

Keeping Your Sequences Relevant

Nicholas Zicha, Eric Combes
Accedian Networks

2351 Blvd. Alfred-Nobel, Suite N-410
Saint-Laurent (Montreal), Quebec, H4S 2A9, Canada

Abstract- In UVM testbenches, the job of generating transactions as stimulus generally falls on sequences which have
many underlying mechanisms and use models that allow for complex scenarios to be created, from user override-able
callbacks, to sequencer manipulation using locking and grabbing. In this paper we hope to add another tool to a
verification engineer’s toolbox by demonstrating the use of a lesser known part of the sequence-sequencer interaction
already built into UVM, the relevance API. Leveraging other object-oriented programming techniques such as mixins
and the visitor pattern, and prioritizing composition rather than strict inheritance, we will show some reuseable ways of
enhancing sequences with little modification necessary. An example controlling the individual and aggregate rate of a
packet-based design will be demonstrated.

I. INTRODUCTION

Generating stimulus to apply to a design under test (DUT) is an important part of any verification environment.
UVM testbenches prescribe transaction-based stimulus using the concept of sequences which can generate sequence
items (transactions) or can start other sequences. They are ephemeral objects that are created, run, and destroyed
over the course of a test, in contrast with classic BFM-style generators that are static in a test environment. Often
referred to as functors or function objects with a primary role of simply executing their body() function, they in
fact execute many layers of callbacks, handshakes, and sequencing mechanisms.

As sequences represent a significant piece in achieving coverage closure, having both a good understanding and a
large toolbox of techniques when using them is important. Only a cursory explanation is presented here to set a
context for what follows, as other texts provide a more thorough exposition [1].

A. Interaction Between a Sequence, Sequencer, and Driver

Sequences “run” or are “started” on sequencers acting as brokers with a component that consumes sequence
items, typically a driver. Figure 1 shows the standard high-level flow of events when a sequence is ran [2][3] using
some of the actual function and task calls involved.

Figure 1: Basic interaction between a sequence, sequencer, and driver for a single transaction.

Initially the driver fetching an item (using peek/get_next_item), the sequencer waiting for sequences, and
the component starting the sequence are independent. Once one or more sequences have been started on a sequencer
and have started an item (using start_item) within their body() task, the sequencer selects the next transaction
to be executed. The selected sequence can then randomize or manipulate the transaction at the last instant before
finally sending it, often referred to as “late randomization” since simulation cycles might have passed between the
time the request was initiated and was finally granted access to the driver. The item is delivered to the driver by
calling the blocking finish_item task, which will wait for a response. The driver will map the transaction to the
bus interface through “pin wiggles” and declare that it is done by calling item_done with or without an item in
response, thus unblocking the sequence and allowing it to continue.

B. Multiple Sequences

More advanced scenarios often require running multiple sequences in parallel. These sequences can be started on
individual sequencers, or a common sequencer. Parallelizing sequences in SystemVerilog can be done by forking
several “threads”, and starting a sequence on each one.

Code Stub 1: Starting sequences in parallel.

Notice that sequences 2 and 3 are both started on a common sequencer (sequencerB), whereas sequence 1 is
started on its own (sequencerA). How sequences running on a common sequencer are serviced is based on built in
selection and arbitration mechanisms.

II. SELECTING FROM MULTIPLE SEQUENCES

When multiple sequences overlap in their execution on the same sequencer, the sequencer needs to determine
which sequence will have access to the driver at any given time. The sequences are running in parallel, but the items
are processed one at a time, therefore some sort of selection and arbitration is required.1

A. Sequencer Arbitration Modes

Controlling the interaction between multiple sequences running in parallel on a common sequencer is most
often presented using the arbitration modes of uvm_sequencer. A list of available sequences is constructed by
the sequencer to grant a request from, using one of the following built-in modes:

Table 1: Sequencer arbitration modes

Mode Grant
UVM_SEQ_ARB_FIFO in FIFO order
UVM_SEQ_ARB_RANDOM randomly
UVM_SEQ_ARB_STRICT_FIFO by priority in FIFO order
UVM_SEQ_ARB_STRICT_RANDOM by priority in random order
UVM_SEQ_ARB_WEIGHTED randomly by weight
UVM_SEQ_ARB_USER based on user-definable user_priority_arbitration function

The user can change the arbitration mode of a sequencer using the set_arbitration function (actually
defined in uvm_sequencer_base). By default, sequencers start in FIFO mode, though the initial ordering may
vary if several sequences are started concurrently due to SystemVerilog’s non-determinism. Several of the modes
have some configurability using a priority that can be specified when calling the start task of a sequence.
Depending on the mode, this value will be used either as a strict priority value or as a weighing priority. The modes
provide a good range of control for generating interesting stimulus [4].

