
Keeping Score
Part 1 of 2 - Architectural Considerations for Scoreboard Design

Gordon Allan

Verification Methodologist

Mentor Graphics Corp

Fremont, California

gordon_allan@mentor.com

Abstract— Verification environments for today's module,

subsystem, and SoC DUTs are complex because the DUTs being

verified are increasingly complex.

Either the functions being performed in hardware are more

convoluted in algorithm or data aggregation/multiplexing, or

they are more general-purpose, configurable by software to

perform a multiplicity of varying tasks within a function domain,

or by parameterization to enable reuse in a variety of different

products or configurations of an end product.

The complexity is mitigated by techniques and methodologies,

some necessary: Constrained Random stimulus, Intelligent

Testbench Automation, Coverage-Driven Verification, and by

frameworks that assist the more rapid development and debug of

those techniques, for example the UVM.

However, one area of testbench complexity is only minimally

assisted by tools or OOP libraries: the development of

Scoreboards and related modeling components used to check

expected DUT behavior or output given arbitrary sets of inputs,

existing state of the DUT, configuration values, both in terms of

DUT parameters and soft configuration or current

register/memory state values.

The area of Scoreboarding may be the last remaining portion of

testbench design which relies on Verification Experience and

which cannot be solved by a one size fits all methodology.

So how can we accelerate the scoreboard design/development

process or at least help it keep pace with the more complex DUT

scenarios that we encounter?

In this, the first part of our Scoreboarding paper, we assist the

productive application of verification experience to the

architectural design of the Scoreboard portion of a verification

environment.

We do this by defining a number of architectural patterns which

require various possible topologies of the data comparison, which

to some extent can reflect the topologies found in dataflows

within the DUT, but with the intention of providing a modular

scoreboard design.

Keywords: scoreboard, checker, testbench architecture,

verification patterns, modeling, systemverilog, OOP, UVM

I. INTRODUCTION

This paper is the first of a two-part series on the topic of

"Keeping Score" and covers the architectural design

considerations for scoreboards.

The second half will provide examples of the most common

architectural arrangements using OOP and SystemVerilog

language features as required.

Scoreboarding problems can become as complex as the DUT

in question, with various combinations of the following

features:

 comparison that has to span time, not resolved instantly or

within the inbound protocol data, may require multiple

reports

 multiple interfaces, either homogeneous or heterogeneous,

contributing to the output, perhaps with config

parameterization

 out of order processing, depending on both input state and

cumulative DUT state, e.g. to optimize occupancy or

latency

 arbitrated priorities, with various generic arbitration or

custom selection mechanisms affecting predictability of

the DUT outcome

 data aggregation, subdivision, and reservation across time

and multiple stimulus, matching such schemes in the

design.

Often the challenge is to model just what is required to make

the 'pass/fail' comparison, and no more, otherwise the

scoreboard can easily grow more complex than the DUT.

When this happens, the scoreboard becomes brittle, and

requires maintenance, even after the original verification

engineer or team has moved on.

Evidence from this author's experience suggests a high

proportion of bugs found during the peak of the debug cycle

are scoreboard bugs, unless steps are taken to design a

scoreboard that is tolerant of variation, within the fixed

requirements that are to be verified. A modular architecture

reduces brittleness, and simplifies comprehension.

Sponsored by Mentor Graphics Corp

II. SCOREBOARD CONCEPTS

We begin with some definitions and a relative placement of

concepts to build upon:

A. Our Definition of a Scoreboard

A scoreboard is an element of the self-checking verification

environment, responsible for performing comparison tests on

observed behavior across two or more interfaces to the design

under test, in order to report conformance to the specification

and for gathering and storing all the data required in order to

perform those tests. It directly influences the pass or fail

outcome of the test. It is passive and vertically reusable.

Figure 1. Simple example 'textbook' scoreboard

1) Simplistic textbook definition

At the simplest level, a scoreboard is a data structure that

stores an expected value for a DUT interface port X based on

an observed value on another DUT port A. When the expected

value of X is finally observed, the stored value of X can be

validated, pass or fail processed, and the data structure readied

for future comparisons.

Bergeron[1] limits the definition of a scoreboard as 'the data

structure used to hold the expected data for ease of comparison

against the monitored output values' and advises developers to

consult established software engineering texts to choose

relevant structures for the design behavior at hand. He implies

that any transformation, consolidation, or preparation of data

before presenting it for storage/comparison is done outside of

the 'scoreboard' proper. Other authors (Iman[2] and

Palnitkar[3]) follow a similar line.

