
February 28 – March 1, 2012

Keeping Up with Chip — the Proposed
SystemVerilog 2012 Standard Makes

Verifying Ever-increasing Design
Complexity More Efficient

LH D
Sutherland

www.sutherland-hdl.com
Training Engineers to be SystemVerilog wizards

2

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 2 of 24

What We Will Discuss…

 A brief history of the evolution of Verilog and SystemVerilog
 And why we need a 2012 version…

 Status of the proposed SystemVerilog-2012 standard
 What has been done
 When it will be available

 Overview of major new features
 There’s a lot!

 Wrap-up and Q&A
 Please jot down your questions

and save them for Q&A at the end

3

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 3 of 24

A Brief History Lesson…

 Verilog (IEEE standard 1364)
 Began in 1983 as a proprietary language
 Opened to the public in 1992
 Became an IEEE standard in 1995 (updated in 2001 and 2005)
 Between 1983 and 2005 design sizes increased dramatically!

 SystemVerilog (IEEE standard 1800)
 Originally intended to be the 2005 update to Verilog
 Contains hundreds of enhancements and extensions to Verilog
 Published in 2005 as a separate document
 Officially superseded Verilog in 2009

For a summary of new features added in SV-2009, see the DAC-2009
2-part presentation by Stuart Sutherland and Cliff Cummings

(available at www.sutherland-hdl.com and www.sunburst-design.com)

4

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 4 of 24

Mile High View of
SystemVerilog-2012
 Design size and complexity continues to grow
 And grow and grow…

 SystemVerilog is keeping pace
 IEEE began work on SV-2012 as soon as SV-2009 was complete
 Work on specifying SV-2012 was finished in January 2012
 IEEE balloting process began mid February 2012

 In a nut shell…
 31 new features added to the language
 60 clarifications to existing language features
 71 corrections (typos, English grammar, punctuation, etc.)
 Dozens of minor editorial corrections (font usage, punctuation)

The focus of this paper is on the 31 new language features, and how those features
can help make writing complex verification testbenches simpler or more efficient

5

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 5 of 24

Typed new() Constructors

 Before…
 The object handle type and the new() type must be identical
 To create a child object and assign to a parent handle took 3 steps

 SystemVerilog-2012
 The call to new() can be “typed” using its class name
 The return must be assigned to a handle of the same class type or

a parent/grandparent of that type
base_trans t_base = reset_trans::new;

Mantis 3001

• Fewer lines of code
• Self-documenting code
• Less risk of obscure errors

class base_trans; ... endclass

class reset_trans extends base_trans;... endclass

base_trans t_base;
reset_trans t_reset t_reset = new;
t_base = t_reset;

3 lines of code

6

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 6 of 24

Nonblocking Assignments
to Class Properties
 Before…
 Class properties could not be assigned using nonblocking assigns
 Nonblocking assignments are useful in verification code
 Can prevent race conditions between the testbench and the DUT

 SystemVerilog-2012
 Removes the restriction about using nonblocking assignments
 Allows verification engineers to take full advantage of

SystemVerilog’s event scheduling rules
class base_trans;
int data;
bit resetN;

endclass

initial begin
t.resetN <= 0; // assert reset in NBA event region
...

Mantis 2112

Nonblocking assignment used to ensure
DUT won’t miss a power-up reset

7

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 7 of 24

Multiple Inheritance

 Before…
 A class could only be extended from a single parent
 Can require a more awkward, difficult to re-use coding style

 SystemVerilog-2012
 Allows a child class to inherit from more than one parent class
 Uses Java-like interface classes to handle multiple inheritance

interface class Put;
pure virtual function void put(int a);

endclass

interface class Get;
pure virtual function int get();

endclass

class Fifo implements Put, Get;
... // implementations of inherited methods

endclass

Mantis 1356

• An “interface” class can contain:
• Parameter constants
• User-defined types (typedefs)
• Pure virtual method prototypes

• A regular class can “implement”
one or more interface classes

This is BIG!

Inherit prototypes from multiple parents

The full paper discusses some
ways this new feature might be

useful for a UVM testbench

8

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 8 of 24

Soft Constraints

 Before…
 All randomization constraints were “hard” constraints
 An error results if a constraint conflicts with another constraint

 SystemVerilog-2012
 Constraints can be specified as “soft”
 Ignored if conflicts with another constraint

class Packet;
rand int pkt_size;
constraint size {soft pkt_size inside {32,1024};}

endclass

Packet p = new();
p.randomize with {pkt_size == 512;}

Mantis 2987

Example:
• A transaction class has constraints, but a specific test requires a different constraint

• An error will occur if the specific constraint conflicts with the built-in constraint
• The verification engineer writing the test must write extra code to avoid potential conflicts

The randomize with() constraint takes
precedence over the soft constraint,

instead of resulting in a run-time error

This is also a big enhancement!

