DESIGN AND VERIFICATION®™

CONFERENCE AND EXHIBITION

It’s Been 24 Hours —
Should | Kill My Formal Run?

Mark Eslinger, Formal Verification Product Engineer
Jin Hou, Formal Verification Product Engineer
Joe Hupcey lll, Verification Product Technologist
Jeremy Levitt, Formal R&D Principal Engineer

Menior

accellera A Siemens Business

EEEEEEEEEEEEEEEE

DESIGN AND VERIFICATION®™

bvioit 98.7% of Time Formal Runs Fast

EEEEEEEEEEEEEEEE

DESIGN AND VERIFICATION®™

BVEDN But Sometimes ...
Yesterday

EEEEEEEEEEEEEEEE

DESIGN AND VERIFICATION™

DVL_'..L—_IN

CONF ERENCE AND EXHIB"‘ION

PR AR RS 2
;«In“(:u:':;;ﬁ.i }(,’\::';—

[N & 2 g

Dttt et endn N s

g

(accellera

SYSTEMS INITIATIVE

Occasionally We Get Messages Like This

H Tue 5/8/2018 3:16 PM

Very slow proof @ |
To
© This message was sent with High importance.

Hi All,

The following proof is making very slow progress
Any idea what can be done to help it go faster?

Regards

~ 2.5 days.

What Now?

Keep Running <

> Kill & Start Over

v" Prior jobs also ran long
v' Resources aren’t THAT expensive

cons:
X Waste of compute resources
X Manual effort to monitor run

SYSTEMS INITIATIVE

Pros:
v' Focus on most promising strategy
v’ Efficient use of compute resources

cons:
X Waste of your valuable time

X Schedule impact

LA What You Will Learn Today
» What can you do right now

* What you can do before you run a new job

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

CONFERENCE AND EXHIBITION

What CAN You
Do Right NOW?

IIIIIIIIIIIIIIIII

BVELI (0) Sanity Check Setup

* Does setup look correct?
— Vacuously proved assertions?
— Uncoverable cover properties?
— Bogus firings?

* |s hardware working efficiently?
— Are CPUs all fully utilized?
— Is memory consumption in line with that available?

SYSTEMS INITIATIVE

o
2019

DESIGN AND VERIFICATION™

DVI: l:l N
Plot Type |96/Utilizationy = Active: 7, Inactive: 0 VewTrend &

®ProcessC

% Process 1 ., Process % Utilization
¥ Process 2

] 102

[%] Process 4

[%] Process 5

% Utilization

" Results | Engines | PI'DOBSSBS |

View: | Covered vs Time |+| [&5] #Covers: 66 16m 38s @&
94 75 = = 75 100
TOA{ voame MEM 70
g5 DT (40) = =
el BBV (1) o e
| mmE (25) s |
i 50 50
45 45 60
B = e
35 35
= | Results | Engines | Processes |
2 iew: EMxChed(svsTm iv #Vﬂmilymed(s 1877 14m 32s &
15 5 2200 [100
1 s
1 20 =1 (se2) e
S S H S B o p S o P S| e Em e e
: L 1 b a 1 Emu (91)
& & & & &® & $ 4 P ¢ || E w5l gms 1073 000 |
Run Time (m) 5 G 1400
&0
3]"‘"‘ r 1200
50
1000 + 1000
E 800+ I 800 -
g 600+ 600 &
S
1004 | s00 20
2004 200 [20
0+ o (1]
P & © “ & © S Mem
DA A I P G i GO G g S S A
Run Tlmo(m}

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Recent

Propcheck_demo

arbiter_RUN

test02_combo_loop

 Secure channel via mobile VPN
« Android and IOS phones anc

accellera

SYSTEMS INITIATIVE

All Projects

propcheck_gfl_log_pc_di

propcheck_gfl_log_pctest

propcheck_gfl_log_pc_b

Demos

2017-02-02
05:24:26

00:00:21

2017-02-02 T

21:2017

2017-02-02
04:17:43

2017-02-01
05:21:22

2017-02-03
03:28:47

& propcheck_qfl_log_pctest 1.3

Properties Engines Details

Properties (181)

