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Abstract— Verification environments for today's module, 

subsystem, and SoC DUTs are complex because the DUTs being 

verified are increasingly complex. 

Either the functions being performed in hardware are more 

convoluted in algorithm or data aggregation/multiplexing, or 

they are more general-purpose, configurable by software to 

perform a multiplicity of varying tasks within a function domain, 

or by parameterization to enable reuse in a variety of different 

products or configurations of an end product. 

The complexity is mitigated by techniques and methodologies, 

some necessary: Constrained Random stimulus, Intelligent 

Testbench Automation, Coverage-Driven Verification, and by 

frameworks that assist the more rapid development and debug of 

those techniques, for example the UVM. 

However, one area of testbench complexity is only minimally 

assisted by tools or OOP libraries: the development of 

Scoreboards and related modeling components used to check 

expected DUT behavior or output given arbitrary sets of inputs, 

existing state of the DUT, configuration values, both in terms of 

DUT parameters and soft configuration or current 

register/memory state values. 

The area of Scoreboarding may be the last remaining portion of 

testbench design which relies on Verification Experience and 

which cannot be solved by a one size fits all methodology. 

So how can we accelerate the scoreboard design/development 

process or at least help it keep pace with the more complex DUT 

scenarios that we encounter? 

In this, the first part of our Scoreboarding paper, we assist the 

productive application of verification experience to the 

architectural design of the Scoreboard portion of a verification 

environment. 

We do this by defining a number of architectural patterns which 

require various possible topologies of the data comparison, which 

to some extent can reflect the topologies found in dataflows 

within the DUT, but with the intention of providing a modular 

scoreboard design. 

Keywords: scoreboard, checker, testbench architecture, 

verification patterns, modeling, systemverilog, OOP, UVM  

I. INTRODUCTION 

This paper is the first of a two-part series on the topic of 

"Keeping Score" and covers the architectural design 

considerations for scoreboards. 

 

The second half will provide examples of the most common 

architectural arrangements using OOP and SystemVerilog 

language features as required. 

 

Scoreboarding problems can become as complex as the DUT 

in question, with various combinations of the following 

features: 

 comparison that has to span time, not resolved instantly or 

within the inbound protocol data, may require multiple 

reports 

 multiple interfaces, either homogeneous or heterogeneous, 

contributing to the output, perhaps with config 

parameterization 

 out of order processing, depending on both input state and 

cumulative DUT state, e.g. to optimize occupancy or 

latency 

 arbitrated priorities, with various generic arbitration or 

custom selection mechanisms affecting predictability of 

the DUT outcome 

 data aggregation, subdivision, and reservation across time 

and multiple stimulus, matching such schemes in the 

design. 

 

Often the challenge is to model just what is required to make 

the 'pass/fail' comparison, and no more, otherwise the 

scoreboard can easily grow more complex than the DUT. 

When this happens, the scoreboard becomes brittle, and 

requires maintenance, even after the original verification 

engineer or team has moved on. 

 

Evidence from this author's experience suggests a high 

proportion of bugs found during the peak of the debug cycle 

are scoreboard bugs, unless steps are taken to design a 

scoreboard that is tolerant of variation, within the fixed 

requirements that are to be verified. A modular architecture 

reduces brittleness, and simplifies comprehension. 
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II. SCOREBOARD CONCEPTS 

We begin with some definitions and a relative placement of 

concepts to build upon: 

 

A. Our Definition of a Scoreboard 

A scoreboard is an element of the self-checking verification 

environment, responsible for performing comparison tests on 

observed behavior across two or more interfaces to the design 

under test, in order to report conformance to the specification 

and for gathering and storing all the data required in order to 

perform those tests. It directly influences the pass or fail 

outcome of the test. It is passive and vertically reusable. 

 

 
Figure 1.  Simple example 'textbook' scoreboard 

1) Simplistic textbook definition 

At the simplest level, a scoreboard is a data structure that 

stores an expected value for a DUT interface port X based on 

an observed value on another DUT port A. When the expected 

value of X is finally observed, the stored value of X can be 

validated, pass or fail processed, and the data structure readied 

for future comparisons. 

 

Bergeron[1] limits the definition of a scoreboard as 'the data 

structure used to hold the expected data for ease of comparison 

against the monitored output values' and advises developers to 

consult established software engineering texts to choose 

relevant structures for the design behavior at hand. He implies 

that any transformation, consolidation, or preparation of data 

before presenting it for storage/comparison is done outside of 

the 'scoreboard' proper. Other authors (Iman[2] and 

Palnitkar[3]) follow a similar line. 

 

2) Limitations of simple scoreboard architecture 

We contend that this simple model is only valid for the 

minority of projects that satisfy the following three criteria: (1) 

the data flow of the DUT is of a linear nature from port A to 

port X, and (2) there exists a Golden Reference model or well-

defined Transfer Function model specification converting 

traffic on input A to the corresponding output value on X, and 

(3) the Verification team is as well versed in Software 

Engineering and Data Structures technology as they are in 

Hardware Design & Verification. 

