
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Key Gochas in implementing CDC for various Bus Protocols
Nikita Gulliya nikita@agnisys.com | Mukesh Kumar Singh Mukesh@agnisys.com | Abhishek Bora abhishek@agnisys.com

Agnisys Inc

Abstract

In the industry where the designs are getting complex with huge

hierarchy, there is often a requirement of multiple clock domains.

But while, multiple clock domains exist various complications

occurs, such as setup and hold time differences which further

leads to a metastability state. Some of these errors can be

caught at an early stage in the design while few occur at a later

verification stage. Other issues include violation of the protocols.

The 2-D flip flop technique only solves the CDC issues for 1-bit

transaction. Automation has been done for the generation of

proper code of design and verification from the specification itself

for multi-bit transactions eliminating all the CDC related issues.

SoC level specification can be used for the generation of correct

design code for clock domain crossing, covering all the scenarios

and various bus protocols. CDC has been implemented between

various bus protocols used in the industry and the custom bus

which can be user defined. The paper will talk about the

simulation results obtained for the implementation of a low power

RTL design and techniques used for interconnection with various

bus protocols.

Introduction

CDC from Software Side

CDC from Hardware side

Results

Often the design demands dealing with various clock domains.

Specially when the design is implemented with a user defined

decode logic working on a custom bus. The interfacing can be

between custom clock and any other bus protocol, the frequencies

of the two clocks may vary in this case leading to various issues

such as metastability, loss of data, data incoherence etc. The figure

hereby shows the CPU and IP Hardware software interface(HSI).

The CPU contains bunch of register in it, C/C++ program with the

help of compiler is converted in Assembly. The assembly code is

burnt on to the CPU with the help of interconnect fabric, which can

be based on any bus protocol such as AMBA- AXI, APB, AHB.

CPU HSI can be divided into two parts. The software side or the

bus interface is working on a different clock frequency than the

Hardware side or the custom clock domain. The programmable

slave side is termed as the custom clock domain. The clock domain

crossing has been implemented with respect to two clocks. The first

clock is the custom clock that the user must be working on with its

own application logic from the slave side, and the other clock is

from the bus domain termed as the master clock. Both these clocks

must be working on different clock frequencies, automation has

been done for various bus protocols, which includes, AMBA-AHB,

AXI, APB, Tilelink etc.

A.CDC for AMBA-APB Bus Protocol

• According to the APB Bus protocol, when the PSEL signal from

bus is high then it indicate that the bus is in setup phase. In the

next clock cycle when the PENABLE signal goes low to high then

the bus is in the access phase and expects custom to derive

PSLVERR and PREADY.

• In access phase if PREADY is high and PSLVERR is low it

indicates transaction is complete. If PREADY is low, it indicates

slave is still working on current transaction and not ready for

another one. If PREADY is high and PSLVERR is also high, then

it indicates that there is some error in the transaction.

• To perform cdc between APB PCLK domain and custom clock

handshake signals are used, request and acknowledge signal for

transaction from APB to CUSTOM and request and acknowledge

for response from custom to APB.

• By default transaction request from custom will stay high and it

will pass to PCLK domain using 2-ff synchronizer. When APB

goes in access phase it will check if request for transaction is

there or not if request is present then it will derive PREADY low,

put the address, data and control in a flop then send transaction

acknowledge to custom clock domain using 2-dff and also

generate request for response and send it to custom using 2-ff

synchronizer. It will keep PREADY low until it gets response

acknowledge from custom domain.

• In custom clock, when transaction acknowledge arrive through 2-

ff synchronizer, it will deassert transaction request, take the

address, data and control to generate valid response, then store

that response in a flop and assert response acknowledge. After

this it will wait for transaction acknowledge to go low so that it can

generate transaction request again.

• In APB PCLK domain, when it gets response acknowledge then it

take the valid response from response flop and assert the

PREADY and deassert transaction acknowledge and response

request. So, that’s how handshake takes place between APB and

custom.

Therefore, various techniques such as handshake synchronizer

have been used according to the bus protocol for the

implementation of clock domain crossing. The implementation and

simulation results inferred low power RTL generation. The clock

domain crossing was seen from software bus side and hardware

end. The disadvantage from hardware side with the current solution

is that, there can be multiple requests from the hardware side at

the same time to different registers, in this case multiple handshake

synchronizers will be created. We are in pursuit to find out the best

way to implement the clock domain crossing from hardware side.

In the diagram shown below, two clocks one coming from bus (say

APB) on which read write are will take place on register bank from

software side and the other one is user define clock(CLK_2) on

which hardware side will do the read/write operation on the register

bank. The handshake synchronizer is used to translate the

transaction coming in from CLK_2 domain to APB_PCLK domain.

The simulation waveforms shown in figure below shows the simple

read-write transaction in case of CDC for APB bus domain.

The figure below shows the handshaking taking place taking place

between the two clock domains.

The figure below shows the CDC at the custom bus domain side,

where when APB acknowledge is received, for the write transaction,

the data write strobe and address are obtained.

B. CDC for AMBA-AHB Bus Protocol

•For cdc between AMBA-AHB bus domain and custom clock domain, a

similar approach as mentioned in AMBA-APB is followed.

•For normal operation: In address phase, address is stored in flop and

then during data phase HREADY is derived low and wait for

transaction request from custom.

•When custom request come through 2-ff synchronizer transaction

acknowledge signal is asserted to indicate that address, data and

control signals are available in flop and response request signal is

asserted for valid response.

• When custom domain receive transaction acknowledge, it will take

data, address and control from the flop and deassert transaction

request low then store valid response in flop and assert response

acknowledge signal high.

• When AHB domain receive response acknowledge, it will derive

low transaction acknowledge and response request. Also it will

assert HREADY high and provide valid response to the AHB.

Hence transaction gets completed through handshaking.

• For burst/pipeline operation: similar approach is used except the

usage of two flops to store addresses. During address phase

address of transaction1 is stored in one flop and then in data

phase transaction2’s address is stored in another flop, then

HREADY is de-asserted and waits for response acknowledge.

When a transaction gets completed, then that address is moved

from next address flop to address flop.

s

mailto:nikita@agnisys.com
mailto:Mukesh@agnisys.com
mailto:abhishek@agnisys.com