9

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 9 of 24

Uniqueness Constraints

 Before…
 There was no simple way to specify constraints so that several

variables — or all the members of an array — had different
random values and none had the same value

 SystemVerilog-2012
 Adds a uniqueness constraint that where all variables in a list or an

array receive unique values
class Transaction;
rand int a, b, c;
rand byte data_array[16];

constraint c1 { unique {a,b,c}; }
constraint c2 { unique {data_array}; }

endclass

Mantis 3028

Constraint c2 ensures that when
random values are generated, every

element of data_array will have a
different value

Constraint c1 ensures that, when
random values are generated, the

values of a, b and c will be different

10

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 10 of 24

Parameterized Methods /
Parameterized Types
 Before…
 Module and class parameters could be redefined for each instance
 Task/function instances could not have different parameter values
 Required writing many versions of the same task or function

 SystemVerilog-2012
 Allows static class methods to be “specialized” with unique

parameter values each time the method is used
virtual class C #(parameter DECODE_W, localparam ENCODE_W=$clog2(DECODE_W));

static function [DECODE_W-1:0] decoder_f (input [ENCODE_W-1:0] EncodeIn);
...

endfunction
endclass

module test;
decoder_1 = C#(4)::decoder_f(2'b11);
decoder_2 = C#(8)::decoder_f(3'b100);
...

Mantis 696

Redefine DECODE_W value for each instance of decoder_f method

Mantis 1504

Each instance of a parameterized
user-defined type can be specialized

in a similar way

Strictly speaking, these are “clarifications” in the standard, not new features

11

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 11 of 24

Explicit Untyped Arguments
In let Macros
 Before…
 Any untyped formal arguments in let macros had to be listed first
 Not consistent with the syntax of property and sequence definitions

 SystemVerilog-2012
 A let formal argument in any position can be specified as untyped
 Consistent syntax with property and sequence definitions
let OK(event clk, untyped a) = assert ($stable(a,clk));

module test;
logic [31:0] d;
real r;
bit clock;
task do_something;
OK(@(posedge clock), d) ...
OK(@(negedge clock), r); ...

endtask
endmodule

Mantis 2835

formal argument “a” is untyped, and takes
on the type of the value passed in to it

12

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 12 of 24

Var Type() in For-Loops /
Ref Args with Dynamic Arrays
 Before…
 The data type of a for-loop iterator had to be hard-coded

 SystemVerilog-2012
 The type() function can be used to declare the iterator variable
paramenter SIZE=64;
logic [SIZE-1:0] a, b;

for (var type({a,b}) i; i<=255; i++) ...

 Before…
 A task/function ref argument could only point to fixed-sized arrays

 SystemVerilog-2012
 Adds ability for ref arguments to point to dynamically-sized arrays

Mantis 2901

• If SIZE is not redefined, i will be
declared as a logic [128:0] type

• If SIZE is redefined, variable i will
adjust accordingly

Mantis 2929

task put_data (input value, ref d[$]);
d.push_back(value);

endtask

int data_q[$];
always @(posedge clock)
put_data(data, data_q);pass a queue to a task

13

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 13 of 24

$countbits System Function /
`begin_keywords 1800-2012
 Before…
 The $countones function returned the number of bits set to 1
 There was no easy way to count the number of bits set to 0, X or Z

 SystemVerilog-2012
 Adds a $countbits function that returns the number of bits set to a

list of values

 Before…
 The words implements, interconnect, nettype, and soft

had no special meaning in the language
 SystemVerilog-2012
 Reserves these four words as keywords
 Adds an 1800-2012 argument to the `begin_keywords directive

Mantis 2476

Existing code that uses any of these new keywords should specify `begin_keywords 1800-2009

Mantis 3750

$error("data has %0d bits with X or Z",
$countbits (data, 'x, 'z));

14

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 14 of 24

User-Defined Net Types /
Typeless Netlists

 Before…
 Engineers could only create user-defined types based on variables

 SystemVerilog-2012
 Adds ability to create user-defined net types based on net types
 Can define custom nets for 2-state and floating point values
 Can define custom resolution functions for multi-driver logic

 Before…
 Netlists had to be hardcoded to only use specific net types

 SystemVerilog-2012
 Adds a generic net that infers its type from lower-level connections
 Enables using configurations to select design versions (e.g. digital

or analog versions of a module) without modifying the netlist

Mantis 3398

Mantis 3724
These new features are

important for mixed signal
designs!