—

Proven
[l |nconclusive . Fired

. Covered
. Uncoverable

Check Progress Via Mobile App

&« propcheck_qfl_log_pctest N

Options Initial seq

Filter
ER.QFL_01_AP

(J Proven b_state_access
'ER.QFL_02_HA

(O Vacuous »addr_stable
'ER.QFL_02_HA
yprot_stable

@ Covered 'ER.QFL_02_HA
ywdata_stable

> Inconclusive ER.QFL_02_HA

\RECOMMENDA

TTON.paddr_stable

U_QFL_APB4_MASTER.QFL_02_HA
NDSHAKE.ASSERT_RECOMMENDA
TION.pprot_stable

U_QFL_APB4_MASTER.QFL_02_HA
NDSHAKE.ASSERT_RECOMMENDA
TION.pwdata_stable
U_QFL_APB4_MASTER.QFL_02_HA
NDSHAKE.ASSERT_RECOMMENDA
TION.pwrite_stable

n U_QFL_AXI4LITE_SLAVE_READ.QFL
02_HANDSHAKE ASSERT_OUTPUT
.rdata_stable

U_QFL_AXI4LITE_SLAVE_READ.QFL

e@@@@@@@&

04_OUTSTANDING ASSERT_OUTP

tablets supported

Monitor and re-run formal jobs in real time while on-the-go
Auto-reconnects with jobs in progress / results when re-gain signal

<« propcheck_qfl_log_pctest

Run Options Initial seq
Timeout days 20 3 secs
Maximum depth 100
Generate Sanity Waveforms @]
Jobs jobs
Grid =]
Other Options Enter options

DESIGN AND VERIFICATION®™

oveorn - Formal i1Is Awesome, Until It Isn’t

‘ RTL Properties

Synthesis

accellera
11

EEEEEEEEEEEEEEEE

DESIGN AND VERIFICATION®™

L Why IS the Tool Still Running?

Obviously there are some “hard” properties:
* Temporal latency

* Formal unfriendly logic

 Lots of design states

* Ineffective heuristics - Bad luck?

IIIIIIIIIIIIIIIIII

12

DESIGN AND VERIFICATION®™

DVCON What Is The Tool Doing?

« Many different model checking algorithms exist, taking different
approaches, e.q.

— K-induction

— SAT-based BMC
— 1C3

— BDD-based SMC

* For a given design & property, one algorithm (or “engine”) is often much
more effective than the others

— Cannot tell which engine will solve first, until the solve happens

* Hence, tool runs each engine on each property
— Either in parallel or iteratively until solution found

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

« K-induction: If proof not found early on, unlikely to find a proof

« BMC: If exponential slowdown w/increasing depth, unlikely to find CEX
IC3: If rate of search space exploration slows, unlikely to find proof
SMC: If state bits in model get too large, unlikely to find a proof

K-Induction
BMC

;' SMC

a@ Time

IIIIIIIIIIIIIIIIII

Solves

I3

DVCORN What You Can Do Now

1. Monitor the formal engines’ “health” in real time

2. Understand why a property iIs stuck

3. Keep running!

IIIIIIIIIIIIIIIII

15

DESIGN AND VERIFICATION®™

ovi= (1) Per Property Engine Health

* Engine developers can guess at likelihood of completion

— Examine runtime parameters specific to each particular engine
« Out-of-range parameters indicates rate of state-space exploration is poor

« R&D expertise codified & reported as “engine health”

— Green/Yellow/Red, where Red indicates much less likely to complete
* Red: If state-space exploration rate remains poor, engine won't finish this month/year
« While Engine Health can improve with time, this is not typical

Engines

8 (18| 12| 17| 21 |25 | 26

@0 000 e

Current proof radius found by engine 17

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

oveid (1) Monitoring Engine Health

« For each property, health of healthiest engine is summarized
« Start looking at the "Red” properties first