 

Only in this idealistic case can the scoreboard be a simple 

store-and-compare data structure - comparing apples with 

apples - observed X versus expected X. This model has 

limitations which becomes increasingly apparent as we 

explore typical requirements for data flow in a design. 

 

3) More realistic definition 

For today's real-world complex module and SoC subsystem 

designs, we need better guidance in constructing the 

checker/model/scoreboard subsystem of our verification 

environment. Typical DUTs will apply much more convoluted 

transformations from input A (and B, C,...) to output X (and 

Y, Z,...) leading to some complex interactions between the 

model/transfer functions (algorithms) and the data structure 

requirements of the scoreboard (storage). It often becomes 

impossible to separate the two concerns with a simple TLM 

pipeline connecting them. 

 

In the worst case, a project team will commence design and 

coding with the expectation of simplistic scoreboard 

architecture, and hit limitations, creating spaghetti code along 

the way to work around them. 

 

 
Figure 2.  In the real world, a scoreboard does so much more 

We seek innovative ways to inform development teams and 

equip them up front with a toolbox of architectural elements 

which answer their questions as they develop their self-

checking testbench. 

 
 

 

 

 
 

 

 



B. Scoreboard versus 'Reference Model' 

Some designs have an available Golden Reference Model, that 

is, a model which is trusted as an accurate implementation of 

the specification, usually a behavioral implementation, not 

necessarily a timing-accurate one. 

 

1) Model instantated separately from scoreboard 

Such a model is useful if it can be instantiated in the testbench 

as part of an end-to-end scoreboarding / checking solution. 

For a DUT with input A, B and output X, a golden model may 

compute values of X for any A and B. As such it can be used 

with a scoreboard to observe the actual A, B, X reports from 

the DUT interface monitors and check them against the model. 

 

 
Figure 3.  inline modeling outside scoreboard 

Some would say that the model in this case lies outside the 

scoreboard, so that the scoreboard is simplified to comparing 

like-for-like, i.e. actual observed X versus expected X. 

 

2) Model tightly bound to scoreboard 

This author prefers to think of the model as an element 

plugged into the scoreboard, such that the overall component 

we call Scoreboard (or Checker) is really a dotted line around 

all storage/comparison elements plus all elements that assist in 

the preparation of that comparison. We describe later that 

there can be many different kinds of preparation required in 

order to achieve that ultimate like-for-like comparison. 

Scoreboarding encompasses all of that. 

 

 
Figure 4.  models integrated with scoreboard 

It is recognized that two opposing schools of thought exist in 

the industry. One defense of the 'scoreboard encompasses all' 

approach, is that the collection of {models, transfer functions, 

data preparation, scoreboard data structure} are better built as 

one reusable component, than N separate parts with a fairly 

complex interconnect. This enables easy vertical or horizontal 

reuse. Another argument for the inclusive approach is a project 

planning one: the scoreboard is a complex piece of 

development, not just an array of handles. If dogma prevails, 

then try referring to it as a Scoreboard subsystem, or as a 

Checker (containing models and scoreboards) 

 

C. Scoreboard versus 'Checker' 

Various elements of a modern verification environment are 

referred to as 'checkers'. This author's definition of a checker 

focuses on its output: the pass or fail status of a simulation. All 

kinds of checker can cause a fail outcome. 

 

Scoreboards are indeed checkers: they take in two or more 

inputs and check them against each other for consistency and 

expected cause and effect. 

 

Checkers can also exist within a single interface VIP, 

performing self-consistency checks while that VIP abstracts a 

transaction from the pin transitions it observes. 

 

Checkers can also exist within a pin interface, often coded as 

assertions, performing low-level protocol checks - request is 

followed by acknowledge, for example. 

 

Checkers can also exist within predictive models such as a 

register model: the user sets a predicted model value, and 

whenever the bus reports a read/write to a matching address, 

the data value is compared with the model. 

 

All kinds of checker are intended to be standalone, passive, 

reusable. Scoreboards, together with the others mentioned, 

provide a comprehensive self-checking testbench from low-

level pin validation to highest-level expectations. 

 

D. Scoreboard Methodology vs Bespoke Design 

Is it possible to have a 'methodology' for Scoreboard creation? 

Methodology is borne out of practice, leading to best practice, 

leading to extracted patterns and documented techniques. 

 

Each DUT certainly requires a different approach, and so at 

first the problem of scoreboard architecture and design appears 

to need a bespoke design approach. 