2) Limitations of simple scoreboard architecture

We contend that this simple model is only valid for the

minority of projects that satisfy the following three criteria: (1)

the data flow of the DUT is of a linear nature from port A to

port X, and (2) there exists a Golden Reference model or well-

defined Transfer Function model specification converting

traffic on input A to the corresponding output value on X, and

(3) the Verification team is as well versed in Software

Engineering and Data Structures technology as they are in

Hardware Design & Verification.

Only in this idealistic case can the scoreboard be a simple

store-and-compare data structure - comparing apples with

apples - observed X versus expected X. This model has

limitations which becomes increasingly apparent as we

explore typical requirements for data flow in a design.

3) More realistic definition

For today's real-world complex module and SoC subsystem

designs, we need better guidance in constructing the

checker/model/scoreboard subsystem of our verification

environment. Typical DUTs will apply much more convoluted

transformations from input A (and B, C,...) to output X (and

Y, Z,...) leading to some complex interactions between the

model/transfer functions (algorithms) and the data structure

requirements of the scoreboard (storage). It often becomes

impossible to separate the two concerns with a simple TLM

pipeline connecting them.

In the worst case, a project team will commence design and

coding with the expectation of simplistic scoreboard

architecture, and hit limitations, creating spaghetti code along

the way to work around them.

Figure 2. In the real world, a scoreboard does so much more

We seek innovative ways to inform development teams and

equip them up front with a toolbox of architectural elements

which answer their questions as they develop their self-

checking testbench.

B. Scoreboard versus 'Reference Model'

Some designs have an available Golden Reference Model, that

is, a model which is trusted as an accurate implementation of

the specification, usually a behavioral implementation, not

necessarily a timing-accurate one.

1) Model instantated separately from scoreboard

Such a model is useful if it can be instantiated in the testbench

as part of an end-to-end scoreboarding / checking solution.

For a DUT with input A, B and output X, a golden model may

compute values of X for any A and B. As such it can be used

with a scoreboard to observe the actual A, B, X reports from

the DUT interface monitors and check them against the model.

Figure 3. inline modeling outside scoreboard

Some would say that the model in this case lies outside the

scoreboard, so that the scoreboard is simplified to comparing

like-for-like, i.e. actual observed X versus expected X.

2) Model tightly bound to scoreboard

This author prefers to think of the model as an element

plugged into the scoreboard, such that the overall component

we call Scoreboard (or Checker) is really a dotted line around

all storage/comparison elements plus all elements that assist in

the preparation of that comparison. We describe later that

there can be many different kinds of preparation required in

order to achieve that ultimate like-for-like comparison.

Scoreboarding encompasses all of that.

Figure 4. models integrated with scoreboard

It is recognized that two opposing schools of thought exist in

the industry. One defense of the 'scoreboard encompasses all'

approach, is that the collection of {models, transfer functions,

data preparation, scoreboard data structure} are better built as

one reusable component, than N separate parts with a fairly

complex interconnect. This enables easy vertical or horizontal

reuse. Another argument for the inclusive approach is a project

planning one: the scoreboard is a complex piece of

development, not just an array of handles. If dogma prevails,

then try referring to it as a Scoreboard subsystem, or as a

Checker (containing models and scoreboards)

C. Scoreboard versus 'Checker'

Various elements of a modern verification environment are

referred to as 'checkers'. This author's definition of a checker

focuses on its output: the pass or fail status of a simulation. All

kinds of checker can cause a fail outcome.

Scoreboards are indeed checkers: they take in two or more

inputs and check them against each other for consistency and

expected cause and effect.

Checkers can also exist within a single interface VIP,

performing self-consistency checks while that VIP abstracts a

transaction from the pin transitions it observes.

Checkers can also exist within a pin interface, often coded as

assertions, performing low-level protocol checks - request is

followed by acknowledge, for example.

Checkers can also exist within predictive models such as a

register model: the user sets a predicted model value, and

whenever the bus reports a read/write to a matching address,

the data value is compared with the model.

All kinds of checker are intended to be standalone, passive,

reusable. Scoreboards, together with the others mentioned,

provide a comprehensive self-checking testbench from low-

level pin validation to highest-level expectations.

D. Scoreboard Methodology vs Bespoke Design

Is it possible to have a 'methodology' for Scoreboard creation?

Methodology is borne out of practice, leading to best practice,

leading to extracted patterns and documented techniques.

Each DUT certainly requires a different approach, and so at

first the problem of scoreboard architecture and design appears

to need a bespoke design approach.

We will explore here, how the typical testbench development

cycle can experience pitfalls along the way while adding

functionality to the scoreboard. We claim that an overly

bespoke incremental approach may be counter-productive, and

that a methodology-driven approach, hooking up a set of basic

predictable building blocks as an approximation of DUT

behavior, may provide fastest time-to-bugs and time-to-

closure, even though it is not customized tightly for all

nuances of our DUT. More on this paradox as we go.

