
It’s Been 24 Hours –

Should I Kill My Formal Run?

1

Mark Eslinger, Formal Verification Product Engineer
Jin Hou, Formal Verification Product Engineer

Joe Hupcey III, Verification Product Technologist
Jeremy Levitt, Formal R&D Principal Engineer

98.7% of Time Formal Runs Fast

2

But Sometimes …

3

Yesterday Today

Occasionally We Get Messages Like This

4

What Now?

Keep Running

Pros:

 Prior jobs also ran long

 Resources aren’t THAT expensive

Cons:

× Waste of compute resources

× Manual effort to monitor run

Kill & Start Over???

Pros:

 Focus on most promising strategy

 Efficient use of compute resources

Cons:

× Waste of your valuable time

× Schedule impact

What You Will Learn Today

• What can you do right now

• What you can do before you run a new job

6

7

What CAN You

Do Right NOW?

(0) Sanity Check Setup

• Does setup look correct?

– Vacuously proved assertions?

– Uncoverable cover properties?

– Bogus firings?

• Is hardware working efficiently?

– Are CPUs all fully utilized?

– Is memory consumption in line with that available?

8

9

Check Progress Via Mobile App

• Monitor and re-run formal jobs in real time while on-the-go

• Auto-reconnects with jobs in progress / results when re-gain signal

• Secure channel via mobile VPN

• Android and IOS phones and tablets supported

Formal is Awesome, Until It Isn’t

11

Formal

Analysis

RTL Properties

Bug?
No Yes

Model Checking

Synthesis

Timeout Memout

Why IS the Tool Still Running?

Obviously there are some “hard” properties:

• Temporal latency

• Formal unfriendly logic

• Lots of design states

• Ineffective heuristics Bad luck?

12

What Is The Tool Doing?

• Many different model checking algorithms exist, taking different
approaches, e.g.
– K-induction

– SAT-based BMC

– IC3

– BDD-based SMC

• For a given design & property, one algorithm (or “engine”) is often much
more effective than the others
– Cannot tell which engine will solve first, until the solve happens

• Hence, tool runs each engine on each property
– Either in parallel or iteratively until solution found

Each Engine Has A Different Profile

• K-induction: If proof not found early on, unlikely to find a proof

• BMC: If exponential slowdown w/increasing depth, unlikely to find CEX

• IC3: If rate of search space exploration slows, unlikely to find proof

• SMC: If state bits in model get too large, unlikely to find a proof

What You Can Do Now

15

1. Monitor the formal engines’ “health” in real time

2. Understand why a property is stuck

3. Keep running!

(1) Per Property Engine Health

• Engine developers can guess at likelihood of completion

– Examine runtime parameters specific to each particular engine

• Out-of-range parameters indicates rate of state-space exploration is poor

• R&D expertise codified & reported as “engine health”

– Green/Yellow/Red, where Red indicates much less likely to complete

• Red: If state-space exploration rate remains poor, engine won’t finish this month/year

• While Engine Health can improve with time, this is not typical

(1) Monitoring Engine Health

• For each property, health of healthiest engine is summarized

• Start looking at the “Red” properties first

(2) Understand Why A Property is Stuck

• Are the engines stuck analyzing logic known to be difficult?

– Temporal latency too great => counters?

– Related logic is formal unfriendly => large multipliers, LSFR, ECC, etc.?

– Too much design state involved => memories?

• Examine logic being analyzed by the engines

(2) Even Irrelevant Logic Can Hurt

assign C = counter < 32’h3fffffff || f(x,y,z);

assert property (A & B |-> C);

• Focusing on the counter logic quickly yields deep proof bounds

– Formal tool may decide to expand the counter logic

• Actual proof depends on f(x,y,z) holding when A asserted

• Engines get stuck exploring counter logic to an impossible depth

– Appears to be making progress, but strategy will not lead to a proof

– A lot of time will be wasted

(2) Look for Problem Logic!

• Is there performance crippling logic?

– E.g. large counters & RAMs, wide multipliers, etc.