For anything more precise or exotic, extending uvm_sequencer to override the default
user_priority_arbitration function is necessary.

1 For brevity, sequencer locking and grabbing will not be discussed, but also partake in the process.

Code Stub 2: Function signature.

Unfortunately, identifying and applying specific arbitration to the available sequences is somewhat cumbersome

since the given list is of integers, providing little useful information to identify them individually. Many of the
properties and methods in the base sequencer classes are qualified as local, removing visibility from inheriting
classes. Applying user arbitration also requires overriding the sequencer type when built, which is straightforward in
UVM using the factory, but limits certain dynamism of the environment during tests.

B. Sequence Relevance

While rarely mentioned (but documented in plain sight), there are other steps when selecting a sequence in
addition to the arbitration modes. The following sequence diagram resembles the earlier one, but adds more detail to
the steps taken between the start_item and finish_item calls.

Figure 2: Sequence diagram from when an uvm_sequence is started until completion. Note the addition of the
selection based on relevance and arbitration steps.

Of particular interest are the calls involved in the “Selection”. A sequence’s relevance is validated during the
start/finish item cycle, and is determined by the is_relevant function defined in uvm_sequence_base,
having a relatively nondescript signature:

Code Stub 3: Function signature.

By default, sequences assert that they are always relevant and are therefore available for arbitration. Otherwise, if
no sequence asserts itself as relevant, the sequencer calls the wait_for_relevant task.

Code Stub 4: Task signature.

Re-arbitration of a sequence’s relevance is performed after the wait task returns. This implies that time should be
consumed by the wait_for_relevant task in order to avoid an endless
is_relevant/wait_for_relevant loop. It is not necessary for a sequence to be relevant when the task
returns, providing some additional flexibility in determining how long to wait.

By default, this duo of relevance methods are short-circuited by always asserting relevant, which may be why they
are not commonly used. They do, however, provide yet another way to manipulate the flow of transactions in the
packaging most commonly used to generate stimulus: sequences. They also provide a clarification of the
aforementioned sequencer arbitration modes. Sequencer arbitration is only applied to sequences that are relevant.

To provide more insight, the following is the output of a simple testbench where several overridable sequence,
sequencer, and driver methods are instrumented by extending their respective base classes and adding `uvm_info
calls to print the order in which they occurred. Two sequences are started in parallel, with transactions that do
nothing more than generate a random delay. The sequencer arbitration mode is configured to
UVM_SEQ_ARB_USER, providing another point of reference.

Figure 3: Two sequences running in parallel with instrumented messages to reveal the order of events.

The relevance check is performed after the start_item call, and since both sequences are relevant by default,

they must be arbitrated as indicated by the user_priority_arbitration event. One sequence is granted
first, and its item completed through the driver and finish_item steps. Note that the other sequence is in fact
checked once again for relevance before it is granted and completes its own execution.

II. APPLICATION: SHAPING PACKET TRAFFIC

The need to control stimulus rates, in either packets per second (pps) or bits per second (bps), is a common
requirement when verifying packet-based designs. Some DUTs may have limited buffering capacity or processing
capabilities, while others may themselves regulate or measure traffic rates.

Common IEEE 802.3 Ethernet frames [5][6] will be used as transactions for the application examples that follow.
Ignoring Jumbo frames, Ethernet frames range in size from 64 bytes to 1518 bytes. When transmitted, a 7 byte
preamble and single SFD byte are pre-appended. Furthermore, a minimum of 12 bytes is required between frames,

referred to as the minimum inter-packet or inter-frame gap (IPG or IFG). Using these values, the minimum and
maximum packet rates for a 1Gbps link can be calculated as follows:

Equation 1: Minimum and Maximum packets per second (pps)

௠௔௫ݏ݌݌ = (1,000,000,000௕௜௧௦
௦௘௖

) ((64 + 8 + 12) ௕௬௧௘௦
௣௔௖௞௘௧

∗ 8௕௜௧௦
௕௬௧௘

) = 1,488,095ൗ ௣௞௧௦
௦௘௖

௠௜௡ݏ݌݌ = (1,000,000,000௕௜௧௦
௦௘௖

) ((1518 + 8 + 12) ௕௬௧௘௦
௣௔௖௞௘௧

∗ 8௕௜௧௦
௕௬௧௘

) = 81,274ൗ ௣௞௧௦
௦௘௖

Small frames tend to stress processing capability as new headers arrive more often, while large frames tend to

stress bandwidth and buffering since fewer bits are “wasted” on overhead. Irrespective of how a frame transaction
type is implemented, a means of determining the number of bits it contains is necessary for rate calculations. UVM
already has a function built into uvm_object that can serve this purpose, pack().

