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• Q/A & Conclusion 



Premise of the talk
• EDA – Electronic Design Automation

• Just do it! You need to be an expert in what you do not what EDA vendors provide
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Linting History

• From “C” to Shining RTL….

– “Lint”: Original name given to a program that flagged 
some suspicious and non-portable constructs (likely to 
be bugs) in C code

– The term is now applied generically to tools that flag 
suspicious usage in software written in any computer 
language (C, VHDL, Verilog, Java, etc.)



Types of RTL Lint Checks 

• Syntax checking

• Style checking

• Semantic checking



What About Simulation  / Synthesis

– Simulation is only as good as your 
testbench

– Synthesis assumes the code is 
good, and synthesizes it as such

– Lint doesn’t find every problem with 
every design



Simulation vs. Formal Verification
• Simulation Formal Verification 

Exhaustivity
(measurement of the ability to thoroughly 
observe all possible input scenarios)

* Not possible to simulate all possible states in a 
design even with 100's of CPUs and months of 
simulation
* Focus on scenarios and assertions to break the 
design

* Explores all possible states
* Results in high reliability RTL
* Shifts focus on the correct functional 
behavior

Controllability
(measurement of the ability to activate, 
stimulate, or sensitize a specific point with 
the design)

* Must conceive vectors, scenarios to 
"adequately" simulate the design
* Likely to miss corner case scenarios

* No stimulus required
* Start early in the design cycle
* Exhaustive all corner cases issues found

Observability
(measurement of the ability to observe the 
effects of a specific, internal, stimulated point 
within the design)

* Must propagate bugs to output pins or insert 
logic assertions to expose and debug bugs

* Automatically isolates root cause of bugs
* Visualize incorrect behavior and fix it 
faster



Why Designers Use RTL Linting

–Its all about productivity!
–Faster and sooner than Simulation and/or 

Synthesis
•“Verify as you Code”
• Preforms DRC checks 
• Automates checking vs “Hand creating test 
benches to find issues”
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What is Formal Verification 

• Formal Verification is the act of proving or 
disproving the correctness of intended 
algorithms underlying a system with respect to 
a certain formal specification or property, using 
formal methods of mathematics.



Uses of Formal Verification In EDA 

• Equivalence checkers

• Property checkers

• Model checkers 
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FV Tool vs Algorithm in Lint

• Stuck at Zero
– Analysis to pinpoint signals that never change values
– Could be stuck at One as well



FV Tool vs Algorithm in Lint
• Stuck at Zero

– FV Tool requires the user 
to create an assertion on 
every register

– Algorithm in Lint, the tool 
creates the assertion for 
every register

input [3:0] cmpValue; // range 0->15

if ( RST == 0 )
output = 4’b0000;

else 
begin

if ( cmpValue == 16 ) //out of range never true
output = inpValue;

else
……           
tmp = ~inpValue
……
output <= inpValue && tmp; // always zero
……

end
end



FV Tool vs Algorithm in Lint

• Potential multi-drive state on tristate signal
– Analysis to pinpoint conditions where tri-state drivers are enabled at the 

same time
– Also finds when a tri-state signal is never driven



FV Tool vs Algorithm in Lint
• Multi-driven Tri-state

– For every Tri-state signal, 
a FV Tool user would have 
to verify every driver is 
only active at one time

– Algorithm in Lint, the tool 
creates assertion for every 
Tri-state signal and every 
driver automatically

begin // correct behavior, trivial
if ( value )

dout <= en ? i1 : 1’bz;
else 

dout <= en ? i2 : 1’bz;
end

begin // assignments spread throughout module
……
cond1 <= inpValid;
if ( cond1 )

dout <= en ? i1 : 1’bz;
……
cond2 <= inpValid;
if ( cond2 )

dout <= en ? i2 : 1’bz;
end

vs



Challenges of Formal Verification
• FV is based on creating a valid model to represent the question at hand

• Three answers are possible
– Assertion Proven/Validated
– Assertion Disproven
– I Don’t Know?

What does this mean?
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Why Use Formal in Lint?

• Experts in FV (EDA tool developers) create focused models based on 
design + check being analyzed

• Not perfect, however more productive than hand creating all the asserts 
in a separate FV tool
– Don’t code in gates, code in RTL? Why, productivity
– How many asserts are required to check 100 RTL checks on 1000 lines of 

RTL code?



Why use Formal in Lint?

– Multi-bit CDC crossing, showing the potential vs reporting actual issues

Nonpreferred bus synchronization 
Mux based bus synchronization 



To FV Or Not To FV
• Some checks are clearly structural only

– No formal necessary, zero added value of formal

• Many checks can be implemented without formal
– Less likely to have the “could not prove” outcome
– May be sub-optimal on average



FSM Example – Code not reachable

• Code not reachable
– FSM case item + if statement conflict
– Time consuming to implement assertions by 

hand
– Automated FV assertion driven can be slow 

and inconclusive
– Structural analysis can provide the same 

quality of results



FSM Example – Code not reachable
reg [1:0] state; // 4 valid states
always @(posedge clock)
begin

if ( reset )
state <= 0; 

else
case( state )  // synthesis fullcase
0: if ( state == 0 ) // always true

state <= 1;
else

state <= 2;  // never true
1: if ( a && !a ) // never true

state <= 2;
else 

state <= 1; // code not reachable
2: state <= 0;
// no default or state 3 definition
endcase 

end

• Code not reachable
– 4 states possible
– All states have in and out transitions
– Both Structural and FV can be used to 

determine Case 1 being a terminal 
state

– Creating constraints/assertions would 
be time consuming for 4 states, let 
alone for a real FSM

– Constraints are based on system 
knowledge that can change



Is Formal Needed in Lint?

