
ISO 26262 Dependent Failure Analysis

using PSS

Moonki Jang, Jiwoong Kim, Dongjoo Kim
Samsung Electronics, 1-1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Korea

moonki.jang@samsung.com, jiwoong7.kim@samsung.com, dj.num1.kim@samsung.com

Shai Fuss, Zeev Kirshenbaum
Cadence Design Systems, 18 Aharon Bert, Petah Tikva 4951448, Israel

shai@cadence.com, zeevk@cadence.com

Abstract - Dependent Failure Analysis (DFA)[1] is a methodology defined in ISO-26262[2] to analyze the

impact of errors in one shared resource on other elements and find safety vulnerabilities. Coherency is a good

example for resource sharing and is thus critical for failure analysis. The reusability and constrained-random

generation provided by the Portable Test and Stimulus Standard (PSS)[3] helps with generation of the

Dependent Failure Initiator (DFI) and coupling factors for DFA.

I. INTRODUCTION

ISO 26262 is the adaptation of IEC 61508[4] to address the sector specific needs of electrical and/or electronic (E/E)

system within road vehicles. This adaptation applies to all activities during the safety lifecycle of safety-related

systems comprised of electrical, electronic and software components. Safety is one of the key issues in the

development of road vehicles. Development and integration of automotive functionalities strengthen the need for

functional safety and the need to provide evidence that functional safety objectives are satisfied. With the trend of

increasing technological complexity, software content and mechatronic implementation, among others there are

increasing risks from systematic failures and random hardware failures, these being considered within the scope of

functional safety. ISO 26262 includes guidance to mitigate these risks by providing appropriate requirements and

processes. [5]

Dependent Failure Analysis (DFA) methodology has been introduced as part of ISO 26262 part 11: Guideline on

application of ISO 26262 to semiconductors [6] to analyze the impact of errors on one shared resource to other elements

and find safety vulnerabilities. Many System-on-Chip (SoC) designs for automotive applications consist of multiple

processor cores and IP subsystems that share SoC resources such as memory, system interconnect (IC), and IO

subsystems. In this environment, a fault in a shared resource can affect other elements that share that resource, causing

unexpected chain errors. When such an error occurs in a mobile phone, the problem can be solved simply by rebooting.

However, in an automotive environment such an error can be fatal enough to threaten the driver's life. ISO 26262

defines these chain errors as dependent failures and classifies them as cascading failures and common cause failures.

 Cascading Failure: Failure of an element, resulting from a root cause, and then causing a dependent failure of

another element or elements

 Common Cause Failure: Dependent failure of two or more elements, resulting directly from a single specific

event or root cause

Figure 1. Type of dependent failures

mailto:moonki.jang@samsung.com
mailto:jiwoong7.kim@samsung.com
mailto:dj.num1.kim@samsung.com
mailto:Shai@cadence.com
mailto:zeevk@cadence.com

The purpose of the DFA is to find the Dependent Failure Initiators (DFI) and coupling factors that can cause the above

dependent failure, and to prevent or control them in advance. DFA generally proceeds in the following order:

 Identify the Dependent Failure Initiators (DFI)
 Finding possible coupling factors for each DFI
 Confirm effectiveness of safety mechanism and measures to prevent DFI and coupling, or to mitigate

dependent failures

For DFA, it is necessary to generate DFIs of various conditions at a desired time point and generate numerous types

of coupling factors to identify violations of independence or freedom of interference. This means that we need to

create hundreds of scenarios that combine all of the functions that can be used as coupling factors for each DFI. We

therefore needed a new, different kind of verification methodology to model and automatically generate these

scenarios. We found that test generation using the modelling approach and constrained-random generation in PSS is

suitable for generating numerous tests with different conditions as in the case of DFA. The use of constraint-based

randomization in PSS allows us to efficiently create multiple randomized scenarios, in a fraction of the time it would

take to manually create and maintain a large number of directed tests. The nature of randomization allows finding

bugs even in unsuspected areas, as well as achieves a much better coverage. Functional coverage in PSS can be used

to track the verification progress and point out areas that have not been verified yet, thus supporting a Metric-Driven

Verification (MDV) approach. An additional advantage of PSS is the ability to generate executable code for various

different platforms, including RTL simulation, Acceleration/emulation and even post-silicon.

We also collected the results of each test run and generated a new form of failure report - FTR, which was able to

immediately reflect in DFA.