Code Stub 5: Packing functions.

The packing function is intended to serialize the fields of an object into the referenced bit array, returning the total
number of bits packed. Although the pack() function itself cannot be overridden, classes extending uvm_object
can implement the do_pack() hook and use the built-in packing macros2. The packer object in the parameters is a
policy class used by the packing macros, defaulting to uvm_default_packer if none is provided3.

Code Stub 6: An example implementation of the do_pack() function for a simple Ethernet packet.

Many algorithms exist for regulating the rate at which packets are generated. A token bucket is a relatively simple

algorithm, embodying the analogy of a fixed-sized bucket that is filled at a constant rate [7]. Filling and emptying
the bucket are referred to as crediting and debiting, respectively, and the unit quantity measured in tokens. For
packets, the tokens are simply bits and the bucket is credited at the desired bit-rate. The bucket can be modeled as a
signed integer, and when the bucket has reached a certain threshold, say a positive number, it is said to be compliant.
Compliance signifies that a packet can be generated, with the bucket debited by the size of a packet. The bucket
typically also has a maximum fill level, used to limit the maximum number of bits that can be burst consecutively.

The algorithm can be described in pseudo-code as follows:

2 The `uvm_field_* macros can also be used instead of explicitly defining the packing function(s).
3 The default packer implements its internal bitstream as a fixed-sized array, with a maximum size of 4096 bytes.
Depending on the application, this may be limiting, and unfortunately requires recompiling the UVM source and
(re)defining `UVM_MAX_STREAMBITS to a larger value.

Figure 4: Pseudo-code for token bucket.

B. Using the Relevance API to Create a Base Sequence
Since the relevance of a sequence is checked prior to the execution of each item, it presents an opportunity to

restrict how often a transaction will be selected based on the result of is_relevant. It also presents a clean API
for deferring relevance with the wait_for_relevant task, analogous to a delay before a token bucket is
(re)filled to the threshold and another packet can be sent. A partial sequence implementation is shown in Code Stub
7.

Code Stub 7: Sequence definition, including standard body() task, relevance, and token bucket
implementation. Note that portions of the code have been left out in order to concentrate on the essential.

Other than the presence of the is_relevant() function and wait_for_relevant() task, the sequence is

fairly standard UVM. Several properties have been added to control the rate: bitrate to define the desired rate,
bucket implemented as a signed integer to represent the token bucket, max_burst to limit the bucket size, and
update_period to specify how often credits should be dispensed. At each relevance check the bucket is updated
and the compliance is validated based on the level being positive. The wait for relevance determines the time before
the bucket should be updated next. Once the sequence has been served, the size of the last packet sent can be
extracted in the finish_item task to debit the bucket. Figure 5 shows a sample transaction recording when
sequences are ran using different rates (100 Mbps in Code Stub 8) with a constant frame size of 64 bytes (minimum
Ethernet packet plus 20 bytes to account for minimum IPG, SFD, and preamble). 4

Figure 5: Transaction recording of transaction rate limited by relevance sequence on a 1 Gbps link. From top
to bottom: 100 Mbps, 500 Mbps, 750 Mbps, 1Gbps.

4 Unit testing rates is simplified using fixed packet sizes since the time between packets over short periods is
constant.

At line rate (1Gpbs in this case), there are no gaps between transactions. At 500 Mbps and 100 Mbps, it is clear
that only half and a tenth of the bandwidth is used, respectively. Configuring and starting the sequence is shown in
Code Stub 8.

Code Stub 8: Sample usage of the relevant rate sequence.

III. COMPOSABLE RELEVANCE SEQUENCE
While the sequence in Code Stub 7 can be used as a base class that other sequences can extend, it imposes a class

hierarchy and sequence item type. An approach to wrap arbitrary sequences that already exist using different
transaction types would provide a far more interesting and reusable solution. SystemVerilog’s type parameterization
can be employed to accomplish this.