L] Vc Name Health ~ Time Radius

H o BN ...exceeds_1k_boundary 17 5h59m 49s 101 @ master_clk_i

] ® _xI1 « 16 ..._02 disable_response Q 17 4h 31m 48s 110 @ master_clk_i

] ® _x1 « s5.. 09 serial out_stable Q 12 4h59m 24s 41 @ altkernel_clk_i

1 ® _x1 « 8e..by sizing during_burst Q 12 6h8m 13s 103 @ master_clk_i

(] ® _x3 « s6..3 burst not too long @ 12 5h51m57s 107 @ master_clk_i
® _I]« 2..03 zero_one hot req Q 12 5h43m 18s 40 @ altkernel_clk_i

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

by (2) Understand Why A Property Is Stuck

* Are the engines stuck analyzing logic known to be difficult?
— Temporal latency too great => counters?
— Related logic is formal unfriendly => large multipliers, LSFR, ECC, etc.?
— Too much design state involved => memories?

« Examine logic being analyzed by the engines

Signal | BitMap | Type | Engine |

- ...0.clock_gate.t_g # Register 17,12, 10
-~ ...bclc.dcc_clc_reqg ..._-#-# --#_##-# Register 12,10
- ..kregisterbank_s ...---_----_----_---- Register 12, 10
- ...e_synchronizer_s # Register 17,12,10
- ...er_clk_en_last_s # Register 10

- ...econdstage_ff_s # Regster 17,12,10
- ...l.bpi_disack_n_s # Register 12,10
- ...0.clock_gate.t_qg # Reqgister 10

- ...econdstage_ff s # Register 12,10
~ ...econdstage_ff_s # Reqgister 10

- ...econdstage ff s # Register 12, 10

Eﬂﬂﬂf!ﬂfﬂ Active Bits: Total: 1287, Registers: 962, Counter: 211, Memory: 114

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

ovielr - (2) Even Irrelevant Logic Can Hurt

assign C = counter < 32'h3fffffff || £(x,y,2);
assert property (A & B |-> C);

* Focusing on the counter logic quickly yields deep proof bounds
— Formal tool may decide to expand the counter logic

« Actual proof depends on f(x,y,z) holding when A asserted
* Engines get stuck exploring counter logic to an impossible depth

— Appears to be making progress, but strategy will not lead to a proof
— Alot of time will be wasted

IIIIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

Sl (2) Look for Problem Logic!

* |s there performance crippling logic?
— E.g. large counters & RAMSs, wide multipliers, etc.
— State elements are ordered from most to least active

| Signal | BitMap Type Engine
~...waitstate_num_s s e Counter 12,10
- ,..nchuf.read_ptr_s ###t Counter 10 - : :
~...ncbuf.write_ptr_s ### Counter 10 Slgqal | Bit Map Type Engine
..... ...fo_rd.write_ptr_s ## Counter 10 | ...t _reg.fifo_s(0)(4) HiHE -#H#E Memory 12,10
~..ncbuf.write_ptr_s #Hi#t Counter 10 | -.t_reg.fifo_s(1)(4) i _---- Memory 12
. hift_reg.dc_cnt_s 4 Counter 12 1 ~...ft_reg.fifo_s(0)(0) HHEH_#HE Memory 12,10
bit se‘ count s 44 Counter 12’ 1 ~...ft_reg.fifo_s(0)(3) HiHH HEHE Memory 12,10
L= cik d'g' e Count 12’ 1 ~...ft_reg.fifo_s(0)(1) HHH HEH Memory 12,10
g it W—#‘ﬁ Countor To | --ft_reg.fifo_s(0)2) ittt i Memory 12,10
- .--Il0_rc.reac_ptr_s ounter -_.ft_reg.fifo_s(1)(0) - -#-# Memory 12, 10
» chuf.read pt ##t Count 10 |
- -.ncout.read_plr_s ounter - ...t_reg.fifo_s(2)(4) —~-#_---- Memory 12
- ...hift_bitcount f s #+#+# Counter 10 g""...C_fifO_I’d.fifCl_S(O] LA - - - Memory 10