 

We will explore here, how the typical testbench development 

cycle can experience pitfalls along the way while adding 

functionality to the scoreboard. We claim that an overly 

bespoke incremental approach may be counter-productive, and 

that a methodology-driven approach, hooking up a set of basic 

predictable building blocks as an approximation of DUT 

behavior, may provide fastest time-to-bugs and time-to-

closure, even though it is not customized tightly for all 

nuances of our DUT. More on this paradox as we go. 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



III. EXAMPLE DUT / SCOREBOARD 

We define the following example module design in order to 

illustrate concepts relating to scoreboard design considerations 

and implementations. The design is a simplified representation 

of a computation module that possesses all the required 

features for illustration of the various aspects of a Scoreboard. 

 

The design has two data input interface channels: A and B, 

one command input interface C, and two output interfaces X 

and Y. The DUT also has a configuration register CFG written 

from some control bus. The behavior of 'output' interfaces X 

and Y depends on the values of inputs A and B, the command 

input C, and the value of the configuration register CFG, and 

the cumulative value of previous stimulus on the DUT. 

 

 
Figure 5.  example DUT connections 

Inputs A and B are two instances of the same interface, the 

transaction-level abstraction of which consisting of a data 

value and other fields. At the pin level, the required clocking, 

enabling and handshaking are implemented, but are not of 

concern here. 

 

Input C is a command interface, also with relevant pin-level 

handshake, directing the design to perform computations on 

the traffic on inputs A and B leading to outputs X and Y. 

 

Outputs X and Y are abstracted to a data value and other 

attribute and status fields. 

 

Configuration CFG consists of some hard-coded configuration 

values and some software-writeable registers on an 

appropriate bus, which have an effect on the DUT's processing 

of data A and B and command C. 

 

IV. SCOREBOARD DESIGN CONSIDERATIONS 

There are several major behavioral dimensions to a typical 

scoreboard, we'll enumerate them and discuss in some detail 

how to implement our logic and storage. 

 

Along the way, we will build and refer to a scoreboard 

'language', like an assertion language which represents what 

capability we might want from our scoreboard data structure, 

which will help us to design it: 

 

A. Inputs and Outputs, Cause and Effect 

At the heart of Scoreboard design is the notion of 'cause' and 

'effect' as it relates to the design under test inputs and outputs.  

 

When defining our example DUT, we used the terms 'input' 

and 'output' loosely to refer to the overall direction of 

information flow across the DUT. Typically each interface on 

a DUT may consist of various groups of discrete input and 

output signals to form a handshake. 

 

In a typical testbench, a protocol agent will make sense of 

those low-level wires and deliver an abstract representation of 

that transaction to the scoreboard. From the scoreboard's point 

of view as a 'model' observing and validating DUT behavior, 

the concept of what is 'stimulus' and what is 'response' may be 

important, and so each interface must be analyzed and 

designated as an abstracted DUT input, or an abstracted DUT 

output - as cause, or effect. 

 

A scoreboard's design begins with this taxonomy, as the 

choice and implementation of dataflows and temporary 

storage structures within the scoreboard depends on it. 

 

No matter what the architecture of the scoreboard, the overall 

flow is always the same: observe some input, derive and store 

some expected output, time passes, observe some output,  

check it against stored expectation, pass or fail, repeat. 

 

In scoreboard 'language' terms, we can describe this basic 

functionality as: 'expect X at some future time', which also 

implies: 'at end, fail if any expected X was not matched' 

 

B. Temporal decoupling 

When making sense of 'cause' and 'effect' it is acknowledged 

that a scoreboard must deal with temporal decoupling of the 

various DUT behaviors that it can observe and evaluate. 

 

Typically, those behaviors do not arrive simultaneously. 

Rather, they arrive in sync with their respective protocol 

interfaces, which may be on different clock domains, or share 

the same clock signal but with a pipeline latency or n-clock 

delay with respect to an associated input. That delay may be 

variable depending on cumulative and environmental factors 

as well as the attributes of the current DUT traffic. 

 

 
Figure 6.  decoupled cause and effect 

 

 

 
 

 

 

 

 



It is worthwhile to start scoreboard design with the mindset 

that the 'cause' and 'effect' are completely decoupled, and that 

the 'effect' may arrive at any time after the 'cause' has been and 

gone, within its intended specification range. 

 

1) Multiple threads in scoreboard architecture 

One approach is to architect scoreboard data structures that 

can capture event 1 and all its related information, and then 

move on, and separately await event 2 which may arrive at 

some unspecified future time. Each update can trigger a 

comparison or a third thread can look for matches in the data 

structure, match them up and make sense of them, towards a 

pass/fail decision. 

 

 
Figure 7.  scoreboard threads 

In scoreboard 'language', we need the description 'expect X at 

some future time between N and M' where N and M can be an 

actual time period, a number of clock cycles, or a count of 

packets/beats/transfers, or some specific event, as appropriate 

to the protocol. A catch-all timeout is always useful to avoid 

the scoreboard filling up with unmatched X values without yet 

causing a fail and bailing out. 

