2020 \
lllllllllllllllllllllll
NNNNNNNNNNNNNNNNNNNNNNN

MICROCHIP

It Should Just Work!
Tips and Tricks for Creating Flexible, Vendor
Agnostic Analog Behavioral Models

Chuck McClish
Microchip Technology Inc.

555555555555555



IIIIIIIIIIIIIIIIIIIIIII

DVCON Motivation for paper

* |t should just work!... But it doesn’t always =

* Lots of little gotchas to consider for true portability =
r‘-_\ !

* Who supports what when?
* Different UDNs don’t play well together
v— @ o

» Useful features that aren’t yet LRM ‘compliant’
— But are supported by the tools

EEEEEEEEEEEEEEEEE



2020

DESIGN AND VERIFICATION™

DVCCIN What are UDNs?

e User Defined Nettypes == UDNs, AKA the shiny new wheel!
— Introduced SV 1800.2012 LRM
— Abstract representation of a SV ‘wire’
— Made of single or fixed structure of reals or 2 or 4 state integral types
— User defined resolution function

e Replaces the non-LRM ‘wreal’

accellera) P <5 A& = Cad . |

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

e Single 4 state nettype?
— Legal, but not supported by most!

e |s SV ‘wire’ a nettype?
— No!

* What is portable?

— Scalar or structures of reals

Guideline #1: Always use scaler or structures of
reals for all nettype definitions

SYSTEMS INITIATIVE

Simple UDN

nettype Lo

C ana _net t;

nettype wirr ana_net t;

nettype real ana net t;

typedef struct {
real value;
real stren;
} ana value t;
e ana_value t ana net t;




2020

DESIGN AND VERIFICATION™

DVLCOIN What about X and Z?

e Old style ‘wreal’ types had ‘wrealXState and ‘wrealZState
 UDNs are just a value set, there is no special X or Z value predefined

— If you want it, you have to define it! Pick some obnoxious value.
— Tools don’t understand X or Z, can make waveform plotting with these difficult

e Simple resolution function to handle X and Z:

‘define ZSTATE -100 - i . .
“define XSTATE 168 Vendor Suggestion #1: Waveform viewer variable

‘define ana_value t real to define X and Z for pretty plotting

‘ana_value t res (i1nput ana value t driver[]):
res = ZSTATE;
(1nt 1 = (driver); 1 =< (driver); 1++) begin: res loop
(driver[1] = res) res = driver[1];

end

ﬂﬂﬂfﬂ@ﬁa nettype ana value t ana net t
‘define ana_net t ana net t

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DY O Type Matching

 All UDN types MUST match. This is simpler, but not always desirable:
— Communication challenges, external IP

— Different complexities at IP level vs SoC level

typedef struct {

— UDN license costs real value;
real stren;
. . } ana value t;
* FIeXIble UDN examples "éefin:_e aﬂajalue_t ana_value_t

‘define ZSTATE -1006
‘define XSTATE 100

// simple wire

‘define ana_value_t logic "ana_value t res (input ‘ana_value t driver[]);

‘define ZSTATE 1'bz res.value = “ZSTATE;
‘define XSTATE 1'bx res.stren = 0; R D
: d':'flr‘l'i‘ ana net t ".'i'i e |[1r‘|t l = . I:d river) ; ._'I. < ] |:d Friver); 1++)
- - (driver[1] .value != "ZSTATE)
(res.stren == driver[1].stren) begin
. . .  ye res.value = XSTATE;
Guideline #2: Define and utilize X/Z values, UDN ("Contention on net. %m"):
\ . end
Value SEt, and UDN as deflnes (res.stren = driver[1].stren)

res = driver[1];

ﬂﬂﬂf’lﬂfﬁ .netty pe ana value t ana_net t

SYSTEMS INITIATIVE define ana _net t ana net t




2020

DESIGN AND VERIFICATION™

)\ Value Setting and Getting

 Because UDN types are flexible, helper functions are required

* Superset set function that can set all possible fields | Guideline #3: Define superset
of functions to ensure

e Superset get functions covering all possible fields | compile time compatibility

e ’ typedef struct {
Reasonable’ defaults e value;
‘define ana_value_t logic real stren;
‘define ZSTATE 1'bz } ana_value_t;
‘define XSTATE 1'bx define ana value t ana value t

‘define ZSTATE -100

‘define ana net t wire . :
-~ define XSTATE 100

/N value input must be of type 'logic' because

I 1'bx and 1'bz do not map to real values ana_value_t set_n (input real value : 0

input real stren

‘ana_value t set_n (input logic value = 0, t Lue = value:
input real stren = 6); Set_n.vatue = value;
set n = value; set_n.stren = stren;
logic get_v (input “ana_value t ana_net); real get_v (input "ana_value_t ana_net);
get v = ana_net; get v = ana_net.value;

real get_s (input “ana_value t ana_net); real get_s (input "ana_value_t ana_net);
get s = 6; //No strength, everything 'strong’ get_s = ana_net.stren;



2020

DESIGN AND VERIFICATION™

)\ UDN Type Checking

e Flexibility requires additional model complexity

— Different behavior based on type
— Additional UDNs for model level verification

e Many times, incoming signals are ‘OK’ if they fall within a certain range:

vref ok = (get_udn_type() == LOGIC) ? get v(vref) : (get_v(vref) {[MIN:MAX]});

 Organize these ‘OK’ level checks in a common location in the model

Guideline #4: Maintain minimal set of SoC and
subsystem level UDNs with explicit type naming
scheme and organize checks in common

location In models
accellera

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DVCOIN UDN Bi-Dir Switches

e How to model a bidirectional switch with UDNs?

