
It Should Just Work!
Tips and Tricks for Creating Flexible, Vendor 

Agnostic Analog Behavioral Models
Chuck McClish

Microchip Technology Inc.

1



Motivation for paper
• It should just work!... But it doesn’t always

• Lots of little gotchas to consider for true portability
• Who supports what when?

• Different UDNs don’t play well together
• Useful features that aren’t yet LRM ‘compliant’

– But are supported by the tools

2



What are UDNs?
• User Defined Nettypes == UDNs, AKA the shiny new wheel!

– Introduced SV 1800.2012 LRM
– Abstract representation of a SV ‘wire’
– Made of single or fixed structure of reals or 2 or 4 state integral types
– User defined resolution function

• Replaces the non-LRM ‘wreal’

3



Simple UDN
• Single 4 state nettype?

– Legal, but not supported by most!

• Is SV ‘wire’ a nettype?
– No!

• What is portable?
– Scalar or structures of reals

Guideline #1: Always use scaler or structures of 
reals for all nettype definitions

4



What about X and Z?
• Old style ‘wreal’ types had `wrealXState and `wrealZState
• UDNs are just a value set, there is no special X or Z value predefined

– If you want it, you have to define it! Pick some obnoxious value.
– Tools don’t understand X or Z, can make waveform plotting with these difficult

• Simple resolution function to handle X and Z:
Vendor Suggestion #1: Waveform viewer variable 
to define X and Z for pretty plotting

5



Type Matching
• All UDN types MUST match. This is simpler, but not always desirable:

– Communication challenges, external IP
– Different complexities at IP level vs SoC level
– UDN license costs

• Flexible UDN examples:

Guideline #2: Define and utilize X/Z values, UDN 
value set, and UDN as `defines

6



Value Setting and Getting
• Because UDN types are flexible, helper functions are required
• Superset set function that can set all possible fields
• Superset get functions covering all possible fields

– ‘Reasonable’ defaults

Guideline #3: Define superset 
of functions to ensure 
compile time compatibility

7



UDN Type Checking
• Flexibility requires additional model complexity

– Different behavior based on type
– Additional UDNs for model level verification

• Many times, incoming signals are ‘OK’ if they fall within a certain range:

• Organize these ‘OK’ level checks in a common location in the model

Guideline #4: Maintain minimal set of SoC and 
subsystem level UDNs with explicit type naming 
scheme and organize checks in common 
location in models

8



UDN Bi-Dir Switches
• How to model a bidirectional switch with UDNs?

• With simple wrapper, can use tran, tranif0, and tranif1 gates with UDNs
• Will likely be added to the LRM in a future release

So sayeth the LRM

NO!

Burn the tools!! UDN capable switch primitives

Images from Monty Python Quest for the Holy Grail 1974
9



Integration Tips
• Along with UDNs, the LRM introduced ‘interconnect’

– Typeless hierarchy connectors
– All end points must be of the same type

• Synthesis and APR tools replace these with ‘wire’
– To use UDNs in a LRM compliant manner, need to write a script to replace wire 

with interconnect

• All the simulation tools treat ‘wire’ as ‘interconnect’ as long as 
interconnect rules are followed

Guideline #5: Don’t use interconnect, always 
use wires for hierarchical transport of UDNs

10



Real Coverage and Stimulus
• The LRM says that only integral types can be used for randomization/coverage

– but all vendors now support constrained random real stimulus and coverage!

• Be aware that it doesn’t always just work!
– There are several gotchas noted in the paper
– Some tools pull a special license

Guideline #6: Use constrained random real 
stimulus and real coverage collection if you 
have the license capacity

11



UPF for Behavioral Models
• What are UPF aware behavioral models?

– React according to UPF supply connections
– Complex corruption semantics handled entirely by the model
– Generate supply voltages for other blocks (e.g. regulators)

12



Disabling Automatic Corruption
• Disabling automatic corruption semantics must be done for UPF aware 

models with real UDNs
– Corruption sets outputs to default state, for reals, this is 0
– Initial blocks are not retriggered when power comes back up!
– Automatic corruption occurs immediately, no delays!

• Setting module attribute is portable and behavior is self contained:

Guideline #7: Always disable automatic UPF 
corruption in behavioral models with the 
UPF_simstate_behavior SV attribute 13



UPF Modelling Tips, Tricks, and Gotchas
• Each vendor interpreted the UPF LRM differently for SV implementation:

– Always prefix UPF package types and enumerations with ‘UPF::’
– Avoid using UPF package functions like get_supply_state(), supply_on(), etc.
– Create a common define for the state enumeration

• Can be either UPF::upfSupplyStateE or UPF::state depending on your tool

• Always drive or read the UPF supply net struct fields directly:

Guideline #8: Follow UPF 
modelling rules on this page

14



Conclusion
• UDN based, UPF aware behavioral models add many new modelling and 

verification capabilities
• The vendors are working to add features to make our lives easier
• Following the guidelines in this paper will ensure that every just works!

15


	It Should Just Work!�Tips and Tricks for Creating Flexible, Vendor Agnostic Analog Behavioral Models
	Motivation for paper
	What are UDNs?
	Simple UDN
	What about X and Z?
	Type Matching
	Value Setting and Getting
	UDN Type Checking
	UDN Bi-Dir Switches
	Integration Tips
	Real Coverage and Stimulus
	UPF for Behavioral Models
	Disabling Automatic Corruption
	UPF Modelling Tips, Tricks, and Gotchas
	Conclusion