– State elements are ordered from most to least active

20

(2) Exploring Logic Pulled-in by “Assumes”

21

• exclude contributes from the assert

• ignore contributions from other
engines

• Logic being analyzed by engine 10
that is only in the fan-in of assumes

• Check state bits: “less is more”

(2) Triaging problem logic

• If engine performance is poor & suspicious logic present

– Easy case: If logic not relevant to proof

• If logic brought in via an unneeded assume, turn off assume

• Otherwise, use cutpoint to remove it

– Hard case: If logic relevant to proof, simplify problem

• E.g. reduce parameter values, set constants, abstract the logic

• Either way, current run is unlikely to complete – a re-run is needed

(3) Keep Running!

• With enough time and memory, algorithms will find the answer

• (Do you have enough time and memory?)

– Caveat: Not possible to know in advance how much of either is required

23

24

What You Can Do Before

You Run a New Job

Setting Up For Success

1. Use “re-modeling”, “abstraction”, and black boxing

2. Limit your “assumptions” (a/k/a constraints)

3. Let the machines do the work

4. Sanity check your setup early on

5. Write properties more effectively

6. Leverage the “assume guarantee” principal

7. Simplify your formal testbench

Remodeling: “Modify” the DUT Without Touching The RTL

• Use tool commands to modify DUT

• Use SV bind construct to non-invasively add modeling logic after cut of the design signal

• Reduce design size: Use compile switch to reduce parameter values

• Key applications: counter and memory abstraction

formal compile –d dut –G WIDTH=8 –G DEPTH=16

module abs_model (input clk, rstn, input [WIDTH-1:0] signal);

logic [WIDTH-1:0] abs_signal;

<modelling code of abs_signal>

endmodule

bind dut abs_model …;

netlist cutpoint signal

netlist property –assume {<assertion constraining signal>}

netlist cutpoint signal –driver abs_signal

netlist property –assume {signal == abs_signal}

Counter Abstraction
• Reduce the sizes of counters or the values of counters to be used

• Set counters to an “X” value for its initial state
– Let formal consider all potential values for counter initial state

• Replace counters with small state machines
– Only critical values of counters that trigger actions are important

– Example: Suppose value ‘l’, ‘m’ and ‘n’ of the counter are critical. Use the following state machine to
replace the original counter.

https://blogs.mentor.com/verificationhorizons/blog/2018/09/28/how-to-reduce-the-complexity-of-formal-analysis-
part-4-counter-abstraction/

27

netlist initial counter_signal –value x

https://blogs.mentor.com/verificationhorizons/blog/2018/09/28/how-to-reduce-the-complexity-of-formal-analysis-part-4-counter-abstraction/

Replacing A Counter with A State Machine

28

netlist cutpoint cnt

• For a property that can only be fired when the counter reaches the value ‘n’, using the

abstract model of the counter, the counter can reach ‘n’ in 3 cycles after reset

• Formal can quickly fire the property and generate much shorter error trace

module abs_model #(parameter WIDTH=16) (input clk, rst, input [WIDTH-1:0] cnt);

reg [WIDTH-1:0] abs_cnt;

parameter l='h60, m='hf0, n='hf1;

always @(posedge clk or posedge rst)

if (rst) abs_cnt <= 'h00;

else begin

if (abs_cnt == 'h00) abs_cnt <= l;

else if (abs_cnt == l) abs_cnt <= m;

else if (abs_cnt == m) abs_cnt <= n;

else abs_cnt <= 'h00;

end

assume_cnt: assume property (@(posedge clk) cnt == abs_cnt);

endmodule // abs_model

bind test abs_model #(.WIDTH(8)) u_abs_model (.clk(clk), .rst(rst), .cnt(cnt));

