.
These include debug features such as tracing and visualizing a
range of objects, and execution control such as breakpoints.
Analysis features include code profiling for performance
bottlenecks, static code analysis, and code coverage. Of more

interest is the debug and analysis of multicore HDS on which
this section is focused.

AMP cores tend to operate independently from one another, so
platform level verification in a pure AMP environment is
generally focused on control operations between a master
processor and other cores. As such multicore verification is
limited to the occasional control operation.

SMP environments where multiple cores work together,
sharing memory and running under a single Operating System,
do require additional, cross platform verification capability. In
addition, an element of time to varying levels of granularity is
also required. We would define this level of capability as 2-
dimensional debug, in the spatial and temporal domains.

One requirement of any analysis and debug tool suite in an
SMP environment is the ability for it to operate on and
examine all the cores concurrently and to allow tasks
scheduled by the common OS to be examined together. Indeed
on some occasions it is useful to be able to perform fully cross
platform operations, checking variables or events at various
points. More typically an engineer is focused on one part of a
platform and/or area in the code, but needs to incorporate
some detail from another part of the platform or code base.
This may be accomplished with introspection.

Introspection is generally defined as the ability of a program
to examine the internals of an object during runtime [10]. In
our context, an introspective tool brings together information
if available and presents or uses it for a specific operation. On
a multicore platform introspection is a critical component as it
allows complex tool configurations to be created, together
with a degree of automation.

For example, imagine a communications device driver sending
an interrupt to a processor, to activate an interrupt service
routine to handle incoming data. An analysis breakpoint could
be set on the call of the service routine, which in turn calls
back to a system analysis function. This function then
introspects the system, allowing a level of reusability for the
analysis function to check available objects on any task.

Temporal analysis and debug is the examination of system
execution over a period of time. Software engineers generally
consider time at a higher level of granularity than that required
for HDS analysis. The scheduling of tasks and/or threads
across the cores, and their interaction, can lead to issues both
in terms of their operation or, more commonly, avoidable
performance bottlenecks. This requires a more structured time
visualization approach that may include an indication of real
time. In this case the timing is structured such that it does not
cause the entire simulation to slow down.

The obvious tool for this work is a waveform or timing chart
type of display, see fig 4, a staple of the hardware debug
world, where a database of events is recorded and displayed

over time. This has indeed been implemented in a number of
environments mainly for the analysis of concurrent operations.
For the purposes of HDS where some timing information is
required, more advanced timing display analysis such as cause
and affect tools are also being used.

Fig. 4. OS Schedule Analysis

Consider the previously described interrupt service routine
situation where the OS suspends tasks to service the interrupt,
with an associated control procedure that might involve
semaphores, the stack, etc. The serial operation of classic
software debuggers is inadequate to catch possible problems.
A temporal based solution shows the sequence together with
the status of the other variables in a 2 dimensional view
making possible multicore generated conflicts clearly visible.

Many time-based checks can be improved by the use of
temporal assertions. The use of standard C assertions has
proven inadequate for anything but the most simple of checks.
Using the simulation temporal callback mechanism it is
relatively easy to construct an introspective state machine style
assertion that may also make use of other platform data. As
with other analysis structures using the simulator, these checks
are efficient and separate from the source code.

VI. THREE DIMENSIONAL LAYER AWARE ANALYSIS
Embedded software is normally architected in terms of layers,
giving rise to the notion of a “Software Stack” This might be
likened to the hardware abstractions now being utilized in
standards such as Accellera’s Unified Verification
Methodology (UVM) [11]. So if the software itself is designed
in layers to increase comprehension, then it follows that the
verification process may also benefit from the same approach.
This is the notion behind 3-dimensional debug and analysis; a
suite of tools providing capability that operates in the spatial,
temporal and, now, abstract dimensions.

Two modes of layered operation are required: The
examination of activity through the layers, for example
checking OS events together with CPU detail, and the ability
to focus on activity specific to a layer, while eliminating
irrelevant detail. An example of this second mode is “OS
Aware” analysis.

The actual requirement for this verification mode is slightly
more granular than the general definition of a “layer.” The
sub-layers that make sense for HDS verification are:

• Operating System
• Bare Metal Apps & some Middleware
• Platform code (e.g. Drivers)
• Processor

Each one of these sub-layers can make use of the commands
available, but often also benefits from specific commands. For
example, specific “OS Aware” commands, commands that are
based on OS features, are extremely useful when porting an
OS, such as Linux, to a new platform.