II. IDENTIFYING THE DEPENDENT FAILURE INITIATOR

The Dependent Failure Initiator (DFI) represents the root cause of dependent failures in functional safety. In

general, DFI is defined as an item that can threaten the independence required between elements. In this paper, a fault

occurring in a shared memory area is defined as the DFI and implemented through fault injection as follows:

- Uncorrectable ECC error injection

When the Processor Element (PE) reads from memory, the ECC check logic can detect an error in the stored values

and return an error response to the PE. In general, an ECC beat is calculated and updated when a data beat is written.

The backdoor task allows you to directly access the data array inside the memory model to change the contents of a

particular data beat. If there is a data beat that does not match the ECC beat, the ECC check logic will generate an

ECC error when reading the data beat. Our testbench triggers such errors by changing memory contents through a

backdoor interface. As shown in figure 2 below, ECC error injection can be performed on DRAM / L3cache / L2cache,

which have different coherency targets.

Figure 2. Coherency domain

- Memory Management Unit (MMU) translation fault generation

All PEs with an MMU look up the page table in the shared memory area and read the physical address information

for address translation. If the contents of the page table are corrupted, serial translation faults can occur in the PE that

references the page table. Our testbench manipulates the valid field of the page descriptor to generate an MMU

translation fault at the desired time.

- RAS error injection for CPU, Interrupt controller, System MMU

The RAS (Reliability, Availability, and Serviceability) extension is ARM's error handling and recovery architecture

that is applied from the ARMv8 architecture. [7] RAS has its own fault injection model extension that can inject faults

into the L1 / L2 / L3 caches to generate error interrupts. However, this feature is mainly used for SW error handling

and recovery process verification because it is a fake error rather than an actual error in cache memory. We reset the

core and cluster during RAS recovery process after RAS error injection to verify the effect of this reset process on the

coherency behavior of other processor elements.

Using PSS, the above fault injection options are modeled as reusable actions. A PSS tool can then generate various

DFIs with the desired number of faults at any given time.

III. FINDING THE POSSIBLE COUPLING FACTORS FOR EACH DFI

A coupling factor is a common characteristic or relationship of elements that leads to dependency in their failure.

The following coherency interference stimulus for a shared memory region may be a coupling factor as it causes

different PEs to continuously access a shared memory region. This results in a dependent failure from the previously

defined DFI (fault injection into the shared memory region).

- False sharing access

The figure below shows the transaction flow when different coherent masters write their own data to a memory area

allocated within one cache line (64 bytes). Each master uses a unique address-range within the same cache line. Each

time a coherent master writes a value to a block allocated to it, a number of snoop transactions are generated between

the coherent masters to clear the caches of all other masters, as shown in figure 3. If a fault is injected into the 64-byte

cache-line, this coherency operation causes a failure in all coherent masters participating in the false sharing scenario.

Figure 3. False sharing with write competition

- Distributed Virtual Memory (DVM) transaction broadcasting

DVM is a transaction generated by a processor for maintenance of a virtual memory system such as a MMU. As

shown in figure 4, when Cluster_0 sends out a DVM request transaction, the DVM controller sends a request to the

MMU elements of the system. When the response arrives from each MMU, the DVM controller sends a response to

Cluster_0. DVM transactions are created during address remapping of the recovery process due to a fault in shared

memory. At this time, if a specific element enters a reset state due to another failure, it may fail to return the DVM

response and lead to recovery failure.

Figure 4. DVM transaction flow diagram

- Exclusive access

When a PE attempts to perform an exclusive access to an exclusive target region, the global exclusive monitor on

the system bus allows only one PE (CPUCL0 in figure 5 below) to access the region. During that time, the exclusive

target region is locked, and all other PEs that attempt to access it are blocked until the exclusive access is complete

and the lock released. If an error occurs in the exclusive target area during exclusive access, the blocked PEs may

wait indefinitely for the lock to be released.

Figure 5. Exclusive access flow diagram

In addition, CPU cluster power down and dynamic CPU clock level changes are also used as coupling factors that

can cause HW coherency protocol errors.

The PSS model allows us to create a coupling-factor scenario and inject an error per the selected DFI, while in

parallel running interference stimulus which might disrupt the recovery process.

IV. GENERATING THE SCENARIO USING PSS

PSS allows you to create all the required infrastructure below, but you can also save some time and use an existing

library as we did. Among other topics, the library provides built-in actions to generate coherency scenarios for multi-

core systems, such as false sharing, true sharing, RAS error injection, and more. Our project-specific tests leverage

the built-in actions and add additional system-specific contents.

