
Just do it!
Who cares if a Structural Analysis tool is

using Formal Verification

Scott Aron Bloom Chief Technical Officer of Blue Pearl Software

Introduction

• Scott Aron Bloom Chief Technical Officer of Blue Pearl Software
– 20+ years of experience in software development
– Founder and principal developer for OnShore Consulting Services

specializing in EDA and Qt development.
– Founder and VP of Engineering, at Stelar Tools, an EDA startup
– Product development positions at AccelChip, Mentor Graphics, Exemplar

Logic and Interconnectix
– Email: scott.aron.bloom@bluepearlsoftware.com

mailto:scott.aron.bloom@bluepearlsoftware.com

Agenda

• Premise for the talk
• What is Linting
• What is Formal Verification
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a linting tool use formal
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

Premise of the talk
• EDA – Electronic Design Automation

• Just do it! You need to be an expert in what you do not what EDA vendors provide

Agenda

• Premise for the talk
• What is Linting
• What is Formal Verification
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a linting tool use formal
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

Linting History

• From “C” to Shining RTL….

– “Lint”: Original name given to a program that flagged
some suspicious and non-portable constructs (likely to
be bugs) in C code

– The term is now applied generically to tools that flag
suspicious usage in software written in any computer
language (C, VHDL, Verilog, Java, etc.)

Types of RTL Lint Checks

• Syntax checking

• Style checking

• Semantic checking

What About Simulation / Synthesis

– Simulation is only as good as your
testbench

– Synthesis assumes the code is
good, and synthesizes it as such

– Lint doesn’t find every problem with
every design

Simulation vs. Formal Verification
• Simulation Formal Verification

Exhaustivity
(measurement of the ability to thoroughly
observe all possible input scenarios)

* Not possible to simulate all possible states in a
design even with 100's of CPUs and months of
simulation
* Focus on scenarios and assertions to break the
design

* Explores all possible states
* Results in high reliability RTL
* Shifts focus on the correct functional
behavior

Controllability
(measurement of the ability to activate,
stimulate, or sensitize a specific point with
the design)

* Must conceive vectors, scenarios to
"adequately" simulate the design
* Likely to miss corner case scenarios

* No stimulus required
* Start early in the design cycle
* Exhaustive all corner cases issues found

Observability
(measurement of the ability to observe the
effects of a specific, internal, stimulated point
within the design)

* Must propagate bugs to output pins or insert
logic assertions to expose and debug bugs

* Automatically isolates root cause of bugs
* Visualize incorrect behavior and fix it
faster

Why Designers Use RTL Linting

–Its all about productivity!
–Faster and sooner than Simulation and/or

Synthesis
•“Verify as you Code”
• Preforms DRC checks
• Automates checking vs “Hand creating test
benches to find issues”

Agenda

• Premise for the talk
• What is Linting?
• What is Formal Verification?
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a Linting tool use Formal Verification?
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

What is Formal Verification

• Formal Verification is the act of proving or
disproving the correctness of intended
algorithms underlying a system with respect to
a certain formal specification or property, using
formal methods of mathematics.

Uses of Formal Verification In EDA

• Equivalence checkers

• Property checkers

• Model checkers

Agenda

• Premise for the talk
• What is Linting?
• What is Formal Verification?
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a Linting tool use Formal Verification?
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

FV Tool vs Algorithm in Lint

• Stuck at Zero
– Analysis to pinpoint signals that never change values
– Could be stuck at One as well

FV Tool vs Algorithm in Lint
• Stuck at Zero

– FV Tool requires the user
to create an assertion on
every register

– Algorithm in Lint, the tool
creates the assertion for
every register

input [3:0] cmpValue; // range 0->15

if (RST == 0)
output = 4’b0000;

else
begin

if (cmpValue == 16) //out of range never true
output = inpValue;

else
……
tmp = ~inpValue
……
output <= inpValue && tmp; // always zero
……

end
end

FV Tool vs Algorithm in Lint

• Potential multi-drive state on tristate signal
– Analysis to pinpoint conditions where tri-state drivers are enabled at the

same time
– Also finds when a tri-state signal is never driven

FV Tool vs Algorithm in Lint
• Multi-driven Tri-state

– For every Tri-state signal,
a FV Tool user would have
to verify every driver is
only active at one time

– Algorithm in Lint, the tool
creates assertion for every
Tri-state signal and every
driver automatically

begin // correct behavior, trivial
if (value)

dout <= en ? i1 : 1’bz;
else

dout <= en ? i2 : 1’bz;
end

begin // assignments spread throughout module
……
cond1 <= inpValid;
if (cond1)

dout <= en ? i1 : 1’bz;
……
cond2 <= inpValid;
if (cond2)

dout <= en ? i2 : 1’bz;
end

vs

Challenges of Formal Verification
• FV is based on creating a valid model to represent the question at hand

• Three answers are possible
– Assertion Proven/Validated
– Assertion Disproven
– I Don’t Know?