As an example, the Imperas OS Aware profiling tools allow
the use of the following example operations for Linux, as well
as other operating systems:

• Tracing scheduled events, console output, execve
calls, etc.

• Console window manipulation
• Task status inspection
• Various control and break on OS events

When used in conjunction with other platform and cpu
operations, for example:

• Shared memory and cache analysis
• Peripheral inspection
• Virtual memory mapping
• Calls to a hypervisor or secure monitor
• Break on exception

some powerful analysis capabilities are possible. To bring up
an OS on a new platform, an understanding of OS operation
for that particular platform is essential and these commands
fulfill this need. Figure 5 shows where the operations fit in a
layered verification hierarchy.

Mul$%Processor%Debug%%
Address%space%introspec$on%
Virtual2physical%mapping%
Print%CP%registers%%
TLB%dump%
Break%on%excep$on%
Break%on%mode%
Break%on%register%change%
Break%on%instruc$on%%
Instruc$on%coverage%
Instruc$on%profiling%
Instruc$on%fault%Injec$on%
Cache%analysis%
%

Trace%coprocessor%registers%
Trace%TLB%trace%excep$ons%
Trace%modes%trace%service%calls%
Trace%hypervisor%calls%
Trace%secure%monitor%calls%
Trace%MT/MP%extensions%
Trace%system%calls%
Trace%$mer%
Trace%cache%instruc$ons%
Trace%SIMD%extensions%
Trace%instruc$on%
Trace%register%change%%

Bus%connec$vity%view%%
Peripheral%register%view%%
Peripheral%source%debugger%%
Processor%freeze%control%
Trace%peripheral%access%%
Memory%coverage%
Shared%memory%checks%

Break%on%line%%
Break%on%func$on%call%
Elf%introspec$on%
Unlimited%HW%breakpoints%%
Memory%region%watchpoints%
Trace%source%line%
Trace%context%
Trace%func$ons%
Line%Coverage%
Func$on%profiling%
Heap%checks%
Stack%checks%
Malloc%checks%
Semaphore%checks%%

Trace%console%
Trace%execve%
Trace%scheduler%
Trace%tasks%
Trace%module%loads%
Trace%printk%%

Processor'

Opera+ng'System'

Pla3orm'(e.g.'Drivers)'

Bare'Metal'Apps'&'Middleware'

Simulator' Break%on%messages %TCL%callbacks %%%Full%GDB%command%set%
Fig. 5. Layered Operations

In addition to the general-purpose layers, it makes sense to
include a library of capabilities that provides commands to
specific CPUs or Operating Systems. The libraries may also
be augmented with commands pertaining to a particular
platform configuration, including the application and library
software and the custom APIs it may use. It is this level of
customization that allows a platform team to create a library of
capabilities to go with their specific product. Figure 6 shows a

diagram of the OVP tool library layering architecture,
designed with this in mind.

Fig. 6. Layered Tool Architecture

For example, the Imperas Linux tool library includes
commands to trace a range of OS activity specific to Linux,
including scheduler operation, execve calls, printk output,
console output, tasks and module loads. It also allows the
status of tasks running to be checked, to break and load the
symbols on a load of a kernel module (note this uses
introspection to obtain the addresses where the symbols are
located in the virtual memory space), and other Linux specific
operations.

For example, the “Schedulertrace” command utilized in the
OVP environment to trace and display task activity is used on
any CPUs and OSs using the relevant customization layers.
Figure 7 shows the command issued from a Makefile for
specific use with Linux running on the MIPS Malta platform,
which is configured for this specific simulation.

schedulertrace::$(MIPS_MALTA_VMLINUX) $(MIPS_MALTA_INITRD)
imperas.exe --finishtime 3.0 \
--vlnvname MipsMaltaLinux --vlnvvendor mips.ovpworld.org \
--override MipsMaltaLinux/mipsle1/variant=34Kc \
--override MipsMaltaLinux/mipsle1/imagefile=$(MIPS_MALTA_VMLINUX) \
--override MipsMaltaLinux/Core_Board_SDRAM_promInit/initrd=$(MIPS_MALTA_INITRD) \
--override MipsMaltaLinux/Core_Board_SDRAM_promInit/kernel=$(MIPS_MALTA_VMLINUX) \
--override MipsMaltaLinux/mipsle1/enableSMPTools=1 \
--enabletools \
--extlib MipsMaltaLinux/mipsle1=linuxOsHelper \
--callcommand "MipsMaltaLinux/mipsle1_TC0/vapTools/schedulertrace -on"

Fig.7. Schedulertrace Makefile for the MIPS Malta Platform running Linux

This Makefile target loads a model of the MIPS Malta
Platform available on the OVP website [12] and starts a
simulation. The “callcommand” argument allows the
scheduler trace tool to be started from the command line and
the “finishtime” option stops the simulation after 3.0 seconds.
The Scheduletrace output generated is shown in Figure 4
above, and displays the scheduled tasks across all processor
cores over time.