III. EXAMPLE DUT / SCOREBOARD

We define the following example module design in order to

illustrate concepts relating to scoreboard design considerations

and implementations. The design is a simplified representation

of a computation module that possesses all the required

features for illustration of the various aspects of a Scoreboard.

The design has two data input interface channels: A and B,

one command input interface C, and two output interfaces X

and Y. The DUT also has a configuration register CFG written

from some control bus. The behavior of 'output' interfaces X

and Y depends on the values of inputs A and B, the command

input C, and the value of the configuration register CFG, and

the cumulative value of previous stimulus on the DUT.

Figure 5. example DUT connections

Inputs A and B are two instances of the same interface, the

transaction-level abstraction of which consisting of a data

value and other fields. At the pin level, the required clocking,

enabling and handshaking are implemented, but are not of

concern here.

Input C is a command interface, also with relevant pin-level

handshake, directing the design to perform computations on

the traffic on inputs A and B leading to outputs X and Y.

Outputs X and Y are abstracted to a data value and other

attribute and status fields.

Configuration CFG consists of some hard-coded configuration

values and some software-writeable registers on an

appropriate bus, which have an effect on the DUT's processing

of data A and B and command C.

IV. SCOREBOARD DESIGN CONSIDERATIONS

There are several major behavioral dimensions to a typical

scoreboard, we'll enumerate them and discuss in some detail

how to implement our logic and storage.

Along the way, we will build and refer to a scoreboard

'language', like an assertion language which represents what

capability we might want from our scoreboard data structure,

which will help us to design it:

A. Inputs and Outputs, Cause and Effect

At the heart of Scoreboard design is the notion of 'cause' and

'effect' as it relates to the design under test inputs and outputs.

When defining our example DUT, we used the terms 'input'

and 'output' loosely to refer to the overall direction of

information flow across the DUT. Typically each interface on

a DUT may consist of various groups of discrete input and

output signals to form a handshake.

In a typical testbench, a protocol agent will make sense of

those low-level wires and deliver an abstract representation of

that transaction to the scoreboard. From the scoreboard's point

of view as a 'model' observing and validating DUT behavior,

the concept of what is 'stimulus' and what is 'response' may be

important, and so each interface must be analyzed and

designated as an abstracted DUT input, or an abstracted DUT

output - as cause, or effect.

A scoreboard's design begins with this taxonomy, as the

choice and implementation of dataflows and temporary

storage structures within the scoreboard depends on it.

No matter what the architecture of the scoreboard, the overall

flow is always the same: observe some input, derive and store

some expected output, time passes, observe some output,

check it against stored expectation, pass or fail, repeat.

In scoreboard 'language' terms, we can describe this basic

functionality as: 'expect X at some future time', which also

implies: 'at end, fail if any expected X was not matched'

B. Temporal decoupling

When making sense of 'cause' and 'effect' it is acknowledged

that a scoreboard must deal with temporal decoupling of the

various DUT behaviors that it can observe and evaluate.

Typically, those behaviors do not arrive simultaneously.

Rather, they arrive in sync with their respective protocol

interfaces, which may be on different clock domains, or share

the same clock signal but with a pipeline latency or n-clock

delay with respect to an associated input. That delay may be

variable depending on cumulative and environmental factors

as well as the attributes of the current DUT traffic.

Figure 6. decoupled cause and effect

It is worthwhile to start scoreboard design with the mindset

that the 'cause' and 'effect' are completely decoupled, and that

the 'effect' may arrive at any time after the 'cause' has been and

gone, within its intended specification range.

1) Multiple threads in scoreboard architecture

One approach is to architect scoreboard data structures that

can capture event 1 and all its related information, and then

move on, and separately await event 2 which may arrive at

some unspecified future time. Each update can trigger a

comparison or a third thread can look for matches in the data

structure, match them up and make sense of them, towards a

pass/fail decision.

Figure 7. scoreboard threads

In scoreboard 'language', we need the description 'expect X at

some future time between N and M' where N and M can be an

actual time period, a number of clock cycles, or a count of

packets/beats/transfers, or some specific event, as appropriate

to the protocol. A catch-all timeout is always useful to avoid

the scoreboard filling up with unmatched X values without yet

causing a fail and bailing out.

C. Aggregation and Disaggregation

A design may combine successive inputs on one or more

interfaces, process them and generate an aggregated output, or

it may do the opposite: split an input transaction into a burst of

individual output items, each portion distributed across time or

across multiple resources. Such is the nature of many bus and

communications protocols. The aggregation can often be

hierarchical; multiple levels, or split one way and recombined

another.