Memory Abstraction

• Blackbox memories

• Reduce the sizes of memories

– Reduce parameters for data width and address depth

• Abstract the memory entries not inferred by the property to

free variables

• Replace a ROM with a look-up table

• Replace a memory with a cache of N entries

– Remember the last N writes and abstract the rest as free variables

29

https://blogs.mentor.com/verificationhorizons/blog/2018/10

/23/how-to-reduce-the-complexity-of-formal-analysis-part-

5-memory-abstraction/

https://blogs.mentor.com/verificationhorizons/blog/2018/10/23/how-to-reduce-the-complexity-of-formal-analysis-part-5-memory-abstraction/

Black Boxing

• Blackboxing can improve compile and verify time

– All outputs of the blackboxed module or instance become free variables

– Proofs are valid and firing need further investigation

– Example: Verify SRAM and related logic by blackboxing Encoder and

Decoder modules

30

DUT

Encoder Decoder

Large

SRAM
LogicLogic

Assertions

netlist blackbox <module_name>

netlist blackbox instance <instance_name>

Replacing ROM With A Look-up Table

• Reduce the number of state bits: Width x Depth -> Width

31

always @(addr)
case (addr)
`include “./zin_files/ext_lut_0008.dat"
`include “./zin_files/ext_lut_0010.dat"
`include “./zin_files/ext_lut_0018.dat"
`include “./zin_files/ext_lut_0020.dat"
default: sram_data <= 32'h00000000;
endcase

always @(posedge HCLK)
if (!HRESETn)

HRDATAM <= 32'h00000000;
else

HRDATAM <= !HWRITEM ? sram_data : 32'h00000000;

24'h200000: sram_data <= 32'h284c_2f73 ;

24'h200002: sram_data <= 32'he55a_25fc ;

24'h200004: sram_data <= 32'hd75d_ba1c ;

24'h200006: sram_data <= 32'h64a0_ad14 ;

24'h200008: sram_data <= 32'h33e3_31c1 ;

24'h20000A: sram_data <= 32'hd5c6_435e ;

….

24'h202682: sram_data <= 32'h2a8c_a5aa ;

24'h202684: sram_data <= 32'h75f5_b99f ;

24'h202696: sram_data <= 32'hf0eb_f161 ;

24'h202698: sram_data <= 32'h7b58_0d0a ;

Pro Techniques:

Data Independence and Non-Determinism
• Data Independence (DI): your property/assertion does NOT depend on specific values of the data

– Example: Verifying the data integrity of a fifo is data independent.

• Non-Determinism (ND): use “free variables” implemented as un-driven wires or extra inputs in a
checker to tell the formal engines they are free to consider any cases involving all possible values of
the variables at once

– Example: req and ack can be overlapped.

– Rewriting this assertion using a counter “cnt” (log2 latency)
and a free variable “start”.

• Details on the Verification Horizons blog:
https://blogs.mentor.com/verificationhorizons/blog/2018/11/01/how-to-reduce-the-complexity-of-formal-analysis-
part-6-leveraging-data-independence-and-non-determinism/

32

Check_ack: assert property (@(posedge clk)

req |-> ##latency ack);

https://blogs.mentor.com/verificationhorizons/blog/2018/11/01/how-to-reduce-the-complexity-of-formal-analysis-part-6-leveraging-data-independence-and-non-determinism/

Limit Your “Assumptions”
• In constrained-random simulation, adding more assumptions is

generally a good thing
– More constraints can help the constraint solver converge faster

– Irrelevant constraints typically don’t have much performance impact

• However, in formal …
– Initially all the logic touched by all your assertions is considered

– Formal eventually figures out the relevant constraint logic, but a lot of clock
cycles and memory are wasted

• Only use the assumptions necessary for the properties to be verified

33

“Less is More!”

Letting the Machines Do The Work

• Use the tool’s multicore capabilities

– More cores = better performance

– The verify command switch –jobs <n>

– GUI can define the number of cores or add more cores lively

• Submit jobs to grid system

– Examples:

34

configure grid submit { qrsh –V –now n -q zin.q –l h_vmem=512M }

configure grid submit { qsub –l –j y -b y -V –R n –w n –q mygid.p h_vmem=2G }

Use The Most Effective Engines

• Run Monitor tab in GUI shows the engine usage report.