What does this mean?

Agenda

• Premise for the talk
• What is Linting?
• What is Formal Verification?
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a Linting tool use Formal Verification?
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

Why Use Formal in Lint?

• Experts in FV (EDA tool developers) create focused models based on
design + check being analyzed

• Not perfect, however more productive than hand creating all the asserts
in a separate FV tool
– Don’t code in gates, code in RTL? Why, productivity
– How many asserts are required to check 100 RTL checks on 1000 lines of

RTL code?

Why use Formal in Lint?

– Multi-bit CDC crossing, showing the potential vs reporting actual issues

Nonpreferred bus synchronization
Mux based bus synchronization

To FV Or Not To FV
• Some checks are clearly structural only

– No formal necessary, zero added value of formal

• Many checks can be implemented without formal
– Less likely to have the “could not prove” outcome
– May be sub-optimal on average

FSM Example – Code not reachable

• Code not reachable
– FSM case item + if statement conflict
– Time consuming to implement assertions by

hand
– Automated FV assertion driven can be slow

and inconclusive
– Structural analysis can provide the same

quality of results

FSM Example – Code not reachable
reg [1:0] state; // 4 valid states
always @(posedge clock)
begin

if (reset)
state <= 0;

else
case(state) // synthesis fullcase
0: if (state == 0) // always true

state <= 1;
else

state <= 2; // never true
1: if (a && !a) // never true

state <= 2;
else

state <= 1; // code not reachable
2: state <= 0;
// no default or state 3 definition
endcase

end

• Code not reachable
– 4 states possible
– All states have in and out transitions
– Both Structural and FV can be used to

determine Case 1 being a terminal
state

– Creating constraints/assertions would
be time consuming for 4 states, let
alone for a real FSM

– Constraints are based on system
knowledge that can change

Is Formal Needed in Lint?

• Some checks MUST be done in formal
– Forcing the user to become an expert in assertions, essentially forces the

user to spend money on AEs

• However, for many checks, the best solution is Formal.
– Using internally generated (not exposed) assertion models for many

checks is the best use of an engineer’s time

ROI of Verification Tools

• Primary expense for running lint should be the tool
– NOT the maintaining of the test harness/inputs
– NOT the maintaining of the “golden” vs “current”

results on every design change
– NOT the hiring of tool experts to run the tool
– NOT the EDA AEs to help when stuck

• When you use FV Tools all these points fail

Agenda

• Premise for the talk
• What is Linting?
• What is Formal Verification?
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a Linting tool use Formal Verification?
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

Forget About The Man in the Corner

• Care about the checks not the
implementation of the checks

• Many checks can be implemented using a
variety of algorithms

• Reusing an algorithm previously targeting a
stand alone tool, to drive an automatic
verification process, is a big part of the A in
EDA

Algorithms Have Different Downsides

• We’ve discussed formal
• Pattern based analysis can fail to match the pattern

– So “no” is sometimes a “could not check”
• Patterns often change with different design structures

– One man’s synchronizer, is another man’s glue logic
• An EDA engineer’s job is to write algorithms that look at the check

requested, analyze the design enough to choose the best tool to run
that check on that design.
– Not to always use a hammer to nail in a screw

Example FSM Dead State Analysis

• A state is “dead” when no set of inputs can
put the FSM into that state

• Often caused by structural issues. State
variable never gets assigned to the
required value

• Sometimes caused by impossible
conditions that if satisfied would lead to the
state variable getting assigned properly