This means that there is no guarantee of a '1 input leads to 1

output' criterion for scoreboard matching. If anticipated, it is

best to start the design without any assumption of a 1-to-1

mapping, and instead plan to have matching based on all

required constituent parts being observed.

The scoreboard can be designed to store either an expect for

the aggregate object, which is incrementally satisfied by

component parts as they are observed, or can store a set of

expects for the component parts. For most situations one

arrangement or the other will be necessitated by factors

described below, or will just seem like the natural choice.

Part of the architecture decision may be guided by the

protocol, and by the capabilities of the Verification IP for the

protocol. It may have appropriate native support for

fragmenting and reassembly of the data, so part of the job can

be delegated to the agent by configuring or using the

appropriate analysis port connection for aggregate or atomic

data items as required.

Some complicating factors can arise with transformations that

that aggregate or disaggregate. In particular: strict vs variable

order, predetermined vs incremental extent, and consecutive

vs interleaved succession. See also 'Reverse Modeling' later.

1) Aggregation: Order

In the simple case, the component beats are in a strict

predicted order, perhaps implicitly representing addresses,

offsets, sub-addresses or lane positions, that increment,

decrement, wrap around, or follow some other predetermined

algorithmic progression.

Order can also be variable, perhaps due to the far end of the

protocol having a latency- or throughput-optimizing algorithm

or an element of caching. In this case some identifying

information within each data item will guide the reassembly or

dispersal of portions of the whole transaction. We discuss

more about general reordering concerns as they apply to

scoreboarding later, but in this particular case, it is clear that

the scoreboard must maintain the entire data structure

internally until it is marked complete, and cannot simply use a

queue to check/compare/pass/fail each individual data beat as

in the strict order case.

Figure 8. aggregation order

It is usual to define a method to encapsulate any mapping that

is involved especially if the indexing can vary based on sizes,

extents or offsets. That method can be within the scoreboard

or, if shared with drivers and monitors, can be a helper method

in the data item to avoid coding it in multiple components.

2) Aggregation: Extent

Extent refers to the number of data item portions that the

combined data item is split into, or composed of. Extent may

be a fixed value, configured in advance, specified per transfer

or a completely variable value.

In the simplest case, the extent is fixed by the protocol, or it

may be predetermined by a configuration value for number of

beats or size of enclosing packet, video frame, etc.

A slightly more complex logic is required when the extent can

be predetermined on a compound transaction by transaction

basis, for example for a burst-based bus protocol where the

transaction specifies how many fixed beats will occur.

Finally, a variable extent may be required by the protocol; i.e.

the extent is unknown even as the transfer is occurring, and so

the scoreboard structures and logic must anticipate several

possible outcomes for how to reassemble the data and when to

recognize boundaries.

3) Aggregation: Succession

The final factor that can influence or complicate scoreboard

architecture for a data aggregation or disaggregation path

across the DUT, is the succession of data beats on the

interface. A source transaction can be split into a number of

destination beats that are normally guaranteed to be

consecutive data items on the interface, which makes for easy

reassembly and checking.

Figure 9. interleaved aggregation

In other cases, the split data items could be non-consecutive,

interleaved with items from another queued transaction or with

items from other channels, or with maintenance data

orthogonal to and interspersed within the main traffic flow.

Again, some of these cases can be mitigated by relying on the

monitoring verification IP to split and report only the traffic of

interest so that the scoreboard does not need to apply further

filtering. The cases of multiple channels, interleaved or

arbitrated data beats are still matters for the scoreboard to

untangle. We look more at arbitrated data later under

'Modeling', but here suffice to say that the scoreboard data

structure will need to accommodate multiple streams of

reassembly, and sometimes deal with ambiguity when a data

item comes in that could match more than one stream's

expected data. Arrangements for tentative matching and

backtracking may have to be made.

D. Multiple Heterogeneous Interfaces

So our scoreboard data structure may already be quite a bit

more complicated than just a queue or associative array and

we have only really considered two inputs - one from the

DUT's input A and one from the DUT's output X. Of course a

scoreboard may have to process more than just two inputs

from the DUT. There are always at least two, in keeping with

the 'cause' and 'effect' paradigm, but for any given DUT there

may be multiple causes and multiple effects.

In between those inputs and outputs, there is a myriad of

possibilities of DUT behavior - combining inputs, selecting

among inputs, feeding back from outputs and cumulative state,

storage and delay of some inputs for later use. Very rarely

does a DUT follow a single path from one input to one output.

To accommodate this, the scoreboard architect has one major

decision to make and several minor ones.