A. Mixin

A mixin is a class whose methods are added to another class without the need of an inheritance relationship,
enabling aspect oriented programming [8]. Many programming languages enable this type of “mixing in” methods
out of the box, either by leveraging multiple inheritance (C++, Python), traits or interface classes with partial
function implementations (Scala [9]), or other language features.

SystemVerilog does not support multiple inheritance, but interface classes were added in the 2012 LRM enabling
protocol-style multiple inheritance. Unfortunately, complete or partial function implementations and properties are
not allowed, so the techniques used in other languages are not applicable. Despite this limitation, there is a way to
quickly combine classes in the spirit of mixins [10]. The following is a class definition with a particular
parameterization and inheritance signature.

Code Stub 9: Mixin class signature.

The class extends a class of the type it is parameterized by. A more concrete implementation gives more insight
into why this can be interesting.

Code Stub 10: Defining a class in the mixin style to add a constraint and function override.

The bar class adds a constraint block and a finish_item task to a class of an as-yet undefined type. The
default type of T, while not strictly necessary, gives an indication of what T may be, in this case tailored specifically
to add features to an uvm_sequence. Though unusual, the class above allows for quickly mixing in modified
behaviour to a sequence baz as follows:

Code Stub 11: Mixing bar into baz.

If another mixin foo exists, perhaps with different constraints and method overrides, it is just as easy to combine

with other mixins:

Code Stub 12: Mixing foo and bar into baz.

The classes barbaz and foobarbaz have not actually inherited from multiple classes of course, as that is not
allowed in SystemVerilog. The apparent composability is an illusion. What the examples above have done is create
a chain of inheritance applied at compile time very succinctly. The resulting hierarchy is as follows, with the parent
class starting on the left:

    

Figure 6: Class inheritance of foobarbaz.

What is also practical about this syntax, in addition to its terseness, is the ability to mix in different classes with

different implementations in any order:

Code Stub 13: Different mixin ordering.

A word of caution: in reality the mixin classes cannot be applied to any arbitrary class as in other languages. The

portability of the mixins is often still limited to a certain type of class, especially for classes whose constructors have
parameters without default values. In spite of this, they can still be useful and reusable way to inject functionality
into objects.

B. Refactoring the Relevance Sequence as a Mixin

The sequence originally defined in Code Stub 7 can be modified by changing its class signature and removing its
body() task to create a mixin that adds rate control to other sequences by implementing is_relevant,
wait_for_relevant, and finish_item methods.

Code Stub 14: A mixin based on the original relevance control sequence.

Since the sequence only refers to the item’s packing function in order to determine its bit length for rate control,

the actual type of item is irrelevant so long as it is a descendant of uvm_object (true for
uvm_sequence_items) and that its do_pack() function is implemented. Code Stub 15 shows an example
where two sequences of different traffic (transaction) types [6] have their rates limited using the mixin sequence,
and started in parallel on the same sequencer. A third sequence is started afterwards at a much lower rate. A
transaction recording is shown in Figure 7.

Code Stub 15: Using the sequence mixin to create a more complex scenario.

Figure 7: Transaction recording of a simulation using multiple sequences at different rates.

Having a technique to control the rate of transaction generation in a sequence already provides a means for
creating interesting scenarios. Adding mixins adds an ease of composability to existing sequences. The
be expanded upon. Suppose other types of relevance checks need to be applied? Creating new mixins and chaining
them together could be used. But suppose that the resulting relevance should be either the conjunction (
disjunction (OR) of each check? Or suppose multiple sequences need to share the same relevance check, for
example to share the same bandwidth on an interface? Here the aforemention
What is needed is a way to combine arbitrary algorithms,

A. Visitor Pattern

In object-oriented programming, known patterns are often used as solutions to common probl
visitor pattern is used to separate an algorithm from a structure, most often demonstrated as a chain of classes that
are visited. The resulting structure can allow for the
compositional approach rather than strict inheritance. This pattern inspire
more flexible relevance control API.

B. Relevance Delegation

The first step is to break out the algorithm determining relevance from the base
wait_for_relevant hooks will be delegated to a new

Code Stub 16: Structure of a relevance checking delegate class, used as a base class for different algorithms.

The actual base class of this object is inconsequential, but using

testbench if only to register with the UVM factory. The start
class in order to have the ability to delegate even more control outside of
further is the queue of sequences to which it is associated, providing a link
become apparent. This class can be extended to create different relevance algorithms.