So sayeth the LRM Burn the tools!! UDN capable switch primitives

-

e With simple wrapper, can use tran, tranifO, and tranifl gates with UDNs
 Will likely be added to the LRM in a future release

SYSTEMS INITIATIVE Images from Monty Python Quest for the Holy Grail 1974




2020

DESIGN AND VERIFICATION™

DVC:ON Integration Tips

* Along with UDNs, the LRM introduced ‘interconnect’
— Typeless hierarchy connectors
— All end points must be of the same type

e Synthesis and APR tools replace these with ‘wire’

— To use UDNs in a LRM compliant manner, need to write a script to replace wire
with interconnect

o All the simulation tools treat ‘wire’ as ‘interconnect’ as long as
interconnect rules are followed

Guideline #5: Don’t use interconnect, always
use wires for hierarchical transport of UDNs

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DYCCIN Real Coverage and Stimulus

 The LRM says that only integral types can be used for randomization/coverage

— but all vendors now support constrained random real stimulus and coverage!

. . eal value;
» Be aware that it doesn’t always just work! o vale dist
. value { ZSTATE ;
— There are several gotchas noted in the paper (0.7:0.9] :/

:1.2] 1

— Some tools pull a special license

cg value;
Guideline #6: Use constrained random real cvp_real_value: value {

) - “ifdef VENDOR C
Eg\r/neutllzlz ﬁ(r:]gnrseealczg\::gglge collection if you highz = {[ ZSTATE-0.1: ZSTATE+0.1]}:

‘glse

highz = { ZSTATE},
“endif

low 1[0.7:0,
{

0.7:0
valid B.9:1.

[

SYSTEMS INITIATIVE



2020

DESIGN AND VERIFICATION™

DVCOIN UPF for Behavioral Models

e \What are UPF aware behavioral models?

— React according to UPF supply connections
— Complex corruption semantics handled entirely by the model
— Generate supply voltages for other blocks (e.g. regulators)

foo (
input UPF::supply net type vdd, vss,
inout ana net t vref out,
output wire rdy) ;
real vdd real, vss_real;
vdd _real = (vdd.voltage) / (10#%+*6);
vss_real (vss.voltage) / (10%*G),;
(vdd.state UPF::FULL ON) && (vdd real {[ 1.8 :
(vss.state UPF::FULL ON) && (vss_ real {[-0.1 :
1'b1;
(get_udn_type() == LOGIC) ? set n(1'bl) : set n(0.700);
(vdd ok && vss ok) 7 'z SR &
(vdd ok && wss ok) 7 ZSTATE : XSTATE;

vdd ok
vss 0k
rdy

vref out
rdy

vref out
accellera

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

)\l Disabling Automatic Corruption

e Disabling automatic corruption semantics must be done for UPF aware
models with real UDNs
— Corruption sets outputs to default state, for reals, this is O
— Initial blocks are not retriggered when power comes back up!
— Automatic corruption occurs immediately, no delays!

e Setting module attribute is portable and behavior is self contained:

(* UPF_simstate_behavior = "DISABLE" *)

Guideline #7: Always disable automatic UPF

corruption in behavioral models with the
a@ UPF_simstate behavior SV attribute

SYSTEMS INITIATIVE




2020

DESIGN AND VERIFICATION™

DVEER UPF Modelling Tips, Tricks, and Gotchas

e Each vendor interpreted the UPF LRM differently for SV implementation:
— Always prefix UPF package types and enumerations with ‘UPF::’
— Avoid using UPF package functions like get_supply_state(), supply_on(), etc.

— Create a common define for the state enumeration
e Can be either UPF::upfSupplyStateE or UPF::state depending on your tool

* Always drive or read the UPF supply net struct fields directly:

UPF: :supply _net type vout, vin;
real vin _real;
vin_real
vin ok
(¥
(vin_ok) begin
vout.state UPF: :FULL ON;
vout.voltage (1.0 * 10%*6) ;

end begin Guideline #8: Follow UPF
vout.state 1 OFF; modelling rules on this page
accellera vout .voltage =

end

(vin.voltage) / (10#%%G);
(vin.state == UPF::FULL_ON) && (vin _real

SYSTEMS INITIATIVE



R Conclusion

NNNNNNNNNNNNNNNNNNNNNNN

e UDN based, UPF aware behavioral models add many new modelling and

verification capabilities
 The vendors are working to add features to make our lives easier

* Following the guidelines in this paper will ensure that every just works!

SYSTEMS INITIATIVE



	It Should Just Work!�Tips and Tricks for Creating Flexible, Vendor Agnostic Analog Behavioral Models
	Motivation for paper
	What are UDNs?
	Simple UDN
	What about X and Z?
	Type Matching
	Value Setting and Getting
	UDN Type Checking
	UDN Bi-Dir Switches
	Integration Tips
	Real Coverage and Stimulus
	UPF for Behavioral Models
	Disabling Automatic Corruption
	UPF Modelling Tips, Tricks, and Gotchas
	Conclusion