. . _ .) .] —...registerbank_s(0) ..._---#_--#-_#### Memory 10
Active Bits: Total: 211, Registers: 0, Counter: 211, Memory: 0 .. xsynchuf.fifo_s(2) S #EE B8~ Memory 10

Eﬂﬂ'ﬂffﬂf‘ﬂ Active Bits: Total: 114, Registers: 0, Counter: 0, Memory: 114

?‘@TEHE INITIATIVE

2019

DESIGN AND VERIFICATION®™

bvoii (2) Exploring Logic Pulled-in by “Assumes”

 exclude contributes from the assert

* Ignhore contributions from other
engines

* Logic being analyzed by engine 10
that is only in the fan-in of assumes

 Check state bits: “less is more”

SYSTEMS INITIATIVE

4 Active Logic COI

-- Assumptions (70)
=& Engines (3)

QFL_INSTANCE_AMBA_AXI3_SLAVE WRITE.QFL_06_BURST.ASSER... E

& 10
8] 12 a
LAl 17
| (88 | s signa: 75 it o pe: [R] (€]][]
Signal | Bit Map | Tye | Engine
- ...0.mem_sideband | #HHHE #HHHE - - Register 10
- ...5tlres_rdata.vout_i # Register 10
L GAWMEM_DATALO] - o e o e e HHHH ---- Memory 10
- .._reg.mem_rdnwr_| # Register 10
- WJdimg_bus.hld_din...-_---- ---- ---- -iHEE HEHE #HHE- ---- Register 10
= WAWMEM_DATAL]. .- - e —om o= #HH# - Memory 10
- ...tanding_axi_writes ## Counter 10
- ...erties.initial_wdata # Register 10
-...anding_axi_wdatas ## Counter 10
- ...terregister.w_addr ### Counter 10
- .ister.data_register## - ---- ---- -HEE #HE-- - #HE-# Register 10
- ..tIres_rdata.hld_vin # Register 10
- hid_arlen #H#4# Register 10 EF
e AW MEM DATAIP] ooom oo oooe oo oo o #itf# .- Memarv 1
Al
Active Bits: Total: 73, Registers: 48, Counter: 13, Memory: 12

21

(2) Triaging problem logic

* If engine performance is poor & suspicious logic present

— Easy case: If logic not relevant to proof
« If logic brought in via an unneeded assume, turn off assume
« Otherwise, use cutpoint to remove it

— Hard case: If logic relevant to proof, simplify problem
» E.g. reduce parameter values, set constants, abstract the logic

« Either way, current run is unlikely to complete — a re-run is needed

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DV (3) Keep Running!
« With enough time and memory, algorithms will find the answer

* (Do you have enough time and memory?)
— Caveat: Not possible to know in advance how much of either is required

IIIIIIIIIIIIIIIII

23

DESIGN AND VERIFICATION®™

CONFERENCE AND EXHIBITION

What You Can Do Before
You Run a New Job

IIIIIIIIIIIIIIIII

DESIGN AND VERIFICATION®™

==Y Setting Up For Success

b 13

. Use “re-modeling”, “abstraction”, and black boxing
. Limit your "assumptions” (a/k/a constraints)

. Let the machines do the work

1

2

3

4. Sanity check your setup early on
5. Write properties more effectively

6. Leverage the "assume guarantee” principal
7

. Simplify your formal testbench

IIIIIIIIIIIIIIIIII

2019

BvetRemodeling: “Modify” the DUT Without Touching The RTL

CONFERENCE AND EXHIBITION

« Use tool commands to modify DUT

netlist cutpoint signal
netlist property —-assume {<assertion constraining signal>}

« Use SV bind construct to non-invasively add modeling logic after cut of the design signal

netlist cutpoint signal -driver abs signal
netlist property —assume {signal == abs signal}

module abs model (input clk, rstn, input [WIDTH-1:0] signal);
logic [WIDTH-1:0] abs_signal;
<modelling code of abs_ signal>
endmodule
bind dut abs model ..;