The first level of design is to determine whether one

scoreboard is required, or if is possible to divide and conquer

by having more than one. The following scenarios allow us to

consider multiple, smaller scoreboards:

1) More than one independent path across the DUT

Although rather unlikely, a DUT with multiple independent

paths can have multiple independent scoreboards - there is no

need to combine them into one if no awareness across those

domains is required.

Even if there is some interdependence, but mostly the

functionality is independent, some design simplifications can

be made by having one top-level scoreboard which channels

the data according to shared concerns to a number of sub-

scoreboards each operating independently. Use every

opportunity to divide and conquer in this way when regular or

independent structures can be identified.

Figure 10. hierarchical scoreboards for independent paths

2) Shared midpoint interface

Divide and conquer also applies if the multiple interfaces of

the DUT include a common 'midpoint' interface, for example

input A leads to intermediate output X and then is further

processed to create final output Y. The intermediate output X

could indicate that the DUT is a subsystem consisting of two

or more sub-modules in series. The intermediate interface may

not be available on DUT pins, but available in a white-box

fashion via internal interface, for example an identified

coherency point.

In all of these cases we have the opportunity to split the

scoreboard into a chain of two, one between A and X and a

separate scoreboard between X and Y. Neither need know

about the other, although they may share some orthogonal

concerns such as configuration.

Figure 11. chained scoreboards

The opportunity for streamlined simplified design and

enhanced reuse should never be ignored, always investigated

3) Micro-architecture decisions

Once the broad architecture is identified, there may still be

multiple interfaces feeding one scoreboard. This informs the

shape of the resulting data structures. The following design

steps will help:

 Identify which interfaces are orthogonal concerns.

 Identify the dominant paths between interfaces.

 Identify causes and effects, and plan which reported

data can be acted upon immediately, which must be

stored in fifos for later processing or matching.

 Identify any daemon threads required to maintain

internal scoreboard data checking flows.

 Check against the test plan and coverage plan to

ensure your data structure can support the required

checks and the data scenarios that will require them.

E. Multiple Homogeneous Channels

One special case of the 'multiple interfaces' geometry is the

case where multiple peer instances of the same interface type

are found, i.e. multiple channels. This situation requires

several design considerations - the mapping of input channels

to outputs, selection, arbitration, and also structural

considerations - is the number of channels a parameter, is a

generic N-to-1 or N-to-M approach needed, and finally, a

means to identify or track channel identity may be required if

that is not coded in the transaction.

For reuse, it is often more efficient to consider the N-to-M

mapping case as a generic problem to be solved in the

scoreboard architecture, even if N or M are known quantities

for the current project. A hard-coded arrangement optimized

for two heterogeneous channels takes about the same amount

of typing and thinking as an N-channel arrangement, but the

latter will be more reusable and arguably less prone to coding

errors or latent bugs.

1) Preserving metadata in scoreboard

One aspect of multi-channel is the need to identify items by

their channel identity during downstream scoreboard

processing. The source channel number would not normally be

encoded within a protocol data item. Depending on the hookup

to multiple channel monitors, and the processing requirements

of the scoreboard, the data items may be merged into a single

data structure. In order to preserve source channel number, we

must either store only in a per-channel data structure, or use

composition to store a wrapper identifying the source of an

item; otherwise we need to insist that extra information is

added to the base item object. Each of these techniques has

limitations and pitfalls in management of the data. Storing in

separate data structures loses any concept of 'order' across the

channels, which may be important for downstream processing.

Insisting on extra attributes added to the data item is not

always possible; it may come from third party verification IP.

2) Carrier object approach for metadata

A good solution for both advanced scoreboard functionality

and preserving good OOP encapsulation and separation of

concerns, is to create a wrapper object: a 'carrier' for the data

item, which can also contain the source channel number. In

fact this technique can be used for a number of scoreboard

requirements that we have already identified in order to

implement and convey the 'language' of the scoreboard checks.

Figure 12. scoreboard with metadata

One other example of the meta-data we may wish to record is

a record of the data item's arrival time, or an expiry time by

which that item must be checked off, or any other timeout-

related information. The scoreboard could keep separate data

structures for all those bits of meta-data, but sometimes the

carrier object is a clean way forward. The base scoreboard

data structure then contains only carrier objects, which in turn

reference the underlying data object instance.

This approach introduces some complications too. In OOP

terms there is more to do to ensure instances are copied, not

referenced, and to ensure clean garbage collection of past-used

instances is possible in the simulator. Memory leaks may be

common during development. Again, a predefined component

approach may be useful here, where the mechanics of

populating the data structures is taken care of by a tried and

tested reusable API into which the data items, and the carrier

meta-data, are slotted.

F. Reordering / Out of Order Processing

When dealing with a DUT that has multiple channels of traffic

flowing through it, there is the possibility of a more complex

processing order, compared to a linear DUT.