 

C. Aggregation and Disaggregation 

A design may combine successive inputs on one or more 

interfaces, process them and generate an aggregated output, or 

it may do the opposite: split an input transaction into a burst of 

individual output items, each portion distributed across time or 

across multiple resources. Such is the nature of many bus and 

communications protocols. The aggregation can often be 

hierarchical; multiple levels, or split one way and recombined 

another. 

 

This means that there is no guarantee of a '1 input leads to 1 

output' criterion for scoreboard matching. If anticipated, it is 

best to start the design without any assumption of a 1-to-1 

mapping, and instead plan to have matching based on all 

required constituent parts being observed. 

 

The scoreboard can be designed to store either an expect for 

the aggregate object, which is incrementally satisfied by 

component parts as they are observed, or can store a set of 

expects for the component parts. For most situations one 

arrangement or the other will be necessitated by factors 

described below, or will just seem like the natural choice. 

 

Part of the architecture decision may be guided by the 

protocol, and by the capabilities of the Verification IP for the 

protocol. It may have appropriate native support for 

fragmenting and reassembly of the data, so part of the job can 

be delegated to the agent by configuring or using the 

appropriate analysis port connection for aggregate or atomic 

data items as required. 

 

Some complicating factors can arise with transformations that 

that aggregate or disaggregate. In particular: strict vs variable 

order, predetermined vs incremental extent, and consecutive 

vs interleaved succession. See also 'Reverse Modeling' later. 

 

1) Aggregation: Order 

In the simple case, the component beats are in a strict 

predicted order, perhaps implicitly representing addresses, 

offsets, sub-addresses or lane positions, that increment, 

decrement, wrap around, or follow some other predetermined 

algorithmic progression. 

 

Order can also be variable, perhaps due to the far end of the 

protocol having a latency- or throughput-optimizing algorithm 

or an element of caching. In this case some identifying 

information within each data item will guide the reassembly or 

dispersal of portions of the whole transaction. We discuss 

more about general reordering concerns as they apply to 

scoreboarding later, but in this particular case, it is clear that 

the scoreboard must maintain the entire data structure 

internally until it is marked complete, and cannot simply use a 

queue to check/compare/pass/fail each individual data beat as 

in the strict order case. 

 

 
Figure 8.  aggregation order 

It is usual to define a method to encapsulate any mapping that 

is involved especially if the indexing can vary based on sizes, 

 

 
 



extents or offsets. That method can be within the scoreboard 

or, if shared with drivers and monitors, can be a helper method 

in the data item to avoid coding it in multiple components. 

 

2) Aggregation: Extent 

Extent refers to the number of data item portions that the 

combined data item is split into, or composed of. Extent may 

be a fixed value, configured in advance, specified per transfer 

or a completely variable value. 

 

In the simplest case, the extent is fixed by the protocol, or it 

may be predetermined by a configuration value for number of 

beats or size of enclosing packet, video frame, etc. 

 

A slightly more complex logic is required when the extent can 

be predetermined on a compound transaction by transaction 

basis, for example for a burst-based bus protocol where the 

transaction specifies how many fixed beats will occur. 

 

Finally, a variable extent may be required by the protocol; i.e. 

the extent is unknown even as the transfer is occurring, and so 

the scoreboard structures and logic must anticipate several 

possible outcomes for how to reassemble the data and when to 

recognize boundaries. 

 

3) Aggregation: Succession 

The final factor that can influence or complicate scoreboard 

architecture for a data aggregation or disaggregation path 

across the DUT, is the succession of data beats on the 

interface. A source transaction can be split into a number of 

destination beats that are normally guaranteed to be 

consecutive data items on the interface, which makes for easy 

reassembly and checking. 

 

 

Figure 9.  interleaved aggregation 

In other cases, the split data items could be non-consecutive, 

interleaved with items from another queued transaction or with 

items from other channels, or with maintenance data 

orthogonal to and interspersed within the main traffic flow. 

 

Again, some of these cases can be mitigated by relying on the 

monitoring verification IP to split and report only the traffic of 

interest so that the scoreboard does not need to apply further 

filtering. The cases of multiple channels, interleaved or 

arbitrated data beats are still matters for the scoreboard to 

untangle. We look more at arbitrated data later under 

'Modeling', but here suffice to say that the scoreboard data 

structure will need to accommodate multiple streams of 

reassembly, and sometimes deal with ambiguity when a data 

item comes in that could match more than one stream's 

expected data. Arrangements for tentative matching and 

backtracking may have to be made. 

 

D. Multiple Heterogeneous Interfaces 

So our scoreboard data structure may already be quite a bit 

more complicated than just a queue or associative array and 

we have only really considered two inputs - one from the 

DUT's input A and one from the DUT's output X. Of course a 

scoreboard may have to process more than just two inputs 

from the DUT. There are always at least two, in keeping with 

the 'cause' and 'effect' paradigm, but for any given DUT there 

may be multiple causes and multiple effects. 