* Reduce design size: Use compile switch to reduce parameter values
formal compile -d dut -G WIDTH=8 -G DEPTH=16

ey applications: counter and memory abstraction
acceffera

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION®™

DVCON Counter Abstraction

 Reduce the sizes of counters or the values of counters to be used

« Set counters to an “X” value for its initial state
— Let formal consider all potential values for counter initial state

netlist initial counter signal -value x

« Replace counters with small state machines
— Only critical values of counters that trigger actions are important

— Example: Suppose value I, ‘m’ and ‘n’ of the counter are critical. Use the following state machine to
replace the original counter.

Reset
state O

https://blogs.mentor.com/verificationhorizons/blog/2018/09/28/how-to-reduce-the-complexity-of-formal-analysis-
part-4-counter-abstraction/

SYSTEMS INITIATIVE

https://blogs.mentor.com/verificationhorizons/blog/2018/09/28/how-to-reduce-the-complexity-of-formal-analysis-part-4-counter-abstraction/

ZOV?

DESIGN AND VERIFICATION

vt Replacing A Counter with A State Machine

netlist cutpoint cnt

module abs model # (parameter WIDTH=16) (input clk, rst, input [WIDTH-1:0] cnt);
reg [WIDTH-1:0] abs cnt;
parameter 1="h60, m='hf0, n='hfl;
always @ (posedge clk or posedge rst)
if (rst) abs_cnt <= 'h00;
else begin

if (abs_cnt == 'h00) abs cnt <= 1;
else if (abs _cnt == 1) abs cnt <= m;
else if (abs _cnt == m) abs cnt <= n;
else abs cnt <= 'h00;
end
assume cnt: assume property (@ (posedge clk) cnt == abs cnt);

endmodule // abs model
bind test abs_model #(.WIDTH(8)) u _abs model (.clk(clk), .rst(rst), .cnt(cnt));

« For a property that can only be fired when the counter reaches the value ‘n’, using the
7 abstract model of the counter, the counter can reach ‘n’ in 3 cycles after reset
3@ Formal can quickly fire the property and generate much shorter error trace

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

BV Memory Abstraction

« Blackbox memories
* Reduce the sizes of memories
— Reduce parameters for data width and address depth

* Abstract the memory entries not inferred by the property to
free variables

* Replace a ROM with a look-up table

* Replace a memory with a cache of N entries
— Remember the last N writes and abstract the rest as free variables

https://blogs.mentor.com/verificationhorizons/blog/2018/10

[23/how-to-reduce-the-complexity-of-formal-analysis-paurt-
accellera 5-memory-abstraction/

SYSTEMS INITIATIVE

29

https://blogs.mentor.com/verificationhorizons/blog/2018/10/23/how-to-reduce-the-complexity-of-formal-analysis-part-5-memory-abstraction/

DESIGN AND VERIFICATION®™

BVEDN Black Boxing

« Blackboxing can improve compile and verify time

netlist blackbox <module name>
netlist blackbox instance <instance name>

— All outputs of the blackboxed module or instance become free variables
— Proofs are valid and firing need further investigation
— Example: Verify SRAM and related logic by blackboxing Encoder and

Decoder modules -

DUT
- Large .
ool CeQgIC
Encoder < SRAWM J Decoder

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATIONS

ot 1Y
DVCOIN

CONFERENCE AND EXHIBITIO!

