

1

Lean Verification Techniques: Executable
SystemVerilog UVM Defect Table For

Simulations

Steve Burchfiel1, Kevin Schott2, Kamel Belhous3, Paul Ulrich4
 1CorrectDesigns, steve.burchfiel@correctdesigns.com, Austin TX, USA

 2CorrectDesigns, kevin.schott@correctdesigns.com, Austin TX, USA
 3Teradyne, kamel.belhous@teradyne.com, Boston MA, USA

 4Teradyne, paul.ulrich@teradyne.com, Boston MA, USA

Abstract—This paper presents a novel approach for an 'executable' defect table to track and work around open
issues in the design and verification environments. The defect table is source code, using Systemverilog UVM that is
built into the verification environment which tracks the state of an issue, affecting the behavior of the testbench based
on the defect state.

I. INTRODUCTION

The task of verifying a complex chip design is a gradual and tedious process. During the verification effort,
many bugs will be found in the design as well as the verification environment. But how do the verification engineers
keep the simulation model stable, prevent regression failures on features that once worked, and maintain passing
regressions to assess the quality of the design? All this while new RTL, checkers, and tests are being added and
debugged? How can verification engineers make progress, without being slowed down by the existing bugs which
have not been fixed yet by the design teams. One way is to use the defect table. The defect table is a good example
of a lean verification technique that enhances verification productivity and quality by enabling engineering the
exact capabilities of every verification build and reducing the need for difficult to track “side models”. Eliminating
(or reducing/minimizing) waste/waiting, also called delays in agile methodologies, is the most fundamental lean
principle, the one from which all the other principles follow [1]. The defect table provides the ability to mitigate
productivity losses, due to the impact of the delays introduced by design, specification, and verification changes
for bug fixes. A defect table also enables the verification environment to strategically work around specific bugs in
the design and the verification environment such that existing regression suites can continue to be used to qualify
changes and find new, unknown flaws in the code base. The ability to maintain and enhance the verification
regression environment while bugs are continually found and fixed is a key benefit of this lean process.

The defect table provides a disciplined approach to using a designated class to keep track of workarounds in the
testbench when bugs exist in the design, and/or new unsupported features have been added that might otherwise
cause regressions to fail. This gives the designers and verification engineers a much more flexible verification
environment that can adapt to bugs and new features. The defect table acts as the de-facto location where "TODO"s
are placed. Furthermore, it can affect the testbench's behavior to provide run time decisions on whether a work
around should be applied or not. For example, if verification engineers add new tests, checkers and coverage for a
bus interface only to discover every transactions fails because one field of every transaction fails because of an
RTL defect which has been filed in the official bug tracking system, the verification engineer can create a defect
table entry and disable checking of the one field. This allows the entire suite of tests, checkers, and coverage to be

2

released while the designer debugs and fixes the problem. In order to reproduce and verify the RTL issue, the
design only needs to remove the defect table entry (or mark it resolved). This provides designers and verification
engineers with a stable model, and easy way to verify fixes. The defect table also provides a means to review the
complete list of work arounds and TODOs to assure the proper work arounds have been applied or removed prior
to tape-out. This is superior to trying to figure out which code in the environment is commented out, which testcases
have been disabled or which code was never written or released.

Some of information from the executable SystemVerilog UVM defect table comes from the official bug tracking
systems. The defect table is not a replacement for the existing official bug tracking systems. It is a powerful
technique for projects involving high RTL churn, frequent features/design changes, and/or long turnaround times
from the time an RTL issue is found to when it is fixed.

II. BUILDING THE DEFECT TABLE

A. Building the defect table

The source code for a defect table should be project and block independent such that a defect table can be reused
and integrated into multiple environments if desired. Creating a defect table from a common, object oriented base
class in SystemVerilog is one way to create a reusable defect table implementation. The base classes provide the
APIs for defining and accessing a list of defects. The project implements a “defect_settings” class that contains the
exact set of defects for a given block or project. The verification environment code can query the state of a defect
to take specific actions. Users can also put their defect dependent actions directly in the defects_settings file is some
cases (e.g. demote an error to a warning for a specific checker), which is the recommended way for creating an
easy, common location for auditing the work around behavior.