The layered approach may be augmented with a custom tool
overlay that allows standard verification techniques to leverage
OS and CPU aware commands, where it makes sense. This

enables verification commands, such as coverage, fault
injection, and memory profiling, to be applied to specific
platforms and OSs using the simulation infrastructure.

VII. CUSTOM TOOL CAPABILITIES
It is common in software development, more than in
hardware, to add test lines into the actual embedded code,
although such code can affect software behavior and system
performance. One of the most useful aspects of simulation-
based software verification is the ability to add custom tool
code to the simulation API that operates unobtrusively from
the software and models under test.

In order to ensure that tool functionality is added in an
unobtrusive manner that does not affect regular model
operation, has a minimal impact on performance, and provides
access to useful functionality, Imperas has created a unique
“Binary Interception” concept. This makes use of the Imperas
ToolMorphing™ technology to allow tools to be included in
the simulation code-morphing operation.

Binary Interception Libraries may be loaded that are then
called by the simulator on specified events. These may
include:

• Simulation construction and destruction
• Before an instruction is morphed
• When a specific instruction type is executed
• After a certain number of instructions have been

executed
• When a specific address or address in a specific

range is accessed
• When a specific Programmers View* of a model is

executed
• When a command from the library is executed

Once the library is called, it may use an API to query the
simulation state in a number of ways, including:

• Examine the processor state including all registers
• Examine the simulation environment
• Replace the simulated behavior of an instruction
• Examine Programmers View* objects
• Examine symbolic and debug information for

operating applications
• Use GDB to evaluate expressions within an operating

application
• Add or delete callbacks from the simulator to the

library

* A Programmers View is a view of a processor or other
model created for programmers, which can include specific
objects and their states within the model, for example the set
of application software accessible registers and/or component
internal (hidden) registers.

These calls and operations provide everything needed to
support a rich set of custom Verification, Analysis and

Profiling functions. Furthermore, an intercept library may be
provided with a specific processor or platform model to enable
a range of custom analysis for that model.

Figure 8 shows the simulation execution flow with the binary
interception libraries, and how the library contents interact
with the model and simulator. This allows the tool code to be
morphed with the model and software code during simulation,
while still preserving the unobtrusive nature of operation.

Imperas Confidential and Proprietary © 2013 ImperasPage 8 04/19/13

Imperas Intercept CapabilitiesImperas Intercept Capabilities
Simulator Flow and Intercept LibrariesSimulator Flow and Intercept Libraries

icmInit()

icmNewProcessor()

icmLoadProcessorMemory()

icmSimulatePlatform()

Platform Simulator Processor

Model

Constructor

Configure

Load Model

Load Program

to Memory

icmWriteReg(PC, 0x1000)

Code Dictionary

Create Translation for address

Code Available for Address?
noyes

Run

Set PC
Write Reg – vmirtSetPC()

End of Code Block

Constructor

Intercept

Library

Intercept

Intercept

Morph Function (thisPC=0x1000)

Morph Function (thisPC=0x1004)

Morph Function (thisPC=0x100c)
Get Next PC

yes no
Morph Function (thisPC=0x1008)

Fig. 8. Simulation Execution Flow With Binary Interception

A broad range of tooling may be created using this method.
For software development (unlike hardware), it is very natural
for engineers to create powerful capabilities tied to their
development programs. With binary interception libraries
being able to call functions contained in other libraries,
engineers have full access to all the spatial, temporal and
abstract commands available and can build functions that
leverage output from these facilities and extract exactly what
they need. It is this level of functionality that makes this
solution so useful for complex embedded software
development.