* Reduce the number of state bits: Width x Depth -> Width

Replacing ROM With A Look-up Table

24'h200000: sram data <= 32'h284c_2f73\
always @ (addr) 24'h200002: sram data <= 32'he55a 25fc ;
case (addr) 24'h200004: sram data <= 32'hd75d balc ;
“include “./zin_files/ext_lut 0008.dat" 24'h200006: sram data <= 32'h64a0_adld ;
“include “./z:i.n_f:i.les/ext_lut_OOlO.dat" 24'h200008: sram data <= 32'h33e3 3lcl ;
_include “./zin files/ext lut 0018.dat" 24'h20000A: sram data <= 32'hd5c6_435e ;
include “./zin files/ext lut 0020.dat" - -
default: sram data <= 32'h00000000; 24'h202682: sram data <= 32'h2a8c aSaa ;
endcase — —
24'h202684: sram data <= 32'h75f5 b99f ;
always @ (posedge HCLK) 24'h202696: sram data <= 32'hfOeb fl6l ;
if ('HRESETn) \\24'h202698: sram data <= 32‘h7b58_0d0a/
HRDATAM <= 32'h00000000;
else
HRDATAM <= !'HWRITEM ? sram data 32'h00000000;

accellera .

SYSTEMS INITIATIVE

BESRT Pro Techniques: N
Data Independence and Non-Determinism

« Data Independence (DI): your property/assertion does NOT depend on specific values of the data
— Example: Verifying the data integrity of a fifo is data independent.

 Non-Determinism (ND): use “free variables” implemented as un-driven wires or extra inputs in a
checker to tell the formal engines they are free to consider any cases involving all possible values of
the variables at once

— Example: req and ack can be overlapped.

start & req

Check ack: assert property (@ (posedge clk) (cnt <=1)

req |-> ##latency ack);

cnt<latency
(cnt <= cnt+1)
— Rewriting this assertion using a counter “cnt” (log2 latency) .

and a free variable “start”. cnt==latency & ack \nt::Iatency & lack

. - . . Success @
« Details on the Verification Horizons blog:

https://blogs.mentor.com/verificationhorizons/blog/2018/11/01/how-to-reduce-the-complexity-of-formal-analysis-

art-6-leveraging-data-independence-and-non-determinism/
accellera)

SYSTEMS INITIATIVE

32

https://blogs.mentor.com/verificationhorizons/blog/2018/11/01/how-to-reduce-the-complexity-of-formal-analysis-part-6-leveraging-data-independence-and-non-determinism/

DVCDN Limit Your “Assumptions”

 |In constrained-random simulation, adding more assumptions is
generally a good thing
— More constraints can help the constraint solver converge faster
— lrrelevant constraints typically don’t have much performance impact

 However, in formal ...
— Initially all the logic touched by all your assertions is considered

— Formal eventually figures out the relevant constraint logic, but a lot of clock
cycles and memory are wasted

* Only use the assumptions necessary for the properties to be verified

sl “Less Is More!”

SYSTEMS INITIATIVE

33

DESIGN AND VERIFICATION®™

vl Letting the Machines Do The Work

« Use the tool’'s multicore capabilities
— More cores = better performance
— The verify command switch —jobs <n>
— GUI can define the number of cores or add more cores lively

« Submit jobs to grid system
— Examples:

configure grid submit { qrsh -V -now n -q zin.q -1 h vmem=512M }
configure grid submit { gsub -1 -j y -by -V -Rn -wn -q mygid.p h vmem=2G }

SYSTEMS INITIATIVE

34

2019

DESIGN AND VERIFICATION™

(et sum | . N |
DVCON

CONFERENCE AND EXHIBITION

Use The Most Effective Engines

* Run Monitor tab in GUI shows the engine usage report.
— Know which engines worked best in the previous run

— Run with the most effective engines
« The verify command switch -engine

Summary of engines’ performance

Run Monito

I=¢ () Run Moeniter

r
Results EngIHESI Processes]

View: [Ail Engines [+ &
70

1m 42s &

Detail of engines’ performance:

« Engine O proved 29 safety properties

« Engine 7 proved 25 safety properties and 2
vacuity checks, and fired 36 safety properties and

24 vacuity checks
« Engine 10 proved 16 and fired 1 safety properties

=
acceliera

SYSTEMS INITIATIVE

A 4

=
[=]
w0
“m
2
=
2 NP L L I e e P
g 0B
o
10
o
o e o w ek & S e 5 ® &
& & & & & ol [y g ¥ & g
Run Time
x] Only show engines in run
Proven [Unsatisfiable # Fired / Satisfied # Inconc lusive Targets
& Safety Wacuity Safety Vacuity Good Fair
o* @ 29 0 0 N/A M N
T* % 25 2 36 24 N/A NFA N/A
Lo+ @ 16 0 1 0 0 0 0
febete: =

“ 35

Obey the Two Great Laws of Formal Friendly Properties!