B. Defect info base class

Figure 1 below shows the Defect info base class. It contains field values for each defect, along with accessor
methods. The Defect info base class is project independent. The main purpose of this class is to capture information
about the defect (subset of content in the real bug tracking system) and provide an API for other components in the
system to get information about the defect. Small shell scripts (or a DPI layer to the official bug tracking system)
may be added ensure the defect table state is up-to-date with official tracking system (e.g. a bug has been resolved
but the work around is still be applied because the defect table is still marked as “open”).

3

C. Defect settings base class

Figure 2 below shows the defect settings base class, used to define project specifics defects, and actions. This
class and methods will be used to construct the actual defect table for the block/project.

Figure 1. Defect info base class

Figure 2. Defect settings base class

4

D. Projects specific defects list of action

Figure 3 below shows an example of an actual defect table for a project. The example shows four defects that
are also tracked in the official bug tracking system. They are denoted with the name “JASIC000xxxx”. The state
(CQ_NEW/CQ_CLOSED) indicates whether the issue is considered resolved in this specific build of the
environment and will impact how the verification environment behaves. If an issue does not affect how the
verification environment behaves, it should only be tracked in the official bug tracking system. This defect table
also shows three text labelled entries (PSET_MEM_MODELING, LVLS_REGS_SCBS, RELAY_TIMER).

The text labelled entries are issues that are not officially tracked in the bug tracking system. This allows
verification engineers with an easy way to alter the behavior of the verification environment without having to track
every change with an official ticket providing an easy, low-cost way, but trackable way to release new verification
code that is not ready for 100% production/regression use.

E. Constructing the defect tables

Figure 4 below shows the how to create defect tables. Defect tables are UVM components. They can be created
during the uvm_env::build() phase. The defect tables from IP blocks can also be built enabling work arounds for
multiple blocks under development.

Define the project specific defects
(Suggestion: organize table by owner to avoid merge conflicts if multiple

engineers need to edit this file).

Good common location to take
action based on defect state. Called during end_of_elaboration()

Figure 3. Project specific lists of actions

5

III. USE MODELS: CONTROLLING THE DEFECT TABLE

This section provides a few use cases for the defect table. One example is demoting a scoreboard error to a
warning. Other examples including disability specific checkers. In addition, constraint randomization can also be
changed based on the state of a defect to avoid certain type of stimulus

A. Controlling error messages

 This section provides an example for controlling error messages. It assumes the environment provides hooks
into the UVM messaging classes to be able to demote UVM error messages to UVM warnings based on the message
ID, contents, etc. via the uvm_config_db. Figure 5 shows an example when an ADC is not allowed to be BUSY
unless the defect is in the Open state. Figure 6 below shows an example where address and data errors will be
demoted to warnings until a specific bug is fixed.

B. Controlling constraints

Figure 7 below show an example where the verification environment will not create traffic using
“DRV_TIMING_MIN” until defect 49909 is closed/fixed.

Figure 4. Creating defect tables

Figure 5. Reg should not be set if ticket is closed

Figure 6. Disable scoreboards via UVM config_db

6

IV. OUTPUTS

Another nice feature of the defect table is the ability to dump the contents of the table to the simulation logfile.

This provides engineers with the ability to know which work arounds are applied when reviewing any logfile
regardless of which model it came from.

A. List of actively tracked defects

B. Notice of errors demoted to warnings

In addition, the users can provide additional information about the behavior being applied based on the state of
a defect. Note in the example below, the user chose to print specific information that a defect was being applied
after they queried the state of the defect table and altered the behavior of the simulation.

Figure 7. Controlling constraints

Static function in defect package Constrain randomization

Figure 8. List of actively tracked defects

RTL
Bugs

DV
Issues

7

C. Automated reports

Automated reports can be generated to compare the defects_settings.sv with the contents of the real bug tracking
system. It is much more powerful, and less error prone compared to the traditional review and closure of the FIXME,
TODOs, and comments inserted in the code. The contents of the external (or DPI) auditing system are beyond the
scope of this paper as many options are available to enhance the tracking and reporting of a regression with respect
to the defect table and official bug tracking system. For example, verification engineers could be notified when a
model build contains a defect in the “OPEN” state but the officially bug tracking system moves to “RESOLVED”
indicating a new model needs to be built to verify the fix (although the design engineer should have changed the
defect state to verify the fix themselves!).