In addition to creating tools, the same solution may be used to
interface to other verification systems. For example, the
Cadence (formerly Verisity) Specman hardware verification
environment was integrated with the OVP simulator to provide
a random testbench capability for use with a platform IA model
[13]. Integrations have also been performed with hardware
debug environments to provide hardware/software co-debug
solutions and emulation systems such as Aldec’s HES FPGA
based emulator [14] all using this method.

VIII. SCEANRIO ONE: NON-INTRUSIVE VERIFICATION FOR
SHARED MEMORY MONITORING

A classic source of problems is the use of shared memory in a
multicore SMP system, usually the L2 cache, where cache
swaps may be scheduled concurrently. Ensuring that the
memory is always accessed correctly and that only the
permitted memory is accessed in a multicore environment can
become extremely complex.

In this specific platform implementation, many threads can
access the memory at anytime, so a semaphore solution was
used to ensure that memory accesses did not coincide. A

protocol was created where the semaphore would be locked
during access and a “data available” bit used to indicate data
waiting for a read.

To detect misuse of the specified memory region an assertion
must be placed in the platform model or the source code, as
either could cause operation disruption, but this means
changing code of verified models, is always present and is
likely to interfere with the normal operation of the system.
Instead a memory monitor based on the binary interception
technology was used, which on the allocation of the shared
buffer placed watch points on the semaphore, see figure 9.
Callbacks were then used to monitor the accesses to the shared
memory region and create a temporal assertion. Having
created this custom, but yet reusable, debug routine the
assertion state machine could be augmented with other code to
check the access protocol and even some coherency checks.

Fig. 9. Custom Shared Memory Checker

By using the simulation services, these and other routines
could be attached to the model but not interfere with the
model code. They could be customized without risking the
integrity of the model itself, and perform hardware checks
without the need for detailed hardware models. There was no
fear of the checks changing the execution of the program, and
the impact on performance was minimal. In the real case this
solution also lead to the discovery of a bug in production
software.

The checks could also be augmented with a range of other
functions, for example:
• Print all calls to the buffer lock variable to commence

causal analysis
• Using OS Aware tracing, check scheduling sequence and

other issues
• Inspect all L1 cache activity to understand if a cache swap

problem occurred
• Compare the address space for repeated similar cache

activity
All of these functions can be semi-automated and use
introspection.

IX. SCENARIO TWO: FAULT INJECTION FOR FAILSAFE
OPERATION AND COVERAGE ANALYSIS

Failsafe embedded software is becoming more important for
several applications. In the automotive sector, the ISO 26262
standard [16] now specifies rules which safety critical
software must meet. For example, software used in an
activation chain for the car throttle must fail in such a way that
the throttle does not stick. Testing over all possible fault
conditions is mandatory.

Changing the software itself to create a test fault does not
meet the failsafe test criteria, as the code under test must be
the same as the final code base. The fault must be inserted
independently of the system. Fault Injection through the
simulator solves these problems.

Faults may be injected during operation to create significant
issues such as a processor platform locking up, to ensuring
more subtle problems do not cause safety hazards. For
example, consider an engine management system that uses a
lookup table to calibrate throttle pressure based on engine
parameters such as temperature. A hardware fault causing the
table memory to be addressed incorrectly can be set up by
injecting an alternative data fetch instruction just as the
throttle pedal is depressed. This test could be repeated for all
address bits and the throttle depression analyzed for unsafe
behavior. Figure 10 shows an example fault injection
sequence output showing the original and replaced instruction
and address location.

Imperas Confidential & Proprietary © 2013 ImperasPage 107 04/19/13

Custom Tool ExamplesCustom Tool Examples

Fault InjectionFault Injection

 Instructions are “intercepted” at simulation engine prior to execution
 Instructions can be changed before execution
 Complete control over generation of faults

 White box fault injection, could include
 Generation

 Randomly trigger corruption of an instruction
 Randomly corrupt an individual bit of an instruction
 Corrupt data reads and writes