1. Keep properties as SIMPLE as possible
2. Keep properties as SEQUENTIALLY SHORT as possible

But Why?

This gives formal engines more latitude
to optimize the state space it must analyze

Benefits: almost always yields better
wall clock run time, memory usage, and debug

IIIIIIIIIIIIIIIIIII

36

DESIGN AND VERIFICATION®™

DVCON The Two Great Laws In Detall

1. Keep properties as SIMPLE as possible
— The less state logic a property has, the better
— Reference as little of the DUT as possible
— Break complex properties into several simpler ones
— Make use of modeling layer code to simplify the property

2. Keep properties as SHORT as possible
— The shorter the sequential depth the better
— Single-cycle assertions are best
— Under 10 cycles is a rule of thumb
— Function of design size and property depth determines results

TTTTTTTTTTTTTTTTTTT

DESIGN AND VERIFICATION™

OVLDL 1St Great Law: Simple Properties

ENABLE

START

STOP

$rose(START) |=> (ENABLE && ~START && ~STOP)[*7] ##1 \
(ENABLE && ~START && STOP) |=> (~ENABLE && ~START && ~STOP):

$rose(START) -> ~ENABLE ##1 ENABLE;
$rose(ENABLE) > (~START && ~STOP)[*7];
$rose(STOP) -> ENABLE ##1 ~ENABLE;
$fell(START) => ##5 $rose(STOP);
$rose(STOP) => ~STOP;

SYSTEMS INITIATIVE

T
M

2019

DESIGN AND VERIFICATION®™

DVCOIN

CONFERENCE AND EXHIBITION

Original:

Decomposed:

Original:

Decomposed:

SYSTEMS INITIATIVE

If You Have Inconclusives the First 24hrs: “Decompose”

a xyz: assert property (Q@(posedge clk) a && b |-> x && y && z);

a x: assert property (@ (posedge clk) a && b |-> x);
a y: assert property (@ (posedge clk) a && b |->y);
a z: assert property (@ (posedge clk) a && b |-> z);

a tranl2: assert property (@ (posedge clk)
condition start |=> transactionl or transaction2);

a tranl: assert property (@ (posedge clk)

condition_ start && type==TYPEl |=> transactionl);
a tran2: assert property (@ (posedge clk)

condition start && type==TYPE2 |=> transaction2);

39

2019

DESIGN AND VERIFICATION®™

R Leverage Modeling Code

« Verilog code which can help in writing an assertion
— Simplify understanding the property or simplifying the property itself
« Example assertion file with modeling layer code:
module assert top (input rstn, clk, A, B, C, wr, rd);
// Requirement: Never > 5 outstanding wr’s (without a rd)
// Requirement: No rd before wr
//keg [2:0] my cnt; \\
always @ (posedge clk or negedge rstn)
if ('rstn) my cnt <= 3'b000;

else
if (wr && 'rd) my cnt <= my cnt + 1;
else if (!'wr && rd) my cnt <= my cnt - 1;
\\ else my cnt <= my cnt; j//
a wr outstanding le5: assert property (@ (posedge clk) my cnt <= 3'd5);
a no rd without wr: assert property (@ (posedge clk)
'((my cnt == 3'd0) && rd)) ;

endmodule
accellera

SYSTEMS INITIATIVE

2019

BVETi 2nd Great Law: Sequentially Short Properties
al: assert property (@ (posedge clk) $onehot(state));
a2: assert property (@(posedge clk) ~(A && B));
a3: assert property (@(posedge clk) $rose(A) |=> ~A);
a4 assert property (@(posedge clk) disable iff (~rst_n)
A##1 B &8 C ##1 D |=> E):

ab: assert property (@(posedge clk) disable iff (~rst_n)
A##1 B |=> C ##[1:5] D);

a6: May get CEX, No Proof

a6: assert property (@l clk) disable iff (~rst_n)
A##1 B |=> C ##[1:100] D):

a7 assert property (@(posedge clk) disable iff (~rst_n)
A##1 B |=> ##1024 C).