 

In between those inputs and outputs, there is a myriad of 

possibilities of DUT behavior - combining inputs, selecting 

among inputs, feeding back from outputs and cumulative state, 

storage and delay of some inputs for later use. Very rarely 

does a DUT follow a single path from one input to one output. 

 

To accommodate this, the scoreboard architect has one major 

decision to make and several minor ones. 

 

The first level of design is to determine whether one 

scoreboard is required, or if is possible to divide and conquer 

by having more than one. The following scenarios allow us to 

consider multiple, smaller scoreboards: 

 

1) More than one independent path across the DUT 

Although rather unlikely, a DUT with multiple independent 

paths can have multiple independent scoreboards - there is no 

need to combine them into one if no awareness across those 

domains is required. 

 

Even if there is some interdependence, but mostly the 

functionality is independent, some design simplifications can 

be made by having one top-level scoreboard which channels 

the data according to shared concerns to a number of sub-

scoreboards each operating independently. Use every 

opportunity to divide and conquer in this way when regular or 

independent structures can be identified. 

 

 
 

 



 
Figure 10.  hierarchical scoreboards for independent paths 

2) Shared midpoint interface 

Divide and conquer also applies if the multiple interfaces of 

the DUT include a common 'midpoint' interface, for example 

input A leads to intermediate output X and then is further 

processed to create final output Y. The intermediate output X 

could indicate that the DUT is a subsystem consisting of two 

or more sub-modules in series. The intermediate interface may 

not be available on DUT pins, but available in a white-box 

fashion via internal interface, for example an identified 

coherency point. 

 

In all of these cases we have the opportunity to split the 

scoreboard into a chain of two, one between A and X and a 

separate scoreboard between X and Y. Neither need know 

about the other, although they may share some orthogonal 

concerns such as configuration. 

 
Figure 11.  chained scoreboards 

The opportunity for streamlined simplified design and 

enhanced reuse should never be ignored, always investigated 

 

3) Micro-architecture decisions 

Once the broad architecture is identified, there may still be 

multiple interfaces feeding one scoreboard. This informs the 

shape of the resulting data structures. The following design 

steps will help: 

 

 Identify which interfaces are orthogonal concerns. 

 Identify the dominant paths between interfaces. 

 Identify causes and effects, and plan which reported 

data can be acted upon immediately, which must be 

stored in fifos for later processing or matching. 

 Identify any daemon threads required to maintain 

internal scoreboard data checking flows. 

 Check against the test plan and coverage plan to 

ensure your data structure can support the required 

checks and the data scenarios that will require them. 

 

E. Multiple Homogeneous Channels 

One special case of the 'multiple interfaces' geometry is the 

case where multiple peer instances of the same interface type 

are found, i.e. multiple channels. This situation requires 

several design considerations - the mapping of input channels 

to outputs, selection, arbitration, and also structural 

considerations - is the number of channels a parameter, is a 

generic N-to-1 or N-to-M approach needed, and finally, a 

means to identify or track channel identity may be required if 

that is not coded in the transaction. 

 

For reuse, it is often more efficient to consider the N-to-M 

mapping case as a generic problem to be solved in the 

scoreboard architecture, even if N or M are known quantities 

for the current project. A hard-coded arrangement optimized 

for two heterogeneous channels takes about the same amount 

of typing and thinking as an N-channel arrangement, but the 

latter will be more reusable and arguably less prone to coding 

errors or latent bugs. 

 

1) Preserving metadata in scoreboard 

One aspect of multi-channel is the need to identify items by 

their channel identity during downstream scoreboard 

processing. The source channel number would not normally be 

encoded within a protocol data item. Depending on the hookup 

to multiple channel monitors, and the processing requirements 

of the scoreboard, the data items may be merged into a single 

data structure. In order to preserve source channel number, we 

must either store only in a per-channel data structure, or use 

composition to store a wrapper identifying the source of an 

item; otherwise we need to insist that extra information is 

added to the base item object. Each of these techniques has 

limitations and pitfalls in management of the data. Storing in 

separate data structures loses any concept of 'order' across the 

channels, which may be important for downstream processing. 

Insisting on extra attributes added to the data item is not 

always possible; it may come from third party verification IP. 

 

2) Carrier object approach for metadata 

A good solution for both advanced scoreboard functionality 

and preserving good OOP encapsulation and separation of 

concerns, is to create a wrapper object: a 'carrier' for the data 

item, which can also contain the source channel number. In 

fact this technique can be used for a number of scoreboard 

requirements that we have already identified in order to 

implement and convey the 'language' of the scoreboard checks. 

 

 
 

 

 

 
 

 

 

 

 



 
Figure 12.  scoreboard with metadata 

One other example of the meta-data we may wish to record is 

a record of the data item's arrival time, or an expiry time by 

which that item must be checked off, or any other timeout-

related information. The scoreboard could keep separate data 

structures for all those bits of meta-data, but sometimes the 

carrier object is a clean way forward. The base scoreboard 

data structure then contains only carrier objects, which in turn 

reference the underlying data object instance. 