Example FSM Dead State Analysis
reg [2:0] state; // 7 valid states
always @(posedge clock)
begin

if (reset)
state <= 0;

else
case(state) // synthesis fullcase
0: state <= 1;
1: state <= 2;
2: state <= 4;
3: state <= 4;
4: state <= 0;
default: state <= 0;

endcase
end

• Dead State
– 7 states possible
– State 2 “should” transition to 3
– FV not necessary at all to find

most common FSM issues

Run the Check….
• For any type of bug in RTL, often multiple algorithms exist for

finding the problem
• Why should the USER care which algorithm is applied to find

the problem?
• Question should be: How long do you want to spend

analyzing potential dead code?
• How long do you want to spend setting up the tool to run a

given check?
• Small testcases, presented to prove the value of a check, are

often contrived to show the issue, but in real life the check
can take a very long time when run on a real-word design

• Longer runtimes don’t necessarily
lead to any significant amount
new results

• Especially with FV
– Tweaking conditions on a

previous timeout may just delay
the “could not prove”, rather than
bringing the proof to conclusion

Diminishing Returns

Source: Doulos Formal Short Training

Source Doulos Training

Focus On What is Important

• Style Analysis vs longer Verification
– Many styles have been created to prevent bugs
– From C/C++

• Many bugs are “typos”
• Can be found with simple linting style checks

if (1 == a) vs if (a == 1)

Example

• False Path caused by improper if conditions

• “issue” can be reported/found in multiple ways
• REAL issue, use defined constants for all comparison values

– Simple, fast, trivial automated analysis check.

if (a == ’b010)
tmp1 <= in;

if (a == ’b01)
tmp2 <= tmp1;

Out <= tmp2;

If The Code Has a Bug

• When a FP is not a bug, an advanced check is required to find the
issue

• Now, tool requires a “Find the False Path” check

if (a == `STATE2)
tmp1 <= in;

if (a == `STATE1)
tmp2 <= tmp1;

Out <= tmp2;

Let The Tool Chose …

• You determine the check you want
– Tool should determine based on design

criteria best approach to solve the check

• You don’t tell your General Contractor to
hire (or when to hire) a plumber or
carpenter
– You tell him to redo your kitchen

Let The Tool Chose …

• The “run a little longer” vs diminishing results
loop
– Is a total waste of time
– After a while, just spinning your wheels, not

improving your verification results
• Don’t insist on being a backseat verifier
• Don’t let perfection prevent good enough
• You don’t tell your contractor how long to

work on the sink vs tile

Agenda

• Premise for the talk
• What is Linting?
• What is Formal Verification?
• Formal Verification Tool vs Formal Verification Analysis in

Linting
• Why does a Linting tool use Formal Verification?
• RTL Designers should be experts in their designs, not the tools
• Q/A & Conclusion

Conclusions and Summary

• Infinite resources, time and money, run formal on every possible
condition on every possible line of code, with infinite runtime to solve
each assertion

• Real world requires compromise
• The mythical verification model, of one line of Verification Code for

every line of design code, is rarely if every achieved by any design
team.
– Budgets, time, hardware resources to implement verification

• For more information, please visit http://www.bluepearlsoftware.com or
email me at scott.aron.bloom@bluepearlsoftware.com

http://www.bluepearlsoftware.com/
mailto:scott.aron.bloom@bluepearlsoftware.com

	Just do it!�Who cares if a Structural Analysis tool is using Formal Verification
	Introduction
	Agenda
	Premise of the talk
	Agenda
	Linting History
	Types of RTL Lint Checks
	What About Simulation / Synthesis
	Simulation vs. Formal Verification
	Why Designers Use RTL Linting
	Agenda
	What is Formal Verification
	Uses of Formal Verification In EDA
	Agenda
	FV Tool vs Algorithm in Lint
	FV Tool vs Algorithm in Lint
	FV Tool vs Algorithm in Lint
	FV Tool vs Algorithm in Lint
	Challenges of Formal Verification
	Agenda
	Why Use Formal in Lint?
	Why use Formal in Lint?
	To FV Or Not To FV
	FSM Example – Code not reachable
	FSM Example – Code not reachable
	Is Formal Needed in Lint?
	ROI of Verification Tools
	Agenda
	Forget About The Man in the Corner
	Algorithms Have Different Downsides
	Example FSM Dead State Analysis
	Example FSM Dead State Analysis
	Run the Check….
	Diminishing Returns
	Focus On What is Important
	Example
	If The Code Has a Bug
	Let The Tool Chose …
	Let The Tool Chose …
	Agenda
	Conclusions and Summary