accellera)

SYSTEMS INITIATIVE

« Break apart “end-to-end Property” into “P1”, “P2”, and "P3”
 When P1 is proven for Subl, use it as an assumption/constraint to run

a proof of
* Results wi

P2 on Sub2. Repeat ...
| be the same as if we ran on the big end-to-end property

thanks to t

ne “assume-guarantee” principle

« COils for verifying the individual P1, P2, and P3 assertions are reduced

dramatical

IIIIIIIIIIIIIIIII

ly = faster run time and memory performance!

42

DYCON Leverage Formal VIP

« Formal verification IP is powerful and easy to use
— Will already use many techniques to reduce state space

v %)
= <
1%} %
=4 —
@ 9}
3 3
3 3]
=g —
@ o
= =
o o
=} o
S B

SYSTEMS INITIATIVE

43

DESIGN AND VERIFICATION™

v Over Constrain to Get Results

 Qver constrain to turn inconclusive results into conclusive results
— Useful bugs can be found, proofs generally not valid though provide info

» Constrain input state space _.>" =l
E ‘

« Make use of Symmetry }

AXLQFL | AXI0 1D=2)
DDRO (cs[1] =1
AXIQFL | 011 0D =2) 2 EH=D
DDR3
AXI2 (dlsabled) DDR1 |nored

DUT

AXI3 (dlsabled)

a@ 44

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DV O Simplify Formal Testbench

« Divide and Conquer approach is often used

— Data integrity, functionality, connectivity
- Bridge data integrity

)
-

- XBAR functionality

s (150 O

- Connectivity between blocks

x
(o8]
>
Py
)
=}
o
2

256 combinations
Selects stable during transmission

accellera
45

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION®™

DV O Simplify Formal Testbench

* Brute Force can be used to verify everything at the same time
— Data integrity, functionality, connectivity

256 combinations
Selects stable during transmission

accellera
46

IIIIIIIIIIIIIIIII

2019

DESIGN AND VERIFICATION®™

DV O Simplify Formal Testbench

« Advanced formal techniques allow you to simplify the formal TB

— ND, DI, Symbolic Variables, Formal VIP, modeling code => minimize state

- Data integrity end to end
- Symbolic Variables for input/bridge/output

o - Stable - Determines select value
H - ND — formal picks the path
il - Proof — all scenarios good, CEX shows bad path
M Input i1 3 to O
S— Bridge Brldge j 3 to 0

Output k 3 to O

iE256 CombinationsiE <I><J_>Q<J_><:K>

Selects stable during transmission selA[j] = i selB[K] = |

accellera
47

SYSTEMS INITIATIVE

Ud1IMs dvdax
UdIMS dvdXx

N
-
—

2019

DESIGN AND VERIFICATION®™

BVEDN Summary

 Complete as much valuable analysis as possible in your first 24-hours

« Leverage feedback from the tool
— Use “active logic” to identify problem constructs in the logic being analysed
— Use “Engine Health” to focus on properties least likely to converge
— Use “Run Monitor” to keep watch over all the runs

« Leverage the tool commands to reduce design size
— Use blackbox commands to remove certain module/instance
— Use cutpoint command to remove the fan-in logic of the specified signal
— Use compile switches to reduce parameter sizes

 If problematic constructs are found, modify your setup and re-run

— Add/remove/recode assumptions (a/k/a constraints)

— Recode assertions: formal-friendly coding as per the Two Great Laws, decomposition
— Reduce design size

SYSTEMS INITIATIVE

48