Figure 13. sdram controller reordering

Controllers for communications or memory interfaces are

optimized for maximum performance, and this usually means

achieving maximal occupancy of the bottleneck resource. This

kind of DUT will make selection from available traffic to be

processed partly based upon its cumulative state knowledge of

the resource being optimized. This will often lead to re-

ordering, and so of course the scoreboard needs to be aware of

that, to some extent. There is always a design decision to be

made about accuracy: either the scoreboard will predict the

'next expected' data item based on modeling accurately the

reordering behavior, or it will adopt a more relaxed approach

which posts all expected data in a structure, with the proviso

that it is all matched in some arbitrary order, perhaps within

time bounds.

To make this decision: refer to the verification plan. What

aspects of the (re)ordering are items to be tested? Which

component is responsible for that checking: the protocol

monitor, or the scoreboard? Is the measurement and checking

of reordering a protocol validity concern (i.e. if a particular

ordering algorithm is not followed, the DUT is broken) or is it

only a performance concern (there are multiple valid

orderings, but some make more optimized use of resources

than others)? If the check is part of the scoreboard spec, it

could have a fundamental effect on architectural choices, so

ensure the verification plan is complete up front and is

implemented by your choices.

G. Dropped Packets and QoS

Another protocol-specific functionality/performance aspect

that may influence choice of scoreboard architecture is the

ability to handle dropped packets. A communications protocol

may tolerate errors or missing expected packets and may have

a retry mechanism for clearing up afterwards. This scheme has

an implication for the scoreboard. The 'expect X' that was

posted in the scoreboard data structure may be satisfied within

the expected time, or may not. The scoreboard needs to

determine whether that constitutes a 'fail' or whether the

protocol allows for recovery of that dropped item.

In this case, the scoreboard may have a separate helper thread

that cleans up the data structure based on allowable packet

loss. There is no point in the packet remaining in the structure

as it would cause a false negative at end of simulation. Also, if

it did arrive as a 'stray' input after the expected time, we would

want to be notified of that as a 'fail' too.

Some commentators suggest that whether or not a data packet

is 'droppable' can be encoded up front from the test stimulus,

perhaps with a flag within the data structure. It is more likely,

however, that the scoreboard should encode an algorithm

measuring this effect as a 'performance' metric and checking

that it is within allowable bounds.

Any Quality-of-service metric can be gathered incrementally,

or statistics stored for processing at end of test. We will

discuss Performance measurement in more detail shortly.

H. Orthogonal Concerns

Having covered architectural aspects of the main flows of

traffic across the DUT (and hence across the scoreboard) there

are several orthogonal concerns that a scoreboard needs

awareness of to make the right checking decisions.

1) Configuration

While hard configuration can be coded into the logic of the

scoreboard affecting all operation, soft configuration is also a

concern. If the DUT has configuration registers that affect

processing, the scoreboard needs to know about that. In UVM

methodology, the way to do that is to provide an abstracted

register model, which can keep a shadow copy of the actual

DUT configuration by hooking to a bus monitor and tracking

register updates. As long as the scoreboard has a handle to the

register model, it can frequently refer to the current configured

values as it schedules expects of predicted values.

This leads to a dilemma: what to do when configuration

changes while there is traffic inflight. It is not possible or

desirable to model register bit updates in a clock-accurate

manner - the register model may be out of sync with the

'effect' of that register bit inside the DUT by plus or minus

several clock cycles. More on 'uncertainty' follows shortly.

2) Low-power modes and clocking

Many DUTs have power and clock management as an

orthogonal concern. During the lifetime of a simulation, mode

changes may affect the flow of traffic across the DUT, again

giving rise to uncertainty in scoreboard matching, if data is

dropped or resent.

Changes in clocking should be abstracted out by the monitors

feeding the scoreboard, but they may be accompanied by a

period of recovery where behavior is different from normal. A

good approach is to relax the scoreboard's checking if possible

during such a transition.

3) Reset

Similarly, reset provides a number of challenges. The initial

reset at start of simulation requires the scoreboard to be

primed for operation. There may be a need to mask or ignore

some traffic at this time. Some protocols may have a

calibration or training phase during which specialized traffic is

passed, that may or may not be reconcilable in the scoreboard.

4) Error injection

A common requirement for communications protocol

testbenches is to model the effects of known error injection. If

the verification IP has this capability or if it is provided via a

specialized interface which can perturb normal traffic, then it

is usual for the scoreboard to have a mask capability so that it

does not fail the simulation for 'correct' handling of the error

situation. Error injection is a specialized area and deserving of

a paper in its own right.