 

This approach introduces some complications too. In OOP 

terms there is more to do to ensure instances are copied, not 

referenced, and to ensure clean garbage collection of past-used 

instances is possible in the simulator. Memory leaks may be 

common during development. Again, a predefined component 

approach may be useful here, where the mechanics of 

populating the data structures is taken care of by a tried and 

tested reusable API into which the data items, and the carrier 

meta-data, are slotted. 

 

F. Reordering / Out of Order Processing 

When dealing with a DUT that has multiple channels of traffic 

flowing through it, there is the possibility of a more complex 

processing order, compared to a linear DUT. 

 

 

Figure 13.  sdram controller reordering 

Controllers for communications or memory interfaces are 

optimized for maximum performance, and this usually means 

achieving maximal occupancy of the bottleneck resource. This 

kind of DUT will make selection from available traffic to be 

processed partly based upon its cumulative state knowledge of 

the resource being optimized. This will often lead to re-

ordering, and so of course the scoreboard needs to be aware of 

that, to some extent. There is always a design decision to be 

made about accuracy: either the scoreboard will predict the 

'next expected' data item based on modeling accurately the 

reordering behavior, or it will adopt a more relaxed approach 

which posts all expected data in a structure, with the proviso 

that it is all matched in some arbitrary order, perhaps within 

time bounds. 

 

To make this decision: refer to the verification plan. What 

aspects of the (re)ordering are items to be tested? Which 

component is responsible for that checking: the protocol 

monitor, or the scoreboard? Is the measurement and checking 

of reordering a protocol validity concern (i.e. if a particular 

ordering algorithm is not followed, the DUT is broken) or is it 

only a performance concern (there are multiple valid 

orderings, but some make more optimized use of resources 

than others)? If the check is part of the scoreboard spec, it 

could have a fundamental effect on architectural choices, so 

ensure the verification plan is complete up front and is 

implemented by your choices. 

 

G. Dropped Packets and QoS 

Another protocol-specific functionality/performance aspect 

that may influence choice of scoreboard architecture is the 

ability to handle dropped packets. A communications protocol 

may tolerate errors or missing expected packets and may have 

a retry mechanism for clearing up afterwards. This scheme has 

an implication for the scoreboard. The 'expect X' that was 

posted in the scoreboard data structure may be satisfied within 

the expected time, or may not. The scoreboard needs to 

determine whether that constitutes a 'fail' or whether the 

protocol allows for recovery of that dropped item. 

 

In this case, the scoreboard may have a separate helper thread 

that cleans up the data structure based on allowable packet 

loss. There is no point in the packet remaining in the structure 

as it would cause a false negative at end of simulation. Also, if 

it did arrive as a 'stray' input after the expected time, we would 

want to be notified of that as a 'fail' too. 

 

Some commentators suggest that whether or not a data packet 

is 'droppable' can be encoded up front from the test stimulus, 

perhaps with a flag within the data structure. It is more likely, 

however, that the scoreboard should encode an algorithm 

measuring this effect as a 'performance' metric and checking 

that it is within allowable bounds. 

 

Any Quality-of-service metric can be gathered incrementally, 

or statistics stored for processing at end of test. We will 

discuss Performance measurement in more detail shortly. 

 

H. Orthogonal Concerns 

Having covered architectural aspects of the main flows of 

traffic across the DUT (and hence across the scoreboard) there 

 



are several orthogonal concerns that a scoreboard needs 

awareness of to make the right checking decisions. 

 

1) Configuration 

While hard configuration can be coded into the logic of the 

scoreboard affecting all operation, soft configuration is also a 

concern. If the DUT has configuration registers that affect 

processing, the scoreboard needs to know about that. In UVM 

methodology, the way to do that is to provide an abstracted 

register model, which can keep a shadow copy of the actual 

DUT configuration by hooking to a bus monitor and tracking 

register updates. As long as the scoreboard has a handle to the 

register model, it can frequently refer to the current configured 

values as it schedules expects of predicted values. 

 

This leads to a dilemma: what to do when configuration 

changes while there is traffic inflight. It is not possible or 

desirable to model register bit updates in a clock-accurate 

manner - the register model may be out of sync with the 

'effect' of that register bit inside the DUT by plus or minus 

several clock cycles. More on 'uncertainty' follows shortly. 

 

2) Low-power modes and clocking 

Many DUTs have power and clock management as an 

orthogonal concern. During the lifetime of a simulation, mode 

changes may affect the flow of traffic across the DUT, again 

giving rise to uncertainty in scoreboard matching, if data is 

dropped or resent. 

 

Changes in clocking should be abstracted out by the monitors 

feeding the scoreboard, but they may be accompanied by a 

period of recovery where behavior is different from normal. A 

good approach is to relax the scoreboard's checking if possible 

during such a transition. 