15

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 15 of 24

Coverpoint Variables /
bins…with() Construct /
Coverage Functions
 Before…
 Coverpoint labels could not be used in expressions
 Coverage expressions could not call functions
 Coverage bins could not easily exclude specific values

 SystemVerilog-2012
 Coverpoint labels are variables that can be used in expressions
 Coverage expressions can call functions (eliminates duplicate

code used by multiple coverpoints)
 A bins...with() construct can be used to exclude values in a bin that

would not be of interest in a test
a: coverpoint data {
bins mod16[] = {[0:255]} with (item % 16 == 0);

}

Mantis 2506

mod16 only tracks values that
are evenly divisible by 16

(“item” is a variable that is
built into bins…with())

These 3
enhancements can
help improve run-
time performance!

16

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 16 of 24

Assertion Data Types /
Sampled Value Data Types
 Before…
 Assertions were limited to testing simple, integral values

 SystemVerilog-2012
 Assertions can now test real (floating point) values and dynamic

arrays (such as strings and queues) and static class properties

 Before…
 Value sampling functions, such as $sample() were limited to

testing simple, integral values
 SystemVerilog-2012
 Value sampling functions can now test real values and dynamic

arrays (e.g.: strings and queues) and static class properties

Mantis 2328

byte q[$];
property p1;

$rose(write) |-> q[0];
endproperty

A dynamic queue array

Mantis 2353

Mantis 3213

17

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 17 of 24

Global Clock Resolution

 Before…
 There could only be a single global clock definition, which

encompassed the entire design
 Made it difficult to verify designs with multiple clock domains

 SystemVerilog-2012
 Each hierarchy scope can have a different global clock
 Applies to all sub-scopes until a new global clock is defined

module master (...);
...
global clocking @(posedge m_clock);
endclocking
...
property @($global_clock)
...
endproperty

...
endmodule

Mantis 3069

module slave (...);
...
global clocking @(posedge s_clock);
endclocking
...
property @($global_clock)
...

endproperty
...

endmodule

NOTE: This enhancement is not backward compatible with SystemVerilog-2009

18

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 18 of 24

Inferred Clocks in Sequences /
Sequence Method Expressions
 Before…
 An assertion sequence only infers a clock when used in a property

 SystemVerilog-2012
 Sequences can infer a clock in other contexts

 Before…
 The triggered and matched sequence methods could only be used

on instances of a sequence
 SystemVerilog-2012
 Sequence methods can also be used with a sequence expression

Mantis 2412

Mantis 3191

checker check_mutex(input sequence s1,
input cond,
event clk=$inferred_clock);

default clocking cb @clk; endclocking
let r = s1.triggered;
a1: assert property (cond |=> r);

endchecker

Not allowed in SV-2009

19

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 19 of 24

Final Deferred Immediate
Assertions
 Before…
 Immediate assertions can have glitches within a moment in time
 SystemVerilog-2009’s deferred immediate assertions reduce the

risk of glitches but do not eliminate them

 SystemVerilog-2012
 Adds final deferred immediate assertions that eliminate all glitches

Mantis 3206

always_comb
A2: assert #0 (!$isunknown state) else begin
err_cnt++;
$error("bad state");

end

• Processed in the Reactive
event region

• Can execute any type of
programming statements

Deferred Immediate Assertion

• Processed in the Postponed
event region

• Can only execute a single
print statement

• Cannot contain begin…end

always_comb
A3: assert final (!$isunknown state)

else $error("bad state");

Final Deferred Immediate Assertion

20

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 20 of 24

Fine-grained Assertion Control

 Before…
 Could only control assertions with a medium level of granularity

using $assertkill, $assertoff, and $asserton system tasks
 Could specify a specific assertion or a specific hierarchy scope
 Could not distinguish assert, assume, cover, expect assertions
 Could not distinguish concurrent vs. immediate assertions
 Could not lock out specific assertions from global controls

 SystemVerilog-2012
 Adds a new $assertcontrol system task that provides the fine level

of control granularity not possible before
enum { LOCK=1, UNLOCK=2, ON=3, OFF=4, KILL=5,

CONCURRENT=1, IMMEDIATE=2, D_IMMEDIATE=12,
EXPECT=16, ASSERT=1, COVER=2, ASSUME=4

} controls;

$assertcontrol(OFF, CONCURRENT, COVER|ASSUME, 0);

Mantis 3295

21

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 21 of 24

Checker Output Arguments /
More Checker Programming
 Before…
 A checker could instantiate other checkers, but checkers could

only have input arguments
 Limited ability to build up complex checkers from other checkers