C. Relevance Visiting Mixin

Refactoring is applied once again to t
applying the visitor pattern by adding a queue of relevance objects tha

: Using the sequence mixin to create a more complex scenario.

: Transaction recording of a simulation using multiple sequences at different rates.

IV. MULTIPLE RELEVANCE CHECKS
a technique to control the rate of transaction generation in a sequence already provides a means for

ng interesting scenarios. Adding mixins adds an ease of composability to existing sequences. The
. Suppose other types of relevance checks need to be applied? Creating new mixins and chaining

pose that the resulting relevance should be either the conjunction (
) of each check? Or suppose multiple sequences need to share the same relevance check, for

share the same bandwidth on an interface? Here the aforementioned approaches will not work
What is needed is a way to combine arbitrary algorithms, as well as a way to handle multiple relevance checks.

oriented programming, known patterns are often used as solutions to common probl
visitor pattern is used to separate an algorithm from a structure, most often demonstrated as a chain of classes that

The resulting structure can allow for the addition and combination of different algorithms, using a more
compositional approach rather than strict inheritance. This pattern inspires a way to achieve the goal of an ev

to break out the algorithm determining relevance from the base mixin. The is_relevant
hooks will be delegated to a new relevance class.

elevance checking delegate class, used as a base class for different algorithms.

actual base class of this object is inconsequential, but using uvm_object is common practice in a UVM
testbench if only to register with the UVM factory. The start and finish item tasks have also been broken out to this
class in order to have the ability to delegate even more control outside of the sequence. What distinguishes
further is the queue of sequences to which it is associated, providing a link to multiple calling sequences as will
become apparent. This class can be extended to create different relevance algorithms.

applied once again to the relevance sequence in Code Stub 14, keeping the mixin signature, but
applying the visitor pattern by adding a queue of relevance objects that it can be associated with.

: Using the sequence mixin to create a more complex scenario.

: Transaction recording of a simulation using multiple sequences at different rates.

a technique to control the rate of transaction generation in a sequence already provides a means for
ng interesting scenarios. Adding mixins adds an ease of composability to existing sequences. The concept can

. Suppose other types of relevance checks need to be applied? Creating new mixins and chaining
pose that the resulting relevance should be either the conjunction (AND) or

) of each check? Or suppose multiple sequences need to share the same relevance check, for
ed approaches will not work as-is.

a way to handle multiple relevance checks.

oriented programming, known patterns are often used as solutions to common problems [11][12]. The
visitor pattern is used to separate an algorithm from a structure, most often demonstrated as a chain of classes that

addition and combination of different algorithms, using a more
a way to achieve the goal of an even

is_relevant and

elevance checking delegate class, used as a base class for different algorithms.

is common practice in a UVM
been broken out to this

sequence. What distinguishes this class
multiple calling sequences as will

, keeping the mixin signature, but
t it can be associated with.

Code Stub 17: Final relevance mixin sequence.

Now, instead of simply providing a response when is_relevant is called, the function visits the

is_relevant function of each associated relevance class in turn, combining their results for the final response. A
configuration bit all_relevant is used to determine whether all or at least one should be relevant for the final
relevance to be asserted, equivalent to AND or OR operators. The wait_for_relevant task waits only as long
as needed based on its connected relevance classes (using fork/join_any). Other helper functions can be added
to perform the internal connections and bookkeeping, such as null checks and duplicate association refusal.

Figure 8: Interaction between the relevance sequence mixin and associated relevance controls to which
is_relevant() and wait_for_relevant() calls are delegated.

V. BRINGING IT ALL TOGETHER

For a final example, two relevance algorithms will extend the relevance class to create algorithms that can be
used in different combinations, providing an example of their potential. A complete implementation can be found in
the Appendix, including a simple testing environment.

A. Rate Control

Code stubs from the original relevance sequence are taken and refactored to extend the base relevance class to
(re)create a rate controlling algorithm.

Code Stub 18: Relevance delegate extension controlling bit rate.

B. Buffering

Packet-based DUTs often have some limit in the quantity of bits that they can buffer, and packets being discarded
or having backpressure applied may be undesirable for a certain types of coverage scenarios. If the test environment
contains a scoreboard, the number of outstanding transactions yet to be matched can be used as a crude estimate for
the quantity of bits buffered or “in-flight” in the design, and can potentially be used to limit the relevance of a given
sequence.

For such a method to work effectively, the scoreboard can be instrumented by adding two features: a function that
returns the number of unmatched bits, and an event generated each time a transaction is observed at the output. Most
scoreboards contain some sort of internal queue or array to keep track of transactions to be matched with DUT
responses.