– Know which engines worked best in the previous run

– Run with the most effective engines

• The verify command switch -engine

35

Summary of engines’ performance

Detail of engines’ performance:

• Engine 0 proved 29 safety properties

• Engine 7 proved 25 safety properties and 2

vacuity checks, and fired 36 safety properties and

24 vacuity checks

• Engine 10 proved 16 and fired 1 safety properties

Before You Begin: Follow the Law!

36

1. Keep properties as SIMPLE as possible

2. Keep properties as SEQUENTIALLY SHORT as possible

Obey the Two Great Laws of Formal Friendly Properties!

This gives formal engines more latitude

to optimize the state space it must analyze

But Why?

Benefits: almost always yields better

wall clock run time, memory usage, and debug

The Two Great Laws In Detail
1. Keep properties as SIMPLE as possible

– The less state logic a property has, the better

– Reference as little of the DUT as possible

– Break complex properties into several simpler ones

– Make use of modeling layer code to simplify the property

2. Keep properties as SHORT as possible

– The shorter the sequential depth the better

– Single-cycle assertions are best

– Under 10 cycles is a rule of thumb

– Function of design size and property depth determines results

1st Great Law: Simple Properties

$rose(START) |=> (ENABLE && ~START && ~STOP)[*7] ##1 \
(ENABLE && ~START && STOP) |=> (~ENABLE && ~START && ~STOP);

$rose(START) |-> ~ENABLE ##1 ENABLE;

$rose(ENABLE) |-> (~START && ~STOP)[*7];

$rose(STOP) |-> ENABLE ##1 ~ENABLE;

$fell(START) |=> ##5 $rose(STOP);

$rose(STOP) |=> ~STOP;

ENABLE

START

STOP

If You Have Inconclusives the First 24hrs: “Decompose”

39

a_xyz: assert property (@(posedge clk) a && b |-> x && y && z);Original:

a_x: assert property (@(posedge clk) a && b |-> x);

a_y: assert property (@(posedge clk) a && b |-> y);

a_z: assert property (@(posedge clk) a && b |-> z);

Decomposed:

a_tran12: assert property (@(posedge clk)

condition_start |=> transaction1 or transaction2);
Original:

a_tran1: assert property (@(posedge clk)

condition_start && type==TYPE1 |=> transaction1);

a_tran2: assert property (@(posedge clk)

condition_start && type==TYPE2 |=> transaction2);

Decomposed:

Leverage Modeling Code
• Verilog code which can help in writing an assertion

– Simplify understanding the property or simplifying the property itself

• Example assertion file with modeling layer code:
module assert_top (input rstn, clk, A, B, C, wr, rd);

// Requirement: Never > 5 outstanding wr’s (without a rd)

// Requirement: No rd before wr

reg [2:0] my_cnt;

always @(posedge clk or negedge rstn)

if (!rstn) my_cnt <= 3’b000;

else

if (wr && !rd) my_cnt <= my_cnt + 1;

else if (!wr && rd) my_cnt <= my_cnt – 1;

else my_cnt <= my_cnt;

a_wr_outstanding_le5: assert property (@(posedge clk) my_cnt <= 3’d5);

a_no_rd_without_wr: assert property (@(posedge clk)

!((my_cnt == 3’d0) && rd));

endmodule

40

2nd Great Law: Sequentially Short Properties

a1: assert property (@(posedge clk) $onehot(state));

a2: assert property (@(posedge clk) ~(A && B));

a3: assert property (@(posedge clk) $rose(A) |=> ~A);

a4: assert property (@(posedge clk) disable iff (~rst_n)

A ##1 B && C ##1 D |=> E);

a5: assert property (@(posedge clk) disable iff (~rst_n)

A ##1 B |=> C ##[1:5] D);

a6: assert property (@(posedge clk) disable iff (~rst_n)

A ##1 B |=> C ##[1:100] D);

a7: assert property (@(posedge clk) disable iff (~rst_n)

A ##1 B |=> ##1024 C);

1 cycle

1 cycle

3 cycles

4 cycles

4-8 cycles

4-104 cycles

1026 cycles

a6: May get CEX, No Proof

Leveraging “Assume Guarantee”

• Break apart “end-to-end Property” into “P1”, “P2”, and “P3”

• When P1 is proven for Sub1, use it as an assumption/constraint to run
a proof of P2 on Sub2. Repeat …

• Results will be the same as if we ran on the big end-to-end property
thanks to the “assume-guarantee” principle

• COIs for verifying the individual P1, P2, and P3 assertions are reduced
dramatically faster run time and memory performance!