 SystemVerilog-2012
 Checkers can have output arguments, similar to tasks or modules

 Before…
 Checkers supported a very limited set of programming statements

 SystemVerilog-2012
 Checkers now support:

Mantis 2093

Mantis 3033

 always_comb, always_latch, always_ff
 Blocking assignments
 Conditional statements
 Looping statements

 Immediate assertions
 Task calls
 let declarations
 Continuous assignment of checker variables

NOTE: This enhancement is not backward compatible with SV-2009 (always within let now illegal)

22

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 22 of 24

VPI Enhancements

 Before…
 The SystemVerilog Verification Procedural Interface (VPI)

supported constructs in the SystemVerilog-2009 standard
 SystemVerilog-2012
 The VPI was enhanced to support the new features added in

SystemVerilog-2012
 VPI support for soft constraints
 VPI access added to the built-in process class
 VPI transition to typespecs added to named events
 VPI join type property added to the Scope diagram

 Many other minor enhancements and clarifications were made to
the SystemVeriog-2012 VPI

Mantis 3116

Mantis 3188

Mantis 3193

Mantis 3884

23

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 23 of 24

Summary –
SystemVerilog-2012 adds 31 New Features
 OOP enhancements
 Typed new() constructors
 Nonblocking assignments
 Multiple inheritance

 Constrained random enhancements
 Soft constraints
 Uniqueness constraints

 Programming enhancements
 Parameterized tasks and functions
 Parameterized user-defined types
 Untyped arguments in let constructs
 var type() in for-loops
 ref arguments with dynamic arrays
 $countbits system function
 `begin_keywords 1800-2012

 Mixed-signal enhancements
 User-defined net types
 Typeless netlist connections

 Coverage enhancements
 Coverpoint variables
 bins…with() expressions
 Coverage functions

 Assertion enhancements
 More assertion data types
 More sampled value data types
 Testing static class properties
 Global clock redefined
 Inferred clocks in sequences
 Sequence method expressions
 Final deferred immediate assertions
 Fine-grained assertion control

 Checker enhancements
 Checker Output Arguments
 More Checker Programming

 VPI enhancements
 4+ extensions to support new features

 SystemVerilog-2012 is in the process of being approved by the IEEE
 EDA vendors are already implementing these new features!

24

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 24 of 24

Questions?

Sutherland HDL helps
engineers become true
SystemVerilog wizards!

visit www.sutherland-hdl.com for workshop descriptions

 Sutherland HDL, Inc. provides SystemVerilog training
SystemVerilog for Design and Synthesis
SystemVerilog for Verification
SystemVerilog Assertions
SystemVerilog UVM
 All training workshops are available on-site

and as online eTutored™ training

25

What’s New in SystemVerilog-2012 – ©2012 Stuart Sutherland – Sutherland HDL, Inc. – www.sutherland-hdl.com 25 of 24

About the Authors
 Stuart Sutherland
 Has been using Verilog since 1988
 Involved in IEEE Verilog/SystemVerilog standards since inception
 Technical editor of every generation of Verilog and SystemVerilog

Language Reference Manuals
 Author of books on Verilog, SystemVerilog and Verilog PLI

 Tom Fitzpatrick
 Verification Technologist at Mentor Graphics Corp
 20+ of design and verification experience
 Involved in the standardization of SystemVerilog
 One of the original designers of AVM and OVM
 Editor of Verification Horizons, a quarterly newsletter
 Published articles and papers about verification methodologies

	Slide Number 1
	What We Will Discuss…
	A Brief History Lesson…
	Mile High View of SystemVerilog-2012
	Typed new() Constructors
	Nonblocking Assignments�to Class Properties
	Multiple Inheritance
	Soft Constraints
	Uniqueness Constraints
	Parameterized Methods / Parameterized Types
	Explicit Untyped Arguments�In let Macros
	Var Type() in For-Loops /�Ref Args with Dynamic Arrays
	$countbits System Function /�`begin_keywords 1800-2012
	User-Defined Net Types /�Typeless Netlists
	Coverpoint Variables / �bins…with() Construct / �Coverage Functions
	Assertion Data Types / �Sampled Value Data Types
	Global Clock Resolution
	Inferred Clocks in Sequences /�Sequence Method Expressions
	Final Deferred Immediate Assertions
	Fine-grained Assertion Control
	Checker Output Arguments /�More Checker Programming
	VPI Enhancements
	Summary – �SystemVerilog-2012 adds 31 New Features
	Questions?
	About the Authors