 

3) Reset 

Similarly, reset provides a number of challenges. The initial 

reset at start of simulation requires the scoreboard to be 

primed for operation. There may be a need to mask or ignore 

some traffic at this time. Some protocols may have a 

calibration or training phase during which specialized traffic is 

passed, that may or may not be reconcilable in the scoreboard. 

 

4) Error injection 

A common requirement for communications protocol 

testbenches is to model the effects of known error injection. If 

the verification IP has this capability or if it is provided via a 

specialized interface which can perturb normal traffic, then it 

is usual for the scoreboard to have a mask capability so that it 

does not fail the simulation for 'correct' handling of the error 

situation. Error injection is a specialized area and deserving of 

a paper in its own right. 

 

I. Modeling DUT State 

We have established that our particular use of the word 

'scoreboard', and the focus of this paper,  is the 'complete 

scoreboarding activity' including any modeling or prediction 

or transfer functions that are inextricably bound with the 

scoreboard data structures and which require design 

engineering effort under the banner of 'scoreboard design, 

development and debug'. So what kinds of concerns do we 

need to have solutions for in a scoreboard design? 

 

1) Accuracy and Uncertainty 

A recurring theme on the modeling side of the effort is the 

accuracy of the scoreboard. In a complex DUT which reorders 

traffic from its inputs to its outputs, the specification and 

algorithms for such re-ordering may be complex, or may be as 

simple as 'keep the memory bandwidth fully utilized'. 

 

A scoreboard designer must create an abstraction that 

represents the specification being verified, and somehow 

codifies the main rules against which the DUT's behavior and 

performance can be measured. But there they need to know 

when to stop. A scoreboard only needs to be as accurate as the 

specification it is measuring - a frequent pitfall is to build in 

over-accurate prediction which leads to the overall checker 

becoming brittle and needing much debug and many iterations 

during attempts to bring up the whole DUT/testbench quality. 

 

2) Modeling Uncertainty 

Several of the areas discussed above as 'orthogonal concerns' 

alluded to the need to model uncertainty in the scoreboard. 

 

In the simple case, simulation starts, traffic flows, each traffic 

item has a predictable measurement and check in the 

scoreboard, at simulation end all checks are complete and 

nothing is outstanding. 

 

 
Figure 14.  modeling uncertainty 

When any configuration changes, mode changes, regular 

calibration/training phases, resets or error injection/recovery is 

involved along the way, disrupting the normal flow of traffic 

cause and effect, some logic is required in the scoreboard to 

accommodate that. 

 

As ever, it is best to anticipate such a requirement upfront and 

not wait for the test suite to be developed that introduces that 

additional complexity. 

 

 



If the 'carrier object' approach we described earlier is used, 

additional metadata can be attributed to as-yet-unmatched data 

items in the scoreboard. One simple approach to modeling 

uncertainty is to tag data items that were scheduled during a 

known timeframe prior to, within, and after the 'change event', 

with an attribute that informs the subsequent checking to apply 

some 'forgiveness' in the event of mismatch, or timed out or 

dropped packets. Otherwise they will eventually cause a fail 

when they time out or at end of simulation they remain 

unmatched. 

 

Without a metadata capability as above, the simplest option is 

to turn comparison off and flush out the data structures 

whenever a change event occurs. 

 

The exact approach may be protocol specific but there is 

opportunity for a generic scoreboard 'language' and library of 

modular code to provide this function as a generic or template 

implementation. 

 

3) Arbitrated Priorities 

Wherever there are multiple channel inputs and N-to-1 

selection in a DUT, there is inevitably an arbitration algorithm 

as part of the specification to be verified. In many cases, the 

arbitration is programmable, mostly because the designers do 

not know what the required fairness and priority criteria are 

until the software layer exercises real world traffic. 

 

So we have an often complex arbiter, choosing which channel 

of traffic gets to use a shared resource next, based perhaps on 

programmable priorities per channel, or round robin versus 

priority modes, or high-priority overrides embedded even in 

the input traffic, or other pluggable arbitration schemes. 

 

A scoreboard needs a strategy for how to deal with that. There 

are several possible strategies, but only two valid ones: all or 

nothing. We must either (1) model the arbitration exactly and 

predict the output precisely, or (2) model the overall 'fairness' 

criteria for throughput and latency per channel, and measure 

reality against those rules, leaving the beat by beat prediction 

relaxed. 

 

 
Figure 15.  relaxed arbitration checking 

This author prefers the latter scheme, because exact modeling 

hits the 'accuracy' issues mentioned earlier, and can lead to 

debug gridlock during bringup, when many bugs are found in 

the scoreboard, each requiring a patch to the model. Also, it is 

reasonable to use other techniques for addressing the arbiter 

verification portion of a test plan, such as formal / assertions, 

and not just rely on fragile procedural code and hitting 

coverage points. 