I. Modeling DUT State

We have established that our particular use of the word

'scoreboard', and the focus of this paper, is the 'complete

scoreboarding activity' including any modeling or prediction

or transfer functions that are inextricably bound with the

scoreboard data structures and which require design

engineering effort under the banner of 'scoreboard design,

development and debug'. So what kinds of concerns do we

need to have solutions for in a scoreboard design?

1) Accuracy and Uncertainty

A recurring theme on the modeling side of the effort is the

accuracy of the scoreboard. In a complex DUT which reorders

traffic from its inputs to its outputs, the specification and

algorithms for such re-ordering may be complex, or may be as

simple as 'keep the memory bandwidth fully utilized'.

A scoreboard designer must create an abstraction that

represents the specification being verified, and somehow

codifies the main rules against which the DUT's behavior and

performance can be measured. But there they need to know

when to stop. A scoreboard only needs to be as accurate as the

specification it is measuring - a frequent pitfall is to build in

over-accurate prediction which leads to the overall checker

becoming brittle and needing much debug and many iterations

during attempts to bring up the whole DUT/testbench quality.

2) Modeling Uncertainty

Several of the areas discussed above as 'orthogonal concerns'

alluded to the need to model uncertainty in the scoreboard.

In the simple case, simulation starts, traffic flows, each traffic

item has a predictable measurement and check in the

scoreboard, at simulation end all checks are complete and

nothing is outstanding.

Figure 14. modeling uncertainty

When any configuration changes, mode changes, regular

calibration/training phases, resets or error injection/recovery is

involved along the way, disrupting the normal flow of traffic

cause and effect, some logic is required in the scoreboard to

accommodate that.

As ever, it is best to anticipate such a requirement upfront and

not wait for the test suite to be developed that introduces that

additional complexity.

If the 'carrier object' approach we described earlier is used,

additional metadata can be attributed to as-yet-unmatched data

items in the scoreboard. One simple approach to modeling

uncertainty is to tag data items that were scheduled during a

known timeframe prior to, within, and after the 'change event',

with an attribute that informs the subsequent checking to apply

some 'forgiveness' in the event of mismatch, or timed out or

dropped packets. Otherwise they will eventually cause a fail

when they time out or at end of simulation they remain

unmatched.

Without a metadata capability as above, the simplest option is

to turn comparison off and flush out the data structures

whenever a change event occurs.

The exact approach may be protocol specific but there is

opportunity for a generic scoreboard 'language' and library of

modular code to provide this function as a generic or template

implementation.

3) Arbitrated Priorities

Wherever there are multiple channel inputs and N-to-1

selection in a DUT, there is inevitably an arbitration algorithm

as part of the specification to be verified. In many cases, the

arbitration is programmable, mostly because the designers do

not know what the required fairness and priority criteria are

until the software layer exercises real world traffic.

So we have an often complex arbiter, choosing which channel

of traffic gets to use a shared resource next, based perhaps on

programmable priorities per channel, or round robin versus

priority modes, or high-priority overrides embedded even in

the input traffic, or other pluggable arbitration schemes.

A scoreboard needs a strategy for how to deal with that. There

are several possible strategies, but only two valid ones: all or

nothing. We must either (1) model the arbitration exactly and

predict the output precisely, or (2) model the overall 'fairness'

criteria for throughput and latency per channel, and measure

reality against those rules, leaving the beat by beat prediction

relaxed.

Figure 15. relaxed arbitration checking

This author prefers the latter scheme, because exact modeling

hits the 'accuracy' issues mentioned earlier, and can lead to

debug gridlock during bringup, when many bugs are found in

the scoreboard, each requiring a patch to the model. Also, it is

reasonable to use other techniques for addressing the arbiter

verification portion of a test plan, such as formal / assertions,

and not just rely on fragile procedural code and hitting

coverage points.

So what is meant by 'relaxed prediction'? If a scoreboard is not

going to model accurately and predict the one and only correct

output, it must gather all the 'possibly correct' outputs and

store them temporarily, adding attributes to that storage

relating to the arbitration if possible, so that it can eventually

check those items off as 'done', and measure the arbitration

fairness as if it were a performance measurement rather than a

strict pass or fail.

This functionality is related to the 'uncertainty modeling'

already discussed. It is evident that it is as important to design

up front how a scoreboard is going to relax checking as much

as how it is going to enforce checking.

4) Cumulative State

When the DUT has cumulative state that affects native

operation, this will require modeling also. If it only affects

performance optimization, we discuss that shortly.

One important point is that every cumulative state has to begin

somewhere, and so some resynchronization may be required

after major change events such as reset, again involving

specifying regions of uncertainty or relaxed checking until the

state is known.