A. Traffic Generation

Consider for example the following system-level scenario we would like to generate:

 Run false-sharing scenario with:
o 85% of the cases do read-increment-write actions

o 15% of the cases do an error injection action, selecting from these kinds: RAS error, MMU

translation fault, ECC memory error, or CPU internal exception.
The code example in figure 6 shows the declaration of a new PSS action, which selects either valid traffic, or

injection of one of several error kinds. The PSS tool will randomize the selection of one of the choices, each time the

action is traversed within a scenario. The action shows the use of both library contents, as well as project-specific

actions:

Figure 6. Activity selection

The code example in figure 7 illustrates the use of the utility action shown previously, by embedding it within a

false-sharing action provided in the library:

Figure 7. False sharing with error injection

(*) The code example above shows the use of template types, defined in PSS 1.1

Figure 8 shows a sample generated scenario, in the form of UML diagram, produced by the PSS tool. It illustrates

the steps performed by two cores, each reaching a point where it injects an MMU page fault:

action activity_selection {
 activity {
 // Randomly select one of the choices:
 select {
 // Valid coherency actions:
 [85]: do read_increment_write;

 // Error injection options:
 // - RAS error injection (library)
 [5]: do cdn_coherency_ops_c::ras_core_error_inject;

 // - MMU translation fault generation
 [5]: do core_remap_ttbr_error_inject;
 // - Uncorrectable ECC error injection
 [5]: do ecc_memory_error_inject;
 }
 }
}

// Action: false_sharing_with_err_injection
//
// Invokes the library’s false-sharing action, with the
// activity_selection as the embedded action to be executed
// by each core.

action false_sharing_with_err_injection {
 activity {
 do cdn_coherency_ops_c::false_sharing_random_operator
 < activity_selection >; // (*)
 }
}

Figure 8. UML diagram of the generated scenario

Library actions such as the false-sharing shown above handle many aspects that are vital to generate a valid system-

level test. These aspects include:

 Core selection, based on a system configuration table which lists existing cores and their attributes

 Synchronization points between the activity of multiple cores

 Memory management and memory allocation based on a system configuration table which lists existing

memories and their attributes

Using similar combinations of library actions and our own project-specific contents, we define even more complex

tests such as the following, shown in figure 9:

 Run the above false-sharing scenario with fault injection.

 Concurrently, run interference scenarios:

o Clock frequency change

o Powering cores down/up

o Exclusive access

Figure 9. False sharing with error injection and interference stimuli

This results in significant, randomized scenarios that exercise many aspects of the system, and thus improve

coverage and the chances of uncovering bugs. Figure 10 shows a UML diagram of one such generated scenario:

Figure 10. Generated dependent failure scenario

action false_sharing_with_err_injection_and_interference {
 activity {

 parallel {
 do false_sharing_with_err_injection;

 repeat (10) {
 select {
 do change_frequency;
 do cdn_coherency_ops::power_activity;
 do cdn_coherency_ops::exclusive_cache_access;
 }
 }
 }
}

B. Self-Checking and Coverage

When using a constrained-random approach, two additional elements are key:

1. Self-checking to allow the testbench itself to determine whether the test passed given the randomized

scenario

2. Coverage collections to record what combinations/flows were actually exercised, and which are still

pending (uncovered) in the verification plan.

The self-checking aspect is built into our PSS model and the library. For example, all data that is written to

memory is also read later during the test to make sure it is valid.

Similarly, PSS functional coverage is used to record the relevant traffic attributes, along with information such

as which combinations of error kinds were tested during which types of valid activity scenarios.

The following example shows a PSS coverage group definition:

Figure 11. PSS coverage definition

A sample coverage report is shown below, illustrating the cross-coverage item with some of its bins. Only few

of the bins are shown as covered, based on the data collected in a single run:

// Sample functional-coverage declaration to track error
// injection and handling

action monitor_error_handling {
 covergroup {

// processor injecting the error
 coverpoint err_proc_tag;

// type of error
coverpoint err_action;
// type of valid activity during that time

 coverpoint parallel_action;

 // cross coverage of the above
 proc_x_err_x_traffic:

cross err_proc_tag, err_action, parallel_action;

 } cov_error_handling
}

Figure 12. Sample coverage report

Using randomization and combining the coverage results of multiple runs allows us to cover all the relevant

coverage goals. This is a significant time-saver compared to manually creating (and maintaining over time) a

large number of directed tests to achieve the same level of coverage.