• Some checks MUST be done in formal
– Forcing the user to become an expert in assertions, essentially forces the 

user to spend money on AEs

• However, for many checks, the best solution is Formal.
– Using internally generated (not exposed) assertion models for many 

checks is the best use of an engineer’s time



ROI of Verification Tools

• Primary expense for running lint should be the tool
– NOT the maintaining of the test harness/inputs
– NOT the maintaining of the “golden” vs “current” 

results on every design change
– NOT the hiring of tool experts to run the tool
– NOT the EDA AEs to help when stuck

• When you use FV Tools all these points fail
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Forget About The Man in the Corner

• Care about the checks not the 
implementation of the checks

• Many checks can be implemented using a 
variety of algorithms

• Reusing an algorithm previously targeting a 
stand alone tool, to drive an automatic 
verification process, is a big part of the A in 
EDA



Algorithms Have Different Downsides

• We’ve discussed formal
• Pattern based analysis can fail to match the pattern

– So “no” is sometimes a “could not check”
• Patterns often change with different design structures

– One man’s synchronizer, is another man’s glue logic
• An EDA engineer’s job is to write algorithms that look at the check 

requested, analyze the design enough to choose the best tool to run 
that check on that design.
– Not to always use a hammer to nail in a screw



Example FSM Dead State Analysis

• A state is “dead” when no set of inputs can 
put the FSM into that state

• Often caused by structural issues.  State 
variable never gets assigned to the 
required value

• Sometimes caused by impossible 
conditions that if satisfied would lead to the 
state variable getting assigned properly



Example FSM Dead State Analysis
reg [2:0] state; // 7 valid states
always @(posedge clock)
begin

if ( reset )
state <= 0; 

else
case( state )  // synthesis fullcase
0: state <= 1;
1: state <= 2;
2: state <= 4;
3: state <= 4;
4: state <= 0;
default: state <= 0;

endcase 
end

• Dead State
– 7 states possible
– State 2 “should” transition to 3
– FV not necessary at all to find 

most common FSM issues



Run the Check….
• For any type of bug in RTL, often multiple algorithms exist for 

finding the problem
• Why should the USER care which algorithm is applied to find 

the problem?
• Question should be: How long do you want to spend 

analyzing potential dead code?
• How long do you want to spend setting up the tool to run a 

given check?
• Small testcases, presented to prove the value of a check, are 

often contrived to show the issue, but in real life the check 
can take a very long time when run on a real-word design



• Longer runtimes don’t necessarily 
lead to any significant amount 
new results

• Especially with FV
– Tweaking conditions on a 

previous timeout may just delay 
the “could not prove”, rather than 
bringing the proof to conclusion

Diminishing Returns

Source: Doulos Formal Short Training

Source Doulos Training



Focus On What is Important

• Style Analysis vs longer Verification
– Many styles have been created to prevent bugs
– From C/C++ 

• Many bugs are “typos”
• Can be found with simple linting style checks

if ( 1 == a ) vs if ( a == 1 )



Example

• False Path caused by improper if conditions

• “issue” can be reported/found in multiple ways
• REAL issue, use defined constants for all comparison values

– Simple, fast, trivial automated analysis check.

if ( a == ’b010 )
tmp1 <= in;

if ( a == ’b01 )
tmp2 <= tmp1;

Out <= tmp2;



If The Code Has a Bug

• When a FP is not a bug, an advanced check is required to find the 
issue

• Now, tool requires a “Find the False Path” check

if ( a == `STATE2 )
tmp1 <= in;

if ( a == `STATE1 )
tmp2 <= tmp1;

Out <= tmp2;



Let The Tool Chose …

• You determine the check you want
– Tool should determine based on design 

criteria best approach to solve the check

• You don’t tell your General Contractor to 
hire (or when to hire) a plumber or 
carpenter
– You tell him to redo your kitchen



Let The Tool Chose …

• The “run a little longer” vs diminishing results 
loop
– Is a total waste of time
– After a while, just spinning your wheels, not 

improving your verification results
• Don’t insist on being a backseat verifier
• Don’t let perfection prevent good enough
• You don’t tell your contractor how long to 

work on the sink vs tile
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Conclusions and Summary

• Infinite resources, time and money, run formal on every possible 
condition on every possible line of code, with infinite runtime to solve 
each assertion

• Real world requires compromise
• The mythical verification model, of one line of Verification Code for 

every line of design code, is rarely if every achieved by any design 
team.  
– Budgets, time, hardware resources to implement verification

• For more information, please visit http://www.bluepearlsoftware.com or 
email me at scott.aron.bloom@bluepearlsoftware.com

http://www.bluepearlsoftware.com/
mailto:scott.aron.bloom@bluepearlsoftware.com
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