J. Performance

Performance verification is often considered somehow

'different' from Functional Verification, and often separate

components are designed and created specifically to equip a

test environment with performance measurements and reports.

A good scoreboard will have the means to make those

measurements within. After all: they usually boil down to the

following categories: bandwidth on an interface, latency

across interfaces, and number of packets through / number of

packets dropped or retried. All of these statistics are

immediately accessible to the scoreboard by definition. Indeed

the scoreboard will often measure latency as part of its time-

bound matching algorithms between observed inputs and

outputs.

All that is required to be added is the relevant post-simulation

reporting of performance characteristics: utilization,

throughput, percentage hit rates, quality of service, percentage

of optimization opportunities missed.

It is often suggested to design a separate Performance monitor

for such measurements, although they share a lot of underlying

logic with the scoreboard and so simulation performance can

be optimized by leveraging that.

One approach is to have the scoreboard emit objects for

further analysis by an external performance monitor that

depends on the scoreboard. Vertical reuse is still possible if

performance monitoring is required at full-chip level for

example, it just requires all the dependent components

(monitors, scoreboard and performance monitor) rather than a

single entity.

K. Coverage

One often overlooked aspect of scoreboard design is support

for Functional Coverage. Each individual interface connection

can have its own coverage criteria defined and recorded,

including some cross-coverage amongst its constituent

attributes. However, cross-coverage cannot span time, so it is

not possible to define covergroups from one transaction on

interface A to another on interface X some clocks later.

This is where the scoreboard comes in - it is in the unique

position of requiring storing of transaction A and transaction

X internally, arriving at different times, and checking them off

against each other. When it does that, it has a simultaneous

pair of related transactions that can have some significance to

Functional Coverage as defined in our test plan. The two (or

more) transactions can be combined into a composite pair

object containing instances of both parties. This object can

have its own native coverpoints and cross-coverage, and is

emitted and triggered by the scoreboard.

Figure 16. coverage output from scoreboard

The significance is two-fold: first, we now have a mechanism

to trigger a desired cross-coverage of a transaction A with one

particular attribute and a related transaction X with some other

attribute, and secondly and more importantly: the validation of

that functional coverage point as being meaningful by virtue

of the fact that actual traffic crossed the DUT using those

measured values. This aspect of functional coverage is often

overlooked: coverpoints of configuration attributes or register

settings, for example, can be measured, hit, and yet be

completely vacuous unless they are backed up by evidence

that actual traffic flowed through the DUT while those

attributes were in effect. Scoreboard-generated coverage is

more sincere!

V. SUMMARY

There is not a lot of written advice in our industry on the topic

of Scoreboarding, in fact in this short paper we have already

covered more depth and more aspects of scoreboard

architecture than in the cumulative text of any of the

verification books on one our typical bookshelves.

There is so much more depth that could be covered. The

scoreboard is at the heart of the self-checking testbench - the

components around it merely abstract the problem of

individual pins wiggling, clocking, handshaking, so that the

scoreboard can do checks and comparisons at a high level.

Patterns have yet to emerge to address design and coding of

this area, ad hoc design and coding has prevailed. Some

example modular solutions exist [4] [5] but most of the

innovation is being done in SoC design houses.

We have developed solutions that may lead to standardized

methodology in this area, we encourage their documentation.

In the second part of this paper, we describe a library and

toolkit of technology, design techniques, patterns, modular

code, and advice on an approach to the scoreboard

development process in a project context, in order to provide

solutions for all the situations we describe in this first part.

That part of a verification project which is entitled 'develop

and debug' scoreboard covers so much more than just selection

and implementation of a data structure. Architect that

'scoreboard subsystem' properly - paying attention to modeling

of the data patterns in your DUT - and it will become a useful

tool to assist in your quest for bugs in that DUT.

ACKNOWLEDGMENTS

Thanks are due to my Verification Technology colleagues
at Mentor Graphics for their contributed experiences.

REFERENCES

[1] J. Bergeron, "Writing Testbenches Using SystemVerilog", NY:Springer,
2006

[2] S. Iman, "Step-by-Step Functional Verification with SystemVerilog and
OVM", CA:Hansen Brown, 2008

[3] S. Palnitkar, "Design Verification with e", NJ: Prentice-Hall, 2004

[4] G. Allan, "UVM/OVM Verification Methodology Cookbook", Mentor
Graphics Corp, http://verificationacademy.com/uvm-ovm/ScoreBoard

[5] A. Sarkar, "SystemVerilog FrameWorks Scoreboard: An Open Source
Implementation Using UVM", DvCon Conference Proceedings, 2011

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns -
Elements of Reusable Object-Oriented Software", MA:AddWesley 1995