V. FAULT TOLERANCE REPORT (FTR) GENERATION

Failure Mode and Effects Analysis (FMEA) determines all possible ways a system component can fail and

determines the effect of such failures on the system. The DFI is selected based on the pre-defined FMEA items as

shown below.

Figure 13. Failure Mode and Effect Analysis (FMEA) example

Once the DFI is determined, the PSS selects an interference stimulus, which can be a coupling factor, to create a

dependent failure scenario. Each scenario prints out the following information when simulation completes:

- Injected fault information

Shows which type of faults were injected at which address. It also shows the time when a fault was injected and the

time when recovery process was completed.

- Executed interference action information

Shows which interference actions were performed to delay recovery process after fault injection. Another error

injection can also be used as an interference action.

- Maximum Fault Tolerance Time Interval (FTTI) information

FTTI is the time taken to recover from an uncontrolled state due to a fault. The maximum FTTI can be measured

for hundreds of fault conditions generated by the PSS tool, to determine which coupling factor affects the recovery

process the most.

- External recovery monitor [8]

Provides recovery monitor information for situations where the system fails to recover from the generated failures.

The PSS tool generated error-handling scenarios with hundreds of different conditions, and by gathering the above

information printed for each scenario, we created a Fault Tolerance Report (FTR):

Figure 14. Generated Fault Tolerance Report (FTR)

As shown in figure 14, the FTR provides information to identify which interference stimulus interfered with the

recovery operation in the fault injection scenario where the maximum FTTI was measured. The FTRs for each error

generated in this way are reflected in the DFA result as shown in figure 15 to prove that safety is guaranteed under

various error conditions.

Figure 15. Dependent Failure Analysis (DFA) report include FTR information

VI. RESULTS & LESSONS LEARNED FROM AN ACTUAL PROJECT

In this paper, we performed the DFA defined in ISO 26262 at the simulation level for the effect of coherence on the

system when a fault occurs in the shared memory region. Through this, it was possible to systematically analyze the

possible dependent failures and prepare the safety specifications.

We have found that this requirement analysis and verification methodology introduced in ISO 26262 can be usefully

applied to the general SoC verification process as well as functional safety. The PSS model reusability and

constrained-random test generation made it easy to generate tests with various conditions defined in safety

requirements. We find PSS to be an optimized methodology for reproducing any particular target condition. These

advantages will make PSS an essential methodology for safety verification.

VII. ACKNOWLEDGMENT

The work described in this paper was done using Cadence’s Perspec System Verifier[9], and the built-in System

Modeling Library (SML). We also used Cadence’s vManager [10] to manage and analyze simulation results.

REFERENCES
[1] ISO-26262-11:2018 “Road vehicles –Functional safety- part11, 4.7 Semiconductor dependent failures analysis”

[2] ISO-26262:2018 “Road Vehicles – Functional Safety”; https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

[3] PSS: Accellera, Portable Test and Stimulus: https://www.accellera.org/downloads/standards/portable-stimulus
[4] IEC-61508:2010 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related

Systems”; https://www.iec.ch/functionalsafety/standards/page2.htm

[5] ISO-26262-11:2018 “Road vehicles –Functional safety- Introduction”
[6] ISO-26262-11:2018 “Road vehicles –Functional safety- part11: Guideline on application of ISO 26262 to semiconductors”

[7] ARM, DDI 0587C.b “Reliability, Availability, and Serviceability(RAS) Specification: Armv8, for the Armv8-A architecture profile”

[8] Jang, M., Kim, J., Chung, H., Huynh, P., Shai, F. (DVCon 2019) Coherency Verification & Deadlock Detection Using Perspec/Portable
Stimulus

[9] Cadence, Perspec System Verifier https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-

verification/software-driven-verification/perspec-system-verifier.html
[10] Cadence, vManager Metric-Driven Signoff Platform https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-

design-and-verification/planning-and-management/incisive-vmanager-solution.html

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iec.ch/functionalsafety/standards/page2.htm
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/software-driven-verification/perspec-system-verifier.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/software-driven-verification/perspec-system-verifier.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/planning-and-management/incisive-vmanager-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/planning-and-management/incisive-vmanager-solution.html