V. RESULTS AND BENEFITS

The improvements for the execution time for projects where the defects table was used were estimated to be
around 3%. The defect table provided many benefits, as listed below:

 Regressions only fail because of new bugs. Tests are kept active but specific checks/randomizations are
limited.

 New features and workarounds are supported in a common manner.

 Simulation logfiles indicate which defects affect the environment.

 Automation easily indicates when an open defect entry should be closed.

 Enable the design engineers to test changes and update the defect table prior to releasing the code.

 A single location to audit workarounds is provided. There is no need to worry about commented out code
or forgotten changes that limit verification.

Figure 9. List of errors demoted to warnings

Figure 10. Defects table report

8

VI. CONCLUSION AND FUTURE ENHANCEMENTS

The defect table was used to track and work around open issues to provide the design engineers and the verification
engineers with a stable model and easy way to verify fixes. The defect table provided the ability to thoroughly
review the complete list of workarounds and TODOs, to ensure the proper workarounds have been applied and
removed prior to tape-out. Future enhancements could include:

A. Future enhancements: defect table

 Command line defects overrides

o To verify RTL fixes without modifying the defect_settings.sv file.

o To enable running tests for reproducing failures or testing new RTL features without code
modifications.

 System call to a live defect query

o To automatically compare defect table entries to the actual ticketing system.

B. Future enhancements: apply other lean techniques/principles to functional verification

The defect table is a particularly good example about how lean techniques and principles can be applied

to improve functional verification methodologies. Below two additional examples for some other lean
principles/techniques which could be easily applied to the work of the functional verification teams, and to the
other cross-functional teams collaborating with them, in order to minimize waste, and to optimize the speed and
value delivery.

 Value Stream Map (VSM):

 Develop a Value Stream Map, or a flowchart to manage the dependencies, the different functional
verification steps, and the handoffs: the internal hand-offs within the functional verification teams, and the
various external hand-offs to and from the other teams. Below, a non-exhaustive list of the benefits of VSM
[2]:

o helps identify bottlenecks and pain points

o manages errors and defects

o creates greater visibility and traceability throughout the entire cycle

o eliminates redundant and wasteful processes

o fosters cross-functional collaboration

o reveals opportunities for automation

o fuels faster, integrated feedback

o provides context and process clarity with data and visuals

o emphasizes results and KPIs

 Andons:

 The Andon cord concept in lean manufacturing [3], involves using signals and alerts to indicate that a
station on the assembly line has a problem. Alarms are activated manually by workers pulling a physical cord

9

or automatically by the equipment itself. Developed as one element of the “Jidoka” quality method and
pioneered by Toyota and the Toyota production System [4], the Andon cord empower workers to notify co-
workers and management of quality and process problems across the assembly line, and even stop production.

 In the context of functional verification, Andons could take the form of automated email notifications for
certain actions or delays once they start to negatively impact the project execution to a certain extent. To
illustrate the concept with a quite simple example, one could set some threshold for the maximum acceptable
delays/turnaround times (number of days for example) to fix bugs according to their priorities. Different settings
could be applied to different projects. For one project for example, notifications would be sent as soon as the
bugs would have been filed for showstopper/urgent bugs. Other notifications would be sent a certain number of
(predefined) days after the bugs have been filed, for bugs which were not showstopper/urgent, but have been
filed as high priority bugs.

REFERENCES

[1] Mary Poppendieck, Tom Poppendieck, “Lean Software Development: An Agile Toolkit”, Addison Wesley, May 08, 2003.

[2] https://www.lucidchart.com/blog/value-stream-mapping-for-devops

[3] https://devops.com/youre-not-devops-cant-pull-cord/

[4] Jeffrey K. Liker, “The Toyota Way”, Mc GrawHill, 2004