Code Stub 19: Scoreboard design using a queue of transactions that are expected to be matched.

The number of bits can be calculated as follows (once again assuming that pack() has been implemented in the
transaction):

Code Stub 20: Calculate the number of unmatched bits.

While a simple queue implementation is presented here, the unmatched feature can be added to other

scoreboard implementations such as those using uvm_tlm_analysis_fifo.
Most scoreboards are connected using TLM, and implement write functions (for example write_*) to receive

transactions. An event can be added to the scoreboard and triggered in these functions.
With these two framework additions, a relevance class can be created such that instead of checking if there are

enough credits in a bucket to be relevant, it checks the scoreboard to see if there are too many unmatched bits
compared to a threshold. If so, rather than wait a period of time for the bucked to be credited with enough tokens, it
waits for a transaction to have been observed by the scoreboard, potentially reducing the number of outstanding bits.

Code Stub 21: Buffering relevance control.

C. Complex Scenario

The culmination of the above methods and patterns results in a simple API that can be used to control sequences.
Figure 9 is a graphical representation of the relationships that will be presented.

Figure 9: Sequence and relevance control relationship in complex scenario.

Two sequences have relevance controls mixed-in using relevance_sequence_mixin. Three relevance

controls are created: rate, buffering, and count. The first sequence is associated with all the controls, whereas the

second sequence “shares” the buffering control with the first. The first sequence represents a slow, but time-limited
flow of traffic, whereas the second is high-bandwidth and long-running. Both sequences will respect a limited
number of unmatched bits potentially buffered in the DUT.

Code Stub 22: Final example demonstrating multiple relevance controls, some of which are shared between
sequences.

VI. CONCLUSION

The purpose of this paper was to provide deeper insight into a relatively unknown part of a sequence’s selection
and arbitration in order to add another tool to a verification engineer’s proverbial toolbox. As an enhancement, other
programming techniques such as mixins and the visitor pattern were introduced to improve reusability and
composability. The outcome was used to control sequences in packet network applications. Other ways to use the
relevance and arbitration mechanism exist, providing a rich canvas to create test scenarios and achieve coverage
closure.

VII. REFERENCES

[1] Rich Edelman, Raghu Ardeishar, "Sequence, Sequence on the Wall – Who’s the Fairest of Them All? Using

SystemVerilog UVM Sequences for Fun and Profit," in DVCon, San Jose, 2014.

[2] Accellera, Universal Verification Methodology (UVM) 1.1 User’s Guide, 2011.

[3] Accellera, UVM User’s Guide 1.2, 2014.

[4] Keisuke Shimizu, "ClueLogic UVM Tutorial for Candy Lovers – 26. Sequence Arbitration," 4 April 2015.
[Online]. Available: http://cluelogic.com/2015/04/uvm-tutorial-for-candy-lovers-sequence-arbitration/.

[5] IEEE Std 802.3-2015.

[6] AMIQ Consulting, "amiq_eth," [Online]. Available: https://github.com/amiq-consulting/amiq_eth.

[7] Andrew S. Tanenbaum, Computer Networks, Fourth Edition, Prentice Hall PTR, 2003.

[8] James Strober, Corey Gross, "What Ever Happened to AOP?," in DVCon, San Jose, 2015.

[9] Martin Odersky, Lex Spoon, Bill Venners, Programming in Scala, Third Edition, Artima Press, 2016.

[10] Tudor Timi, "Verification Gentleman - Fake It 'til You Make It - Emulating Multiple Inheritance in
SystemVerilog," 28 March 2015. [Online]. Available:
http://blog.verificationgentleman.com/2014/09/emulating-multiple-inheritance-in-system-verilog.html.

[11] Eldon Nelson, "Design Patterns by Example for SystemVerilog Verification Environments Enabled by
SystemVerilog 1800-2012," in DVCon, San Jose, 2016.

[12] Harry Foster, Michael Horn, Bob Oden, Pradeep Salla, Hans van der Schoot, "Verification Patterns – Taking
Reuse to the Next Level," in DVCon, San Jose, 2016.

VIII. APPENDIX

The code for a complete example, including simple unit test, follows.

A. Relevance API Classes

File 1: relevance_sequence_mixin.sv

File 2: relevance.sv

File 3: rate.sv

’

File 4: buffering.sv

B. Unit Test Environment

File 5: base.sv

“ ”

File 6: unit.sv