42

Leverage Formal VIP

• Formal verification IP is powerful and easy to use

– Will already use many techniques to reduce state space

43
S

y
s
te

m
 In

te
rc

o
n

n
e
c
t 0

S
y
s
te

m
 In

te
rc

o
n

n
e
c
t 1

DMA

DMA

RAM

RAM

FIFO

FIFO

AXI

Bridge

μC

Encryption

Engine

A
X

I B
u

s

AXI

FVIP

FIFO

FVIP

Scoreboard

FVIP

MEM

FVIP

Over Constrain to Get Results

• Over constrain to turn inconclusive results into conclusive results

– Useful bugs can be found, proofs generally not valid though provide info

• Constrain input state space

• Make use of Symmetry

44

DDR3

AXI0 (ID = 2)

AXI1 (ID = 2)

AXI2 (disabled)

AXI3 (disabled)

AXI QFL

AXI QFL

DDR1 (ignored)

DDR0 (cs[1] = 1)

DUT DUT

24h 2m

Simplify Formal Testbench

• Divide and Conquer approach is often used

– Data integrity, functionality, connectivity

45

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

256 combinations

Selects stable during transmission

- Bridge data integrity

- XBAR functionality

- Connectivity between blocks

Bridge A

Bridge B

Bridge C

Scoreboard

Scoreboard

ScoreboardBridge Scoreboard

XBAR Switch SVA

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

XBAR Switch SVA

Simplify Formal Testbench

• Brute Force can be used to verify everything at the same time

– Data integrity, functionality, connectivity

46

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

256 combinations

Selects stable during transmission

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

0 1
5

Scoreboard

Scoreboard

Scoreboard

Scoreboard

S
V

A

S
V

A

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

0 0
Scoreboard

Scoreboard

Scoreboard

Scoreboard

S
V

A

S
V

A

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

0 0
Scoreboard

Scoreboard

Scoreboard

Scoreboard

S
V

A

S
V

A

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

0 0
Scoreboard

Scoreboard

Scoreboard

Scoreboard

S
V

A

S
V

A

Simplify Formal Testbench

• Advanced formal techniques allow you to simplify the formal TB

– ND, DI, Symbolic Variables, Formal VIP, modeling code => minimize state

47

X
B

A
R

 S
w

itc
h

X
B

A
R

 S
w

itc
h

Bridge

Bridge

Bridge

Bridge

256 combinations

Selects stable during transmission

- Data integrity end to end

- Symbolic Variables for input/bridge/output

- Stable - Determines select value

- ND – formal picks the path

- Proof – all scenarios good, CEX shows bad path

Scoreboard

Input i 3 to 0

Bridge j 3 to 0

Output k 3 to 0

i j kj

selA[j] = i selB[k] = j

Summary
• Complete as much valuable analysis as possible in your first 24-hours

• Leverage feedback from the tool
– Use “active logic” to identify problem constructs in the logic being analysed

– Use “Engine Health” to focus on properties least likely to converge

– Use “Run Monitor” to keep watch over all the runs

• Leverage the tool commands to reduce design size
– Use blackbox commands to remove certain module/instance

– Use cutpoint command to remove the fan-in logic of the specified signal

– Use compile switches to reduce parameter sizes

• If problematic constructs are found, modify your setup and re-run
– Add/remove/recode assumptions (a/k/a constraints)

– Recode assertions: formal-friendly coding as per the Two Great Laws, decomposition

– Reduce design size

48