 

So what is meant by 'relaxed prediction'? If a scoreboard is not 

going to model accurately and predict the one and only correct 

output, it must gather all the 'possibly correct' outputs and 

store them temporarily, adding attributes to that storage 

relating to the arbitration if possible, so that it can eventually 

check those items off as 'done', and measure the arbitration 

fairness as if it were a performance measurement rather than a 

strict pass or fail.   

 

This functionality is related to the 'uncertainty modeling' 

already discussed. It is evident that it is as important to design 

up front how a scoreboard is going to relax checking as much 

as how it is going to enforce checking. 

 

4) Cumulative State 

When the DUT has cumulative state that affects native 

operation, this will require modeling also. If it only affects 

performance optimization, we discuss that shortly. 

 

One important point is that every cumulative state has to begin 

somewhere, and so some resynchronization may be required 

after major change events such as reset, again involving 

specifying regions of uncertainty or relaxed checking until the 

state is known. 

 

J. Performance 

Performance verification is often considered somehow 

'different' from Functional Verification, and often separate 

components are designed and created specifically to equip a 

test environment with performance measurements and reports. 

 

A good scoreboard will have the means to make those 

measurements within. After all: they usually boil down to the 

following categories: bandwidth on an interface, latency 

across interfaces, and number of packets through / number of 

packets dropped or retried. All of these statistics are 

immediately accessible to the scoreboard by definition. Indeed 

the scoreboard will often measure latency as part of its time-

bound matching algorithms between observed inputs and 

outputs. 

 

All that is required to be added is the relevant post-simulation 

reporting of performance characteristics: utilization, 

throughput, percentage hit rates, quality of service, percentage 

of optimization opportunities missed. 

 

It is often suggested to design a separate Performance monitor 

for such measurements, although they share a lot of underlying 

 



logic with the scoreboard and so simulation performance can 

be optimized by leveraging that. 

 

One approach is to have the scoreboard emit objects for 

further analysis by an external performance monitor that 

depends on the scoreboard. Vertical reuse is still possible if 

performance monitoring is required at full-chip level for 

example, it just requires all the dependent components 

(monitors, scoreboard and performance monitor) rather than a 

single entity. 

 

K. Coverage 

One often overlooked aspect of scoreboard design is support 

for Functional Coverage. Each individual interface connection 

can have its own coverage criteria defined and recorded, 

including some cross-coverage amongst its constituent 

attributes. However, cross-coverage cannot span time, so it is 

not possible to define covergroups from one transaction on 

interface A to another on interface X some clocks later. 

 

This is where the scoreboard comes in - it is in the unique 

position of requiring storing of transaction A and transaction 

X internally, arriving at different times, and checking them off 

against each other. When it does that, it has a simultaneous 

pair of related transactions that can have some significance to 

Functional Coverage as defined in our test plan. The two (or 

more) transactions can be combined into a composite pair 

object containing instances of both parties. This object can 

have its own native coverpoints and cross-coverage, and is 

emitted and triggered by the scoreboard. 

 

 
Figure 16.  coverage output from scoreboard 

The significance is two-fold: first, we now have a mechanism 

to trigger a desired cross-coverage of a transaction A with one 

particular attribute and a related transaction X with some other 

attribute, and secondly and more importantly: the validation of 

that functional coverage point as being meaningful by virtue 

of the fact that actual traffic crossed the DUT using those 

measured values. This aspect of functional coverage is often 

overlooked: coverpoints of configuration attributes or register 

settings, for example, can be measured, hit, and yet be 

completely vacuous unless they are backed up by evidence 

that actual traffic flowed through the DUT while those 

attributes were in effect. Scoreboard-generated coverage is 

more sincere! 

 

V. SUMMARY 

There is not a lot of written advice in our industry on the topic 

of Scoreboarding, in fact in this short paper we have already 

covered more depth and more aspects of scoreboard 

architecture than in the cumulative text of any of the 

verification books on one our typical bookshelves. 

 

There is so much more depth that could be covered. The 

scoreboard is at the heart of the self-checking testbench - the 

components around it merely abstract the problem of 

individual pins wiggling, clocking, handshaking, so that the 

scoreboard can do checks and comparisons at a high level.  

 

Patterns have yet to emerge to address design and coding of 

this area, ad hoc design and coding has prevailed. Some 

example modular solutions exist [4] [5] but most of the 

innovation is being done in SoC design houses. 

 

We have developed solutions that may lead to standardized 

methodology in this area, we encourage their documentation. 

In the second part of this paper, we describe a library and 

toolkit of technology, design techniques, patterns, modular 

code, and advice on an approach to the scoreboard 

development process in a project context, in order to provide 

solutions for all the situations we describe in this first part. 

 

That part of a verification project which is entitled 'develop 

and debug' scoreboard covers so much more than just selection 

and implementation of a data structure. Architect that 

'scoreboard subsystem' properly - paying attention to modeling 

of the data patterns in your DUT - and it will become a useful 

tool to assist in your quest for bugs in that DUT. 
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