 Address and/or values

 Reporting
 Report when / where fault was injected
 Analyze result of faults

Execution starts, 2000000 runs through Dhrystone

FAULT 0x001002a4(3004905): 0x0000580d -> 0x00005805(^bit= 3) (mov) 16 Bits

FAULT 0x00100b8c(12312824): 0x000059e8 -> 0x000059f8(^bit= 4) (cmp) 16 Bits

FAULT 0x00100b8c(17912768): 0x000059f8 -> 0x00005bf8(^bit= 9) (cmp) 16 Bits

FAULT 0x00100b7e(19676187): 0x00006f0c -> 0x00016f0c(^bit=16) (ld.b) 32 Bits

FAULT 0x00100b86(26529726): 0x00006f4c -> 0x20006f4c(^bit=29) (st.b) 32 Bits

FAULT 0x00100b7a(34399330): 0x00006007 -> 0x00006087(^bit= 7) (mov) 16 Bits

FAULT 0x00100b8e(38537367): 0x0000f5ea -> 0x0000f5e2(^bit= 3) (b) 16 Bits

Fig.10. Fault Injection Used to Analyze a Hardware Fault Result

In this example, a trap was set on a read to the lookup table
area in RAM. The instruction was modified with the same call
but with one bit of the address masked out. A coincident
checker was set on the throttle driver to ensure that its
behavior met the safety criteria laid down in the specification.
This test could then be repeated for all address bits. The entire
scenario could easily be expanded to allow for many such tests
on the throttle behavior.

Fault injection can also be used to establish an effective
coverage metric, using mutation analysis. The basic idea of
mutation-based coverage [17] is to alter some aspect of the
code during runtime, to provoke an error. The error should be
picked up during verification if the tests are effective enough
to find it. By rerunning the tests with a range of mutations, a
coverage metric of the test may be established and test holes
identified.

This could be partially accomplished by modifying the source
code, recompiling and rerunning the tests. However, this is

error prone, time consuming, and functionally restrictive. If a
mutation can be introduced separately without a change in the
source code, it becomes easier to manage and augment with
more powerful functionality.

Returning to our previous example, the throttle control code
will have been verified using a standard set of tests. A mutation
coverage solution would then rerun these tests, while injecting
faults through the design. In this case a systematic replacement
of instructions with stuck at 1 or 0 faults would provide an
initial set of cover points for further investigation.

X. SUMMARY
The verification requirements for modern embedded software
development targeting multicore platforms demand more
sophisticated methods. As with hardware design, a simulation-
based solution provides an enhanced level of access to both
platform model and software detail, while also ensuring
execution consistency and minimal performance impact.
Simulation is ideal as the core technology for a multi-
dimensional framework of verification and debug tools, as
well as the capability for custom, platform and OS specific
tooling to be developed.

REFERENCES
[1] OMAP Datasheet, Texas Instruments, May 2013

http://www.ti.com/lit/ds/symlink/omap5432.pdf
[2] Symmetric Multiprocessing, Princeton University, 2011

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Symmetric_m
ultiprocessing.html

[3] High Performance or Cycle Accuracy, SemiWiki, January 2013
https://www.semiwiki.com/forum/content/1979-high-performance-
cycle-accuracy-you-can-have-both.html

[4] Accellera, SystemC Standard
http://www.accellera.org/community/systemc

[5] QEMU, Standard Main Page http://wiki.qemu.org/Main_Page
[6] Open Virtual Platforms http://www.ovpworld.org
[7] OVP API Description http://www.ovpworld.org/technology_apis
[8] Heisenbug Definition http://catb.org/jargon/html/H/heisenbug.html
[9] GNU GDB Reference Manual

http://sourceware.org/gdb/current/onlinedocs/gdb/
[10] O’Reilly, 2003, Introspection Definition

http://docstore.mik.ua/orelly/webprog/php/ch06_05.htm
[11] Accellera UVM Standard Description, 2010

http://www.accellera.org/activities/committees/uvm
[12] OVP MIPS Malta Platform Description 2010

http://www.ovpworld.org/library/wikka.php?wakka=Mips32MaltaLinux
[13] Synopsys Verdi Hardware Debug Datasheet

https://www.synopsys.com/Tools/Verification/debug/Pages/Verdi-
ds.aspx

[14] Posedge Integration of Specman with OVPSim, July 2009
http://www.ovpworld.org/resources/VP09-
content/posedge_von_bank_vp09.pdf

[15] Proximus Aldec Emulation Integration, Design Automation Conference,
June 2011 http://www.ovpworld.org/aldec-cadence-proximus-utilize-
ovp-fast-processor-models-in-system-design-solutions

[16] ISO 26262 Road Safety Standard, 2012
http://www.iso.org/iso/search.htm?qt=26262&sort_by=rel&type=simple
&published=on&active_tab=standards

[17] An Analysis and Survey of the Development of Mutation Testing, IEEE
Transactions on Software Engineering, vol. 37 no. 5, pp. 649 – 678,
September 2